WILD POINTS OF CELLULAR SUBSETS OF 2-SPHERES IN S3
L. D. Loveland

1. INTRODUCTION

In this note we prove that if W is the set of all wild points of a cellular arc that
lies on a 2-sphere in S3, then either W is empty, W is degenerate, or W contains
an arc (Theorem 1). Thus there are two types of wild cellular arcs that lie on 2-
spheres in S3: those with exactly one wild point and those with an arc of wild
points.

Examples of arcs belonging to each of these two categories have already been
described. The arc A constructed on the boundary of a 3-cell C in S3 by Alford
[1] is wild at each of its points. Since the proof for Theorem 5 in [8] also shows that
C is cellular, it follows from [12] that A is cellular. Fox and Artin [6] have given
an example of a cellular arc on a 2-sphere in S3 such that the arc has exactly one
wild point. It follows from Theorem 2 that a cellular arc on a 2-sphere in S3 cannot
contain two isolated wild points.

In Section 3, we shall show that the results mentioned in the previous paragraphs
also hold for cellular finite graphs on 2-spheres in S3. Section 4 deals with suffi-
cient conditions for certain subsets of 2-spheres to be tame modulo finite sets.

Recently, Burgess [4] gave sufficient conditions for 2-spheres in S3 to be lo-
cally tame except at two points. We make strong use of his results here. In Section
4 of [11], we use the techniques of [4] to prove similar results in a slightly more
general setting. Thus, wherever we refer to [4], we could have used [11] instead.

2. DEFINITIONS AND NOTATION

A subset G of S3 is cellular (in S3) if and only if there exists a sequence
C;, C2, -+ of 3-cells in S3 such that for each positive integer i, C;;; € Int C; and

G = ﬂ oio:l C;. A finite graph is the union of a finite collection of arcs such that if p
is a point of intersection of two of these arcs then p is an endpoint of each of the two
arcs.

A 2-sphere S in 83 is locally tame at a point p if there exists a disk D on S
and a homeomorphism h of S3 onto itself such that p € Int D and h(D) is a poly-
hedron. Furthermore, S is fame in 83 if there exists a homeomorphism h of S
onto itself such that h(S) is a polyhedron. We define a subset X of a 2-sphere to be
tame if X lies on a tame 2-sphere. Also, we say that X is locally tame at a point
p of X if X lies on a 2-sphere that is locally tame at p. A set X is locally tame
modulo K if and only if it is locally tame at each point of X - K. We say that a point
p of X is a wild point of X (or that X is wild at p) if and only if X is not locally
tame at p.

A wild point p of K is called an isolated wild point of a set K if it lies in an
open subset O of K such that K is locally tame at each point of O - {p}
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3. CELLULAR FINITE GRAPHS

Because the following lemma is well known, we do not include a detailed proof.
Harrold, Griffith, and Posey outline a proof for it in the second and third paragraphs
of their proof for Lemma 5.1 of [9].

LEMMA 1. Suppose that € > 0, that o is the boundary of a disk D on a 2-
spheve S in S3 such that D is locally polyhedval at its intevior points, and that V is
a component of S3 - S; then theve exists a 3-cell C in S3 such that

(1) D c BdC,

(2) C-D cC v,

(3) Bd C is locally polyhedral at every point of Bd C - a, and
(4) C lies in an £-neighborhood of D.

For the sake of completeness, we indicate briefly how the 3-cell C in Lemma 1
can be obtained. Since D is locally polyhedral at its interior points, one can push
Int D slightly into V to obtain a crumpled cube (a 2-sphere together with one of its
complementary domains) satisfying all four conditions in the conclusion of Lemma 1.
The only difficulty lies in showing that, under suitable restrictions on the “pushing?”,
the crumpled cube is a 3-cell.

LEMMA 2. If a cellular finite graph G on a 2-spheve in S3 is locally tame
modulo a 0-dimensional set, then G has al most two wild points.

Proof. Let S be a 2-sphere containing G such that S is locally polyhedral ex-
cept at points of G [2], let K be the 0-dimensional set of wild points of G, and let p
be a point of G - K. Since K is closed, there exists an open set O containing p
such that ON K =¢ and O N G is a tame finite graph. Since S is locally tame at
every point of O N S - G and O N G is a tame finite graph, it follows (see [3] or [5])
that S is locally tame at each point of O. This implies that S is locally tame
modulo K. It follows from Corollary 2.4 of [13] that each component of S3 - S is an
open 3-cell. Together with Corollary 1 of [4], this implies that S has at most two
wild points. Since G C S, the graph G has at most two wild points.

LEMMA 3. If a cellular finite graph G on a 2-sphere in S3 is locally tame
modulo a 0-dimensional set W, then theve exists a cellular 3-cell C such that

(1) G € BAC and
(2) Bd C is locally tame modulo W.

Proof. Lemma 2 asserts that W has at most two points; let p and q be points
such that G is locally tame modulo {p, q}. Let S be a 2-sphere containing G and
such that S - G is locally polyhedral [2], and let D' be a disk on S such that G € D'.
Using the fact that G is cellular, we can obtain a subdisk D of D' such that G € D
and p and g both lie on Bd D. Using Theorem 8.5 of [3], we see that S is locally
tame at each point of Int D; therefore we may assume without loss in generality that
Int D is locally polyhedral. Now we apply Lemma 1 to obtain a 3-cell C such that
D C Bd C and Bd C is locally polyhedral modulo Bd D. Since p and q are the only
possible wild points of Bd D, we use [3] again and deduce that Bd C is locally tame
modulo {p, q}. Thus we may assume that Bd C is locally polyhedral modulo W and
hence locally polyhedral modulo G; therefore Corollary 2.4 of [13] is applicable, and
we conclude that S3 - C is an open 3-cell. Thus C is a cellular 3-cell satisfying (1)
and (2) in Lemma 3.
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THEOREM 1. If G is a cellular finite gvaph on a 2-spheve in S3 and W is the
set of wild points of G, then either

(1) W =g,
(2) W is degenevate, or
(8) W contains a cellular avc.

Proof. Suppose W contains no cellular arc. Then it follows from Theorem 3.1
of [13] that W contains no arc. Thus W is totally disconnected and hence 0-dimen-
sional. Applying Lemma 3, we see that G lies on the boundary of a cellular 3-cell
C such that Bd C is locally tame modulo W. Now we apply Corollary 2 of [4] and
see that Bd C has at most one wild point. Thus either W =@ or W consists of a
single point. This completes the proof.

THEOREM 2. A cellulay finite graph on a 2-spheve in S3 cannot have two iso-
lated wild points.

Proof. Suppose that G is a cellular finite graph on a 2-sphere in S3 and that G
has two isolated wild points p and g. Let S be a 2-sphere that contains G and is
locally polyhedral modulo G [2], and let A be an arc in G that contains both p and
q. In the next paragraph, we shall show that p and q are wild points of A.

There exists a disk D on S such that p lies in Int D, p is the only wild point of
G in D, and G N D consists of a finite collection H of arcs each having p as an
endpoint. If A were locally tame at p, it would follow from Theorem 5 of [5] that
each arc of H is tame. Then we could apply Theorem 2 of [7] and Theorems 21 and
6 of [10] to show that D N G is tame, which contradicts the fact that p is a wild
point of G. Thus p and q are isolated wild points of A.

By Lemma 1, there exists a 3-cell C such that A C Bd C and Bd C is locally
polyhedral modulo A. It follows that C is cellular [13] and that p and q are iso-
lated wild points of Bd C. This contradicts Corollary 2 of [4].

4, LOCALLY CELLULAR SETS

A finite graph G is locally cellular at a point p of G if and only if there exists
an open subset O of G such that p belongs to O and the closure of O is a cellular
finite graph. We say that G is locally cellular if G is locally cellular at each point
of G.

THEOREM 3. If a locally cellulav finite graph G on a 2-sphere in S3 contains
no avc of wild points, then it has at most a finite number of wild points.

Proof. For each point p in G, let O be an open subset of G such that p is in
O and Op is a cellular finite graph G Let {G sz, cee Gp } be a finite
1‘1

subcollection of the set {G | p is in G} such that the set {0 Op,s s Op }
covers G. By Theorem 1, each G has at most one wild pomt Let q; be a po1nt of

G, such that G, is locally tame modulo {q;}. ¥ x is a point of G - U _1 1a;1,
1 1

then x belongs to some O, - {q;}, and so G is locally tame at x. Thus the q; are
the only possible wild pomts of G.

THEOREM 4. Suppose G is a finite graph on a 2-spheve in S3. If G contains
no avc of wild points and each intevior point of G lies in the intevior of a cellular
arc in G, then G has at most a countable number of wild points.
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Proof. Let A}, A,, ** be a countable collection of cellular arcs in G such that
the union of the interiors of the A; covers the interior of G. It follows from Theo-
rem 1 that each A; has at most one wild point. Let p; be a point of A; such that A;
is locally tame modulo {pi}, and let H be the set of all the p; together with all the
vertices of G. Then H is a countable set, and if x is a point of G - H, then x lies
in the interior of a tame arc in some A, ; therefore G is locally tame at x. Thus G
is locally tame modulo H.

Example. We shall construct an example to show that Theorem 4 does not re-
main true when “countable” is replaced by “finite” in the conclusion. Let
E;, E,, --- be a countable collection of disjoint disks on a polyhedral 2-sphere S in
S3, and let the disks E; converge to a point p. By “swelling” the arc described by
Fox and Artin in Example 1.2 of [6], we obtain a disk D that is locally polyhedral
modulo a point of Int D. We replace each E; with a copy D; of D such that D; is
locally polyhedral modulo a point p; in Int D;. The D; can be constructed so that
they are disjoint and converge to p; the set

(s- Us)u(Un;)

is then a 2-sphere S' that is locally tame modulo {p, p;, pz, **-}. Let T be an arc
in S' containing all the p; and having p as an endpoint. Then T is wild at each p;
and locally tame at each other interior point. To show that T satisfies the hypoth-
esis of Theorem 4, we let x be an interior point of T. We need to show that x lies
in the interior of a cellular arc in T. This is obvious if x is not a p;, because T is
locally tame at such points. If x = p; for some j, we let T; be a subarc of T in D;
such that x is an interior point of Tj. It follows from [6] that (S - Ej) UD; isa 2-
sphere S;j such that each component of S3 - S; is an open 3-cell. Since Sj is lo-
cally polyhedral modulo Tj, it follows (see [12] or [13]) that T; is cellular.

THEOREM 5. If the hypothesis of Theovem 4 is satisfied and G is locally tame
at each of its vertices, then G has at most finitely many wild points.

Proof. By Theorem 4, G has at most countably many wild points. Suppose
{p;, p2, ***} is a countable point set in G such that G is wild at each p;. Since G
is compact, some point p is a limit point of the set of p;. There exists a cellular
arc A in G such that p is a point of A. In fact, since p cannot be a vertex of G,
we may choose A so that p lies in the interior of A. But now it follows from Theo-
rem 1 that there exists an open subset O of G such that p belongs to O and G is
locally tame at every point of O - {p}. This is a contradiction.

THEOREM 6. If a connected finite graph G on a 2-sphere in S3 contains no arc
of wild points, and if every arc in G is cellular, then G has at most one wild point.

Proof. Suppose G contains two wild points p and q, and let A be an arc in G
containing both p and q. As we showed in the proof of Theorem 2, A is wild at both
p and q. Since A is cellular and contains no arc of wild points, it follows from
Theorem 1 that A is locally tame modulo some point. This is a contradiction.

THEOREM 7. If G is a cellular subset of a 2-spheve S in S3, and if S is lo-
cally tame modulo G and W is the set of wild points of S, then either

(1) W is degenerate,
(2) W contains exactly two points, or
(3) W contains a nondegenerate continuum.

Proof. Since each component of S3 - S is an open 3-cell [13], Theorem 7 follows
from Corollary 2 of [4].
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