SOME IN-BETWEEN THEOREMS FOR DARBOUX FUNCTIONS
Jack Ceder and Max L. Weiss

Suppose € is a class of real-valued functions on a real interval I, closed under
scalar multiplication but not closed under addition. For f, g € &, we say that g <f
provided g(x) < £(x) for all x € I, and we raise the question whether the relation
g <f implies the existence of an element h in € such that g <h <{. Of course, if
¢ were additive, then the average of f and g would give such an h.

We shall attack this question for the following specific classes: ¢, the class of
Darboux functions; %, the uniform closure of 9; 9%, , the class of Darboux func-
tions that are Borel measurable of class a; and %%, . All these classes have an
interesting structure, yet they are badly nonadditive. For example, each function is
the sum of two @-functions; and f+g ¢ 9%, when f, g are the following 2 %,-
functions on the line:

f(x) = sin }l( for x#0 and £(0) =0,

g(x) = -f(x) for x+#0 and g(0) =1,

(For the foregoing facts about Darboux functions and for other information used in
the sequel, we refer the reader to the expository paper [2] by Bruckner and Ceder.)

It turns out that there exists a pair of comparable 9% ,-functions that admit no
@-function between them (Example 1). Nevertheless, we find a reasonable sufficient
condition on a pair of comparable functions to admit a Z-function between them
(Theorem 1), a condition that is satisfied, for example, by every pair of comparable
% #By-functions. Actually we prove that a 2%#,-function can be inserted between two
comparable 2%;-functions (Theorem 3). Whether this inserted function may be
chosen to belong to 9%, is an interesting unsolved problem. With reference to % -
functions, our results are more complete, in particular, we prove that any two com-
parable % -functions admit an intermediate %/-function (Theorem 2).

Except where it is otherwise specified, all the functions considered in the sequel
will be real-valued functions defined on some real interval I. For convenience, open
and closed intervals will be denoted by (a, b) and [a, b], respectively, whether or
not a < b. We think of an ordinal as the union of all smaller ordinals. Moreover,
we shall consider cardinals as ordinals that are not equipollent with smaller ordi-
nals. For any set A, |A| denotes the cardinality of A. The cardinality of the reals
is denoted by ¢. When g <f and a, b € I, we define M(a, b) to be the open interval
determined by min {g(a), g(b)} and max {f(a), £(b)}.

A function f on I is called a Davboux function if it takes connected sets onto
connected sets. In Bruckner, Ceder, and Weiss [3] the uniform closure % of @
was characterized as the class of functions f such that f([a, b] - C) is dense in
(f(a), £(b)) whenever a, b € I with f(a) # f(b) and |C| < ¢. Moreover, % B, is pre-
cisely the uniform closure of @ %, , as was shown in [3] and in Ceder and Weiss [5].
For facts about the function classes %, , see Kuratowski [6].
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We begin by giving a sufficient (and obviously not necessary) condition that two
functions admit an intermediate %-function.

THEOREM 1. Let g < f, and suppose that |{z € [a, b]: g(z) <x <f(z)}]| = ¢
whenever a, b € Land M € M(a, b). Then there exists an h € @ such that g <h <f.

Moreover, for each A either h-(\) = A or ]h‘l (A)I =c.

Proof. First well-order IX ¢ by the ordinal ¢ so that IX ¢ = {zg}g <, and
denote each zg by {xg, @g¢). Also, well-order each open interval J by ¢ - {0}

sothat J={r;:locs<c-
Now we proceed to define h inductively as follows:

For the initial step, we can assume without loss of generality that x, # x;. Next,
find two distinct numbers aj; and a; such that

glxg) <ag < f(xy) and glx) <a;<i(x).
Then pick y € (x4, x;) so that g(y) < ry;< f(y), where J =(a,, a;). Now put
h]_(xo)':ao: hl(xl) = a9, hl(Y) = I'J’l, Dl = {XO’ Xqi» Y} .
Next, suppose that for each 8 < £ we have defined a function hﬁ with domain DB
such that
(1) x4 € Dg whenever a <8,
(2) IDB' <e,

(8) for each a <B with x4 #xg and J = (hﬁ(xa), hB(x[g)) # A the relation
| [x,, XB] n hBl (rJ,G)I = |8| holds for all 5 < a.

Then we proceed to define hy. If x € UB <t Dg, we define h‘g(x) = hg (x), where

6 is the first ordinal such that x € Dg . If Xz d UB<§ Dg, define h%(xg) to be any
point in (g(x¢), f(x£)). In order to extend hi further, we need the following lemma.

LEMMA A. Suppose K1, |K| <c,and k is a function on K such that
g<k<fonK.IfbeK, £<c,andy is afunction from & onto K - k-1 (k(b)),
then k can be extended to a function e that has domain E with |E| <, and such
that, for each 6 < £ and each 1 with y(n) € K - k~1(k(b)), the equation

| [y(n), b1N e"l(rJ,a)l = ||

holds, wheve J= (k(y(n)), k(b)).

Proof of Lemma A. Well-order the set {(B, a) : o < B< E} by the ordinal £
as {ZH}H < with z = <BP« , @y ). By induction on £, we shall now construct a

collection of sets {Ay }; <¢.
Choose A to be a subset of {x € [y(8,), b] LK g(x) < T5,a, < f(x)} with cardi-

nality |£|, where J = (k(y(By)), k(b)). Clearly, this is possible, by the hypothesis of
the theorem.

Now suppose that for each ¢ < g we have defined a set Ay such that

Ag € {xe[yBg), bl - K glx) <rse < f(x)} - U As
7<0
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and |A;| = |£], where J = (k(y(84)), k(b)).

To define A“ , we take any set of cardinality £ contained in

{x e [y(By), b] - K: g(x) < rya, < i} - U ag.
o<u
This then completes the definition of the disjoint sets Ali (n < E).
Now define e =k on K, and for x € A, and J = (k(y(B“)), k(b)), define
e(x) = rJ'aU- . Finally, put E=K U UH <g Ap . Clearly IEI < ¢. Now let

y(n) € K - k'l(k(b)) and 6 < & and r1p € J = (k(y(n), k(b)) .

Then put ¢ = <77, 5> . By construction, e(A;) = rye, Ag C [y(n), bl, and

IAG | = Igl Therefore e possesses the desired properties, and Lemma A is proved.
Now we apply Lemma A, taking the function k to be h% , taking b = X, and taking

y to be a relabelling of the points {x4}q < ¢ that lie in Ig - k~1(k(b)). Then we ob-

tain a function e = hg having domain D¢ and satisfying conditions (1) and (2). Fur-

:yermore, for each p <& with x; # Xt and with J = (hg(x g), hg(x“ )) # A, the equa-

ion

| [xg, xy] 0 bty ) = |é]

is satisfied for all & < £. But this is precisely condition (3).
Having now completed the construction of the functions {hg}o <E<er we put

h= LJ0 < E<e hg . Clearly, h is a function having domain I and satisfying the con-

dition g <h <{f. To complete the proof, it remains to show that h ¢ 9. Suppose
h(a) # h(b) and X € J = (h(a), h(b)). Then A =r 3,0 for some a < ¢. Obviously,

I{£_>_a:X£=a}l= |{§_>-Q:X£=b}l = c.

Hence we can choose g and 1 sothat ¢ > 7> o and Xy =a and Xp = b. Then

| [a, b] N h-1(2)] = |u|, by the construction of h. But since there are ¢ such choices
for , it follows that |[a, b] N h™!(A)| = ¢. Hence, h € @, and moreover, h~1(2) is
empty or has cardinality ¢ for each A. This completes the proof of Theorem 1.

Although some pairs of comparable Z-functions admit no intermediate %-func-
tion (see Example 1), every pair admits an intermediate % -function. In fact, using
the method of proof of Theorem 1, we can insert a % -function between any two com-
parable a-functions. To show this, we need the following lemma, whose conclusion
is a weakened version of the hypothesis of Theorem 1.

LEMMA 1. Let g<f and f, g € %, and let D be any countable dense subsel of
the reals. Then for each a, b € I the set

{x € M(a, b): |{z € [a, b]: glz) < x < f(Z)}’| =c}

is dense in D N M(a, b).
Proof. Let J =(d, e) be any open interval in M(a, b). Let
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= {z € [a, b]: (g(z), fz)) N T = A }.

Then IZ] =c¢. To show this, suppose that f(z) < e for some z € [a, b]. Then, since
f € % , it follows that f maps ¢ points in (a, b) into J, whence |Z| = ¢. Similarly,
if g(z) > d for some z € [a, b], then |Z| = . On the other hand, if there were no

z € [a, b] for which g(z) > d or f(z) < e, then it would follow that J C (g(z), £(z)) for
all z € [a, b], in which case |Z] =.c. Hence, |Z| = ¢ in all cases.

For each z € Z, the open interval (g(z), f(z)) contains a member of D N J.
Hence, since |Z| = ¢ and IDI = R , it follows that there is some r € DN J for
which I{z € Z: r € (g(z), £(z))}| = ¢ ; this concludes the proof.

THEOREM 2. Let g<f and £, g € % , and let D be any countable dense subset
of the reals. Then theve exists a A -function h from 1 info D such that g <h <f{.

Proof. Our proof is a modification of the proof of Theorem 1, with Lemma.1l “re-
placing” the hypothesis of Theorem 1. For a, b € I, put

Ra,b = {I‘ € D: I{Z € (a-, b):glz) <r < f(z)}l =

By Lemma 1, R, }, is dense in M(a, b). We enumerate each R, j, as {r, ; toy.

The construction of h; is as before, except that we use r a,b,1 instead of r 7,1
Now suppose that for each 8 < £ we have defined a function h ‘Wwith domain D
such that conditions (1) and (2) are satisfied, together with (3)*: for each a < B with
Xq #%g and J = (hg(xa), hB(xB)) #A,

I[Xa,XB] N hél(r)l = Ial forall r e J N {r :n<a}.

a,b,n
We modify Lemma A so that its conclusion is
| [y(m), bl ne-l(r)| = |&] forall r € (k(y(n)), kb)) N {r sn<t}.
Y(n)sb’n
This can be done without difficulty if one begins by well-ordering not
{8, @):a<p < £},

but { (B, s> }, where s is restricted to the appropriate countable subset of D.

As before, we define h} and extend it to lig by the modified version of Lemma A.
With h defined as before, it merely remains to show h € %. To this end, suppose

h(a) # h(b) and s € R, Then s =1, b m for some m. Now choose p and 7 SO
that p > 1> w, w1th xu = a and X, = b. Then, by construction,
| [a, b] N by L) = |ul forall r e (a, b) N {r, ;, ;2 n<n}.

In particular, |[a, b] N h!(s)| = |p|. But since |{p: x, =a}| =c, we see that
| [a, b] N h~1(s)| = ¢. Hence, h € «, and Theorem 2 is proved.

Before showing how to insert a @4, -function between two comparable 2%, -
functions, we need four lemmas. We suspect that the first of them is known in some
form; but since we have not been able to find a reference for it, we outline its proof.

LEMMA 2. Let B be an uncountable Borel subset of 1, and let £ and g be Borel
measurvable functions on 1. Then there exists a pervfect subset P of B such that
f | P and g I P are continuous.
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Proof. Since B is an uncountable Borel set, it contains a perfect subset Q,
which in turn contains a homeomorph C of the Cantor set. But on C there exists a
nontrivial Lebesgue-Stieltjes measure A (Besicovitch [1]). Therefore, we can apply
Lusin’s theorem to get closed sets F; and F, such that A(C - F;) < 1/2 and | F;
and g | F, are continuous. But F; N F,, having positive measure, is a closed set
of cardinality c¢. Hence, it contains a perfect subset P; this completes the proof.
(An alternate proof may be devised by means of the results on p. 306 in [6].)

The next lemma asserts, in part, that two comparable @2 ;-functions satisfy the
hypothesis of Theorem 1, and that hence they admit a %-function between them.

LEMMA 3. Letg<fand f,ge€ @B,. Then {z € [a, b]: g(z) <A <f(z)} is an
uncountable Fy-set, for all a, b € I and each X € M(a, b).

Proof, Let a,b €I and A € M(a, b). Let C be the F;-set
{z € [a, b} 8(z) < x < 1(z)}.

Put A=[x<g] and B =[f <A]. I either of A or B is empty, then |C| = ¢, since
g, I € 9. We therefore assume that A # A # B and that IC <c¢. Then AN B=A,
AUBUC=I, dnd |C| <§8;,. Since f, g € %, both A and B have only compact
components (Neugebauer [7]%. Clearly, the set

k=1-U {Q°: Q is a component of A or B}

is perfect, and K> C U (9A N 9B), where @ is the boundary operator.

Moreover, both A N K and B N K are dense in K. To show this, let U be any
open interval that meets K. Then AU C and B UC are F;-sets in the complete
metric space U N K, and hence, by the Baire Category Theorem, one of these sets,
say A U C, contains a set V N K, where V is an open interval. Choose
a;] €e ANK NV, Since C is countable and K is uncountable, V must contain a
point b of B with, say, b; <a;. I {b;} is a component of B, then clearly
b; € 3A N 3B C K, so that BN K #A. On the other hand, if {b; } is not a compo-
nent of B, let Q =[d, e] be the component of B that contains b; . It follows then
that e <a; and e € )ANOB C K, sothat BN K #A. Hence, ANK and BNK are
dense in K.

The sets of discontinuities of f |K and g| K are of first category in K. Hence,
the set of common points of continuity is of second category, hence uncountable.
Therefore, we can choose an xg € K - C such that £ |K and g|K are continuous at
Xp. Now let a,, —» xy and b, — X, where a,, € ANK and b, € BN K. Then
g(xy) =lim g(a, ) > x> lim f(b,) = f(x,); this contradicts the fact that g <f on I
Therefore |C| = ¢, and the lemma is proved.

We say that the subset A of BC I is c¢-dense in B if each open set U meeting
B meets A in ¢ points.

LEMMA 4. Let {Am}izl be a sequence of sets that are ambiguous of class 2
(respectively, of additive class a > 2), each c-dense in itself. Then theve exists a
sequence {C,, } 0.1 of disjoint sets, ambiguous of class 2 (respectively, am-
biguous of class « + 1), such that each C,, is c-dense in A and

o0

(oo}
Ua_-U-~c,.
e
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Proof., From a theorem of Ceder [4] it follows that each c-dense in itself Borel
set contains ¢ disjoint F-sets, each c-dense in the given set. Let {A;,}a <
be such a collection of Fy-subsets of A;. Fix n > 1. Then there are at most count-
ably many ordinals « for which A, - A}, is not c-dense in A,. For otherwise
there would exist an uncountable set I' such that o € T' implies A - A;, is not c-
dense in A,. Hence, for each o € I" there would exist a rational interval U, that
meets A, and for which I(An -Aj) N U| < ¢ . Thus there would exist some ra-
tional interval U and «, 8 € T" for which @ # 8 and such that

(A, - A1g) NU| <'¢  and  |(A,-A19)NU| <.

This would contradict the fact that A, , and A,g are disjoint and c-dense in A;.
Therefore, for each n > 1, there exists an o, <c¢ suchthat A - A;, is c-dense
in A, whenever ¢ > a,.

Next, let v be the least upper bound of the sequence {an}orf:Z . Then

Ay, Ay - Ay, AL - Ap, o

1y 22

are c-dense in A, A,, ---, A , -+, respectively. Now we repeat the above argu-
ment on the sequence {An - Al'y}§=3 , after finding in A, - A; ¢ disjoint F-sets,
each c-dense in A, - Ay, .

Proceeding in this manner by induction, we obtain a sequence {B,}.-; of dis-
joint Fj;-sets, each c-dense in A, . We define

N n-1
, k=1 i=1
©0 o0
Then C, N C,, =A for n#m, Un=1 C,= Un=1 A _, and each C, is c-dense in
A . Moreover, it is easily seen that if each A,, is ambiguous of class 2 (respec-

tively, additive of class @), then each C, will be ambiguous of class 2 (respectively,
ambiguous of class @ + 1). This completes the proof.

LEMMA 5. Let A be an ambiguous set of class 2, c-dense in itself, and let J
be any closed intevval. Then there exists a function h from A onto J such that
h(B N A) = J for each intevval B that meets A. Moveover, h € &B,, and h-1(G) is
ambiguous of class 2 for each open G.

Proof. Let {Bn}:=1 be a countable base of the family of intervals that meet A.
Then we can easily find a sequence {Cn}:=1 of disjoint sets, each homeomorphic to

the Cantor set, such that C,, ¢ B, for each n. Now choose h, to be a continuous
function (that is, a “Cantor function”) from C,_ onto J. Define h=h, on C,, and

1 0 .
for x ¢ -'Jn= 1 C,, let h(x) be the midpoint of J. Then obviously h(B N A) = J, for
each interval B that meets A. Moreover, for each open set G, we have the relation

n-l@) =( U hz'll(G)) U (A- U Cn>;
n=1 n=1

the right-hand member is both an F;5- and a G 55 -set, and the proof is complete.

THEOREM 3. Let g<f and f,g € DBy . Then there exists an h € DB, such
that g <h <f and h~Y1(G) is ambiguous of class 2, for each open G.
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Proof, For rational numbers r and s with r <s, put
D, = {x:gx) <r <s <fx)}.

Let T = {(a b> | b] =c}. For each <r s> € T', we can decompose D_ _
into disjoint sets EI.,S and A, g, the first countable, the second c-dense in itself.

Since Dr,s is an Fg-set, Ar s is ambiguous of class 2. Define the set K by

K=1- UI‘ Ar’S Then K is countable and contains UI‘ E

By Lemma 4, we can find a collection {C_ _} (r,s) €T of d1sjoint sets, each
ambiguous of class 2, such that each C,. g is a c-dense subset of A. ¢ and

UI‘ Cr,s Ur A, s=1-K. According to Lemma 5, we can find a functmn h g

from Cr s onto [r,’s] such that, for each open interval B that meets Cor,ss

h,. (BN Cr s) =[r, s], and such that h- 1(G) is ambiguous of class 2 for each open
G. Now define h = Ul" h,.

Then h is a Darboux funct1on over I - K (that is, it sends relative intervals into
intervals). To show this, suppose h(a) <A < h(b). We want to find an x € [a, b] - K
such that h(x) =A. By Lemma 3, {z € [a, b): g(z) <A <£(z)} is an uncountable F-
set, and therefore, by Lemma 2, it contains a perfect set P on which both f and g
are continuous. Pick x € P N (a, b), and select rationals r and s such that

(x) <r <A <s <{(x). Then obviously, for each neighborhood U of x,
UND, .| = ¢ and hence |UN Cr,s | =¢. So, by the construction of h
existsa'y e UN C,,s such that hrs(y) = h(y) =

rs» there

Now we must define h on K so that h is a Darboux function over all of I. For
x € K, let h(x) be any point in the set

{y:y = lim h(x,) for x, —» x and x, ¢ KU {x}}.

n-—oo

Since h € % on I - K, the latter set is easily seen to be a nonempty closed interval.
With this extension of h to K, h clearly béecomes a Darboux function on I.

Since obviously g < h <{, it remains only to prove that h~1(G) is both an Fos-
and a Ggq-set, for each open G. But

n-l) = U n;l (@ vk,
T

where K; C K. Therefore, since each h;i(G) is ambiguous of class 2, h~1(G) is
also ambiguous of class 2. The proof of the theorem is complete.
Note that the h in Theorem 3 is a special #,-function, inasmuch as h-1(G) is

not only a Gg,- but also an F, 5-set. It remains unknown whether Theorem 3 can
be improved so that h may be taken to be a 9%, -function.

Theorem 3 cannot be extended so that it gives a 9%, -function between two
comparable 9 2, -functions. In fact, the following example shows that there need
not exist P-functions between two comparable %%, -functions.

EXAMPLE 1. There exist two comparable DB, functions admitiing no D-
Sfunction between them.
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Proof. First we invoke the following lemma from [3]: Lemma B. Let A be a
Bovel set c-dense in itself. Then A conltains a sequence {A;}-, of disjoint Fg-
sets, each c¢-dense in A; therefore, A can be decomposed into the ¢-dense Borel

(20}
sets {Ai};ozz and Aj U (A - U,i=2. Ai\) .

B E:

Applying this lemma to I, we can decompose I into Ui= 1 A;, where each A; is
ambiguous of class 2 and c-dense in I. By a modified version of Lemma 5 in which
J is an arbitrary interval, we can find functions k; and k, from A; and A,, re-
spectively, onto (0, +«) and (-, 0), respectively, such that k; and k, take each

positive (respectively, negative) value on each subinterval of I, and such that more-
over, ki'l(G) is ambiguous of class 2 for i =1, 2, for each open set G.

Now define f and g as follows:

kl(x) for x € A}, k,(x) for xe€ A,
2g(x) for x € A,, —;-f(x) for x € A,,
#(x) = g(x) =
0 for x € A, -1 for x € Aj,
1 for x € Ay, 0 for xe Ay.

Then clearly f, g € 9%, and g <{f. But 0 cannot be in the range of any function
between g and f£.

‘Although we cannot necessarily insert a Z-function between two comparable
9D A, -functions, we can insert not only a % -function, as guaranteed by Theorem 2,
but also a % %;-function, as the following theorem demonstrates. The theorem is
stated so as to exclude the case where a = 1; for in this case the assertion would be
considerably weaker than that of Theorem 3, because, although # %, = 98, the
class P&, is a proper subset of %, (see [2] or [3]).

THEOREM 4. Let g<fand f, g€ u®,, where @ > 2. Then there exists an
heUBy ., suchthat g <h<{ and such that h~Y(G) is ambiguous of class a + 1
for each open G.

Proof. The proof is similar to that of Theorem 3. As in that proof, form the
sets D, 5, A, 5, and C, ;. Each D, ;, and hence each A, g, is of additive class
@, and by Lemma 4, each’ Cy,s is of ambiguous class a + 1.  We shall select a func-
t10n h . mapping C ,s onto the rationals in [r, s] so that h. (BN C,, s)=h.(C. )
for each open B that ‘meets Cr,s, so that hré(G) is amblguous of class a + 1 for
each open G, and so that h-l(h) is empty or has cardinality ¢. This can be done as
follows: by Lemma B, we can decompose each Cr s into countably many disjoint

sets {C }n_ 1 » Where each C, is ambiguous of class a+ 1 and c¢-dense in C..
Define hrs to map C, onto the nth rational in [r, s]. Then h,  has the desired
properties.

As before, define h = U h., on I -K. To show that h € % relative to I - K|
let J be an open interval 1n81de (h(a), h(b)), and let |C] < ¢. By Lemma 1, there
exists a rational X € J such that |E| = ¢, where E = {z € [a, b]: g(z) < <f(z)}.
By Lemma 2, there exists a perfect subset P of E such that £ | Pand g | P are
continuous. Now pick x € P N (a, b) and rationals r, s so that

gx) <r <A<s <fx).
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As before, ICr’s N U] = ¢ for each neighborhood of x. Hence, Ih;i(h) NU| =c.
Therefore h-1(J) N ([a, b] - C) #A; this shows that h € # over I - K.

Again, we extend h to I, and it is easily verified that h € &, ,,, that
g < h <f{, and that h-1(G) is ambiguous of class @ + 1, for each open G.
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