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Sibe MardesSi¢ and Jack Segal

All spaces considered in this paper are compact metric spaces. Amap 1 X—Y
of a space X onto Y is an g-map (¢ > 0) provided diam f-1(y) < ¢, for each y € Y.
If II is a class of polyhedra, we say that X is II-Ilike provided for each € > 0 there
exists a polyhedron P € II and an ¢-mapping f: X — P onto P (P and f depend on
£) (see Definition 1 in [5]). By an n-manifold we mean a closed connected triangu-
lable manifold of dimension n. We are interested in II-like continua, where II is a
class of n-manifolds. The following is our main result.

THEOREM 1. Let X be a IlI-like n-dimensional absolute neighborhood retract,
wheve Il is a class of n-manifolds. Then X is a locally orientable, n-dimensional
genevalized closed manifold over every prvincipal ideal domain L (n-gcm L). If 11 is
a class of ovientable n-manifolds, then X is also orvientable.

For the definitions of these notions, see [6] and [1] (see also [9]).

Theorem 1 was proved in [6] for the case where II is a class of orientable n-
manifolds. The consequences stated there for the orientable case are now estab-
lished without this restriction.

Theorem 1 follows from Theorem 1 in [6] and the following result.

THEOREM 2. Let X be a Il-like, n-dimensional absolute neighbovhood vetract,
where 11 is a class of nonorientable n-manifolds P. Let il denote the class of
ovientable n-manifolds P that ave the 2-fold coveving spaces of P. Then X admits
a 2-fold coveving space X that is a Ti-like continuum.

Remavrk. Recall that every (triangulablel nonorientable n-manifold P has a
uniquely determined 2-fold covering space P that is a (triangulable) orientable n-
manifold (see for example [7, pp. 271-272]).

To see that Theorem 2 and [6] imply Theorem 1, consider a Ii-like, n-dimen-
sional ANR X, where II is a class of n-manifolds. By a theorem of T. Ganea [3],
there exists an € > 0 such that all e-maps of X onto an n-manifold are homotopy
equivalences. Therefore, there exists a subclass Il C II each of whose members
is of the same homotopy type as X, and X is IIp-like. Consequently, either all
manifolds in II; are orientable, or all are nonorientable. In the first case, X must
be an orientable n-gem;g,, by Theorem 1 of [6]. In the second case, we apply Theo-
rem 2 to obtain a 2-fold covering space X of X thatis a Ho -like contmuum The
spaces X and X are locally homeomorphic, and therefore X inherits the local
properties of X. By a theorem of K. Borsuk [2], a compact metric space is an n-
dimensional ANR if and only if it is n-dimensional and locally contractible. Since
the latter properties are local, we may conclude that X is also an n-dimensional
ANR. The class i, consists of orientable n-manifolds, and so Theorem 1 of [6]
implies that X is an orientable (and hence locally or1entab1e) n-gemry,. Since local
orientability is a local property, we conclude that X is a locally orientable n-gcmy, .
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The proof of Theorem 2 is based on the following lemma.

LEMMA. LetX and Y be pathwise connected spaces, and let f: X - Y be a
homotopy equivalence. Let (X, p) and (¥, q) be m-fold regular coverings (m
finite) such that the isomovphism foom (X, x9) = 7(Y, y4) (yo = £(xg)) of the fun-
damental groups satisfies

1) f,p,m & X)) = q,m (¥, ), where X, € p~l(xy) and T, € a71(y,).

Furthermore, let T: X — ¥ be a map that lifts f, in other wovds, satisfies the condi-
tion qf =fp. Then

(1) fix) 2 f(x') if X, X' € X, X #X', and p(x) = p(x"),
(i) fX) =Y if (X) =Y,

(iii) Hn(?; Z) # 0 implies H, (X; Z) #0 (H, is the nth homology group, and Z
denotes the group of integers).

Proof Notice that the subgroup p, nl(X xo) is independent of the choice of the
point ¥, € p-1(x(), since the covering space (X, p) is regular. The same comment
applies to (Y, q). Furthermore, if (1) holds for one pair of base points xq, yo = f(xp),
the corresponding equality holds for any other choice of base points x; € X,
yy = £(x1) e Y.

In the proof of (i), we may therefore assume, without loss of generahty, that
X=Xo, X'=X%(, and p(X) = p(X') =xg. Let V be a path in X from ¥, to ¥}, and let
v = p¥. Then v is a loop based at xy. The element {v} of the fundamental group
7 (X, XO) determined by v cannot belong to p *TII(X X(), because the loop v lifts to
the path v, which is not closed (see for example [4, p. 251]). By (1) and the fact that
f, isan 1somorphlsm we conclude that fv is a loop based at yg and that {fv} does
not belong to q, m; (Y y ). Consequently fv lifts to paths that are not closed. Since
Vv is such a path, it follows that f(xo) # f(xo)

To prove (ii), consider any point y € ¥, and let y = q(y). Since f maps X onto
Y, there is a point x € X such that f(x) = y. By (i), the map f takes p-!(x) into
q-1(y) in a one-to-one manner, and since these two sets are both of finite cardinality
m, it follows that

vealy =il cilX.

Proof of (iii). Let g: Y — X be a homotopy inverse of f. There is no loss of
generality in assuming that g(yg) = x (for if g(yy) # xg, the homotopy extension
theorem yields a map g'~ g with g'(yg) = Xg). The induced homomorphism
g4t (Y, yo) — 7,(X, xg) is then the inverse of f_, and therefore

Bu Uy T ]_(Y; yo) = Py T l(X) i0) .

Therefore we can lift g to a map g: ¥ — X. The composite map Tg: ¥ — ¥ is a lift-
ing of the map fg: Y — Y. Since fg ~ 1, the covering homotopy theorem (see [8, p.
50]) yields a homotopy between fg and a map i: Y — ¥ that lifts the identity

i Y — Y. Denoting by f*n , g*n » 1, the induced homomorphisms on the nth homol-
ogy groups, we obtain

~

(2) fenBxn = lxn-
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It readily follows from (i) and (11) that every lifting of the identity i: Y - Y is a
homeomorphism, and therefore 1 +H (Y Z)— H (Y Z) is an isomorphism. Since
H (Y; Z) # 0, (2) implies that g*n # 0, and therefore H,(X; Z) # 0.

Proof of Theorem 2. Let II be a class of nonorientable n-manifolds, and let X
be a II-like n-dimensional ANR By Theorem 1 of [5], X is the inverse limit of an
inverse sequence {Xl, f; } (i= -+ ) of nonorientable n-manifolds X; € II with
bonding maps f.. XJ — X mappmg onto X; (i <j). The projections f;: X — X; map
X onto X; and satlsfy

(3) f.f. =1, (1L]j).

For each ¢ > 0, the projections f;: X — X; are g¢-maps for sufficiently large i.
Therefore, in view of the previously mentioned result of Ganea [3], there is no loss
of generality in assuming that all the projections f; are homotopy equivalences. It
then follows from (3) that all the maps f;; are also homotopy equivalences. If

X € X and x; = f;(xg) € X, then

fij(Xj) =X (iﬁj);
and the maps f;; and f; induce isomorphisms

fij*: ’Hl(Xj, xj) - 7(X;, %) (1<J) and f.: 7 (X, x5) = 7,(X;, x;), respectively.

Since X, isa (tr1angu1ab1e) nonorientable n- manifold, there exists a unique 2-
fold covering space (X, p;) of X; such that X; is a (tr1angu1ab1e) orientable n-
manifold.

Let N, = pl*ﬂl(Xl , X)), where X, € pil(x;). Note that since the covering space
is 2-fold, it is regular.

Define subgroups N; C 7,(X;, x;) and N, C 7,(X, x,) by
(4) N; = £, (N),  Np = 1,(N).

We now construct covering spaces (X;, p;) of X; (i> 2) and (X, p) of X, re-
spectively, in such a way that

i (X;, Xp) = Ny (1> 2),
p*ﬂl(}N{s §O) = NO'

These covering spaces are 2-fold (and hence regular), because the subgroups N;, N
are of index 2.

_ It follows from (4) that the e maps flJ and f1 can be lifted to maps f1J X — X and
f5: X - X; such that flJ(xJ) = X; and f;(Xg) = X;. We thus obtain an inverse sequence

{X1s f1J} (1 )

It follows from (11) of the lemma that fj; and f; are mappings onto X;. Since X;
is a 2-fold covermg of an n-manifold, it foliows that it is also an n-manifold. To
prove that X; is orientable, it sufflces to show that H (X Z) # 0. This follows by
induction, if we use (iii) of the lemma and the fact that Xl is an orientable n-
manifold. Since X; € II, we now see that X e 1.
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The proof of Theorem 2 will be complete if we show that X is the inverse limit
of the sequence {X1 ; f1 } First, we notice that the maps f1J fJ and f; both lift the

map f;;f;=1£;. Since f f (xo) = fl(xo) it follows that

;h =14 1<i).

Furthermore, we already know that the maps f are onto and that X is a compac—
tum. So we need only show that the maps f; distinguish points of X. Let %, X' € X
be such that

f’l(;(,) = fi(f;") i=1,2, ).
Since p;f; = f;p, we conclude that
fi(pi) = fi(p;é') (i = 1, 2’ ot ),

and therefore p(x) = p(x'). Now (i) of the lemma implies that X =%'. This concludes
the proof of Theorem 2.
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