A NOTE ON KISTER’S ISOTOPY
M. Brown

In [3] Kister gave a short proof of the following theorem: Let h be a homeomor-
phism of R® onto itself such that |h - 1| is bounded. Then h is isotopic to 1.
Kister mentioned the resemblance of his method to Alexander’s [1], and apparently
Kister’s method is slightly stronger, since his theorem immediately implies that of
Alexander. The purpose of this note is to describe more clearly the relation be-
tween the two methods, and, en passant, to strengthen Kister’s theorem.

Let B®, B”, B” denote the unit ball of R", its boundary, and its interior, re-

spectively. Let ¢ be any radial homeomorphism of I%n onto R"; that is, suppose

$(x) X
= (x# 0)
el N
Call a homeomorphism h of R™ a Kister homeomorphism if “h - 1“ is bounded,

and call a homeomorphism g of BY an Alexander homeomovphism if g extends to a
homeomorphism of B™ which is the identity on B",

THEOREM 1. h is a Kister homeomorphism only if ¢~ h¢ is an Alexander ho-
meomorphism.

Proof. Let b € B®. We wish to prove that limy . ¢~ h¢(x) = b. Examine the
¢~ 1 h ¢(x) ¢~ 1 h¢(x) x

inequality
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Evidently the first and last terms approach 0 as x — b. Hence it suffices to prove
that

¢ hex) - b < |6 1hex) - +
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By hypothesis, |h - 1]| is bounded, say by k. Hence [|h¢ - ¢|| <k. So, for
x #0,
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x—b

l ho(x)  ¢(x) | < __k and |he®) __é(x) , k
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Hence
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Since qb‘l is radial, we get the inequality
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NO)W as x > b, |h¢x)|| — < and ||¢(x)]|] — «, and we have established the truth of
(1).

THEOREM 2. Kister homeomovphisms ave stable (see [2] for the definition of
,the term “stable”).

Proof. Choose the homeomorphism ¢ of Theorem 1 so that ¢ =1 on a neighbor
hood of the origin. Then if h is a Kister homeomorphism, ¢-1h¢ is an Alexander
homeomorphism. Extending by the identity map, we can view ¢~!h¢ as a stable ho-
meomorphism of R™ that agrees with h on a neighborhood of the origin. Hence h i
stable.
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