SOME IN-BETWEEN THEOREMS FOR DARBOUX FUNCTIONS

Jack Ceder and Max L. Weiss

Suppose $\mathscr C$ is a class of real-valued functions on a real interval I, closed under scalar multiplication but not closed under addition. For f, $g \in \mathscr C$, we say that g < f provided g(x) < f(x) for all $x \in I$, and we raise the question whether the relation g < f implies the existence of an element h in $\mathscr C$ such that g < h < f. Of course, if $\mathscr C$ were additive, then the average of f and g would give such an h.

We shall attack this question for the following specific classes: \mathscr{D} , the class of Darboux functions; \mathscr{U} , the uniform closure of \mathscr{D} ; \mathscr{DB}_{α} , the class of Darboux functions that are Borel measurable of class α ; and \mathscr{UB}_{α} . All these classes have an interesting structure, yet they are badly nonadditive. For example, each function is the sum of two \mathscr{D} -functions; and $f+g\notin \mathscr{DB}_1$ when f, g are the following \mathscr{DB}_1 -functions on the line:

$$f(x) = \sin \frac{1}{x}$$
 for $x \neq 0$ and $f(0) = 0$,

$$g(x) = -f(x)$$
 for $x \neq 0$ and $g(0) = 1$.

(For the foregoing facts about Darboux functions and for other information used in the sequel, we refer the reader to the expository paper [2] by Bruckner and Ceder.)

It turns out that there exists a pair of comparable \mathcal{DB}_2 -functions that admit no \mathcal{D} -function between them (Example 1). Nevertheless, we find a reasonable sufficient condition on a pair of comparable functions to admit a \mathcal{D} -function between them (Theorem 1), a condition that is satisfied, for example, by every pair of comparable \mathcal{DB}_1 -functions. Actually we prove that a \mathcal{DB}_2 -function can be inserted between two comparable \mathcal{DB}_1 -functions (Theorem 3). Whether this inserted function may be chosen to belong to \mathcal{DB}_1 is an interesting unsolved problem. With reference to \mathcal{U} -functions, our results are more complete, in particular, we prove that any two comparable \mathcal{U} -functions admit an intermediate \mathcal{U} -function (Theorem 2).

Except where it is otherwise specified, all the functions considered in the sequel will be real-valued functions defined on some real interval I. For convenience, open and closed intervals will be denoted by (a, b) and [a, b], respectively, whether or not a < b. We think of an ordinal as the union of all smaller ordinals. Moreover, we shall consider cardinals as ordinals that are not equipollent with smaller ordinals. For any set A, |A| denotes the cardinality of A. The cardinality of the reals is denoted by c. When g < f and $a, b \in I$, we define M(a, b) to be the open interval determined by min $\{g(a), g(b)\}$ and max $\{f(a), f(b)\}$.

A function f on I is called a *Darboux function* if it takes connected sets onto connected sets. In Bruckner, Ceder, and Weiss [3] the uniform closure $\mathscr U$ of $\mathscr D$ was characterized as the class of functions f such that f([a,b]-C) is dense in (f(a),f(b)) whenever $a,b\in I$ with $f(a)\neq f(b)$ and $|C|<\mathfrak c$. Moreover, $\mathscr U\mathscr B_{\alpha}$ is precisely the uniform closure of $\mathscr D\mathscr B_{\alpha}$, as was shown in [3] and in Ceder and Weiss [5]. For facts about the function classes $\mathscr B_{\alpha}$, see Kuratowski [6].

Received November 29, 1965.

We begin by giving a sufficient (and obviously not necessary) condition that two functions admit an intermediate \mathcal{D} -function.

THEOREM 1. Let g < f, and suppose that $|\{z \in [a, b]: g(z) < \lambda < f(z)\}| = c$ whenever $a, b \in I$ and $\lambda \in M(a, b)$. Then there exists an $h \in \mathcal{D}$ such that g < h < f. Moreover, for each λ either $h^{-1}(\lambda) = \Lambda$ or $|h^{-1}(\lambda)| = c$.

Proof. First well-order $I \times \mathfrak{c}$ by the ordinal \mathfrak{c} so that $I \times \mathfrak{c} = \{z_{\xi}\}_{\xi < \mathfrak{c}}$, and denote each z_{ξ} by $\langle x_{\xi}, \alpha_{\xi} \rangle$. Also, well-order each open interval J by $\mathfrak{c} - \{0\}$ so that $J = \{r_{J,\xi}\}_{0 < \xi < \mathfrak{c}}$.

Now we proceed to define h inductively as follows:

For the initial step, we can assume without loss of generality that $x_0 \neq x_1$. Next, find two distinct numbers a_0 and a_1 such that

$$g(x_0) < a_0 < f(x_0)$$
 and $g(x_1) < a_1 < f(x_1)$.

Then pick $y \in (x_0, x_1)$ so that $g(y) < r_{J,1} < f(y)$, where $J = (a_0, a_1)$. Now put

$$h_1(x_0) = a_0$$
, $h_1(x_1) = a_1$, $h_1(y) = r_{J,1}$, $D_1 = \{x_0, x_1, y\}$.

Next, suppose that for each $\beta < \xi$ we have defined a function h_β with domain D_β such that

- (1) $x_{\alpha} \in D_{\beta}$ whenever $\alpha \leq \beta$,
- (2) $|D_{\beta}| < c$,
- (3) for each $\alpha < \beta$ with $x_{\alpha} \neq x_{\beta}$ and $J = (h_{\beta}(x_{\alpha}), h_{\beta}(x_{\beta})) \neq \Lambda$ the relation $|[x_{\alpha}, x_{\beta}] \cap h_{\overline{\beta}}^{1}(r_{J, \delta})| = |\beta|$ holds for all $\delta < \alpha$.

Then we proceed to define h_{ξ} . If $x \in \bigcup_{\beta < \xi} D_{\beta}$, we define $h'_{\xi}(x) = h_{\delta}(x)$, where δ is the first ordinal such that $x \in D_{\delta}$. If $x_{\xi} \notin \bigcup_{\beta < \xi} D_{\beta}$, define $h'_{\xi}(x_{\xi})$ to be any point in $(g(x_{\xi}), f(x_{\xi}))$. In order to extend h'_{ξ} further, we need the following lemma.

LEMMA A. Suppose $K \subset I$, |K| < c, and k is a function on K such that g < k < f on K. If $b \in K$, $\xi < c$, and y is a function from ξ onto $K - k^{-1}(k(b))$, then k can be extended to a function e that has domain E with |E| < c, and such that, for each $\delta < \xi$ and each η with $y(\eta) \in K - k^{-1}(k(b))$, the equation

$$|[y(\eta), b] \cap e^{-1}(r_{J,\delta})| = |\xi|$$

holds, where $J = (k(y(\eta)), k(b))$.

Proof of Lemma A. Well-order the set $\{\langle \beta, \alpha \rangle : \alpha \leq \beta < \xi\}$ by the ordinal ξ as $\{z_{\mu}\}_{\mu < \xi}$ with $z_{\mu} = \langle \beta_{\mu}, \alpha_{\mu} \rangle$. By induction on ξ , we shall now construct a collection of sets $\{A_{\mu}\}_{\mu < \xi}$.

Choose A_0 to be a subset of $\{x \in [y(\beta_0), b]^{\frac{1}{2}} - K; g(x) < r_{J,\alpha_0} < f(x)\}$ with cardinality $|\xi|$, where $J = (k(y(\beta_0)), k(b))$. Clearly, this is possible, by the hypothesis of the theorem.

Now suppose that for each $\sigma < \mu$ we have defined a set A_{σ} such that

$$A_{\sigma} \subseteq \{x \in [y(\beta_{\sigma}), b] - K: g(x) < r_{J,\alpha_{\sigma}} < f(x)\} - \bigcup_{\tau < \sigma} A_{\tau}$$

and $|A_{\sigma}| = |\xi|$, where $J = (k(y(\beta_{\sigma})), k(b))$.

To define A_{μ} , we take any set of cardinality ξ contained in

$$\{x \in [y(\beta_{\mu}), b] - K: g(x) < r_{J,\alpha_{\mu}} < f(x)\} - \bigcup_{\sigma < \mu} A_{\sigma}.$$

This then completes the definition of the disjoint sets A_{μ} ($\mu < \xi$).

Now define e=k on K, and for $x\in A_{\mu}$ and $J=(k(y(\beta_{\mu})), k(b))$, define $e(x)=r_{J,\alpha_{\mu}}$. Finally, put $E=K\cup \bigcup_{\mu<\xi}A_{\mu}$. Clearly $|E|<\mathfrak{c}$. Now let

$$y(\eta) \in K - k^{-1}(k(b))$$
 and $\delta < \xi$ and $r_{J,\delta} \in J = (k(y(\eta)), k(b))$.

Then put $\sigma = \langle \eta, \delta \rangle$. By construction, $e(A_{\sigma}) = r_{J,\delta}$, $A_{\sigma} \subset [y(\eta), b]$, and $|A_{\sigma}| = |\xi|$. Therefore e possesses the desired properties, and Lemma A is proved.

Now we apply Lemma A, taking the function k to be h_{ξ}^{\prime} , taking $b=x_{\xi}$, and taking y to be a relabelling of the points $\{x_{\alpha}\}_{\alpha<\xi}$ that lie in K - k⁻¹(k(b)). Then we obtain a function $e=h_{\xi}$ having domain D_{ξ} and satisfying conditions (1) and (2). Furthermore, for each $\mu<\xi$ with $x_{\mu}\neq x_{\xi}$ and with $J=(h_{\xi}(x_{\xi}),h_{\xi}(x_{\mu}))\neq \Lambda$, the equation

$$|[\mathbf{x}_{\xi}, \mathbf{x}_{\mu}] \cap \mathbf{h}_{\xi}^{-1}(\mathbf{r}_{J,S})| = |\xi|$$

is satisfied for all $\delta < \xi$. But this is precisely condition (3).

Having now completed the construction of the functions $\{h_\xi\}_{0<\xi<\mathfrak{c}}$, we put $h=\bigcup_{0<\xi<\mathfrak{c}}h_\xi$. Clearly, h is a function having domain I and satisfying the condition $g< h<\mathfrak{f}$. To complete the proof, it remains to show that $h\in \mathscr{D}$. Suppose $h(a)\neq h(b)$ and $\lambda\in J=(h(a),\,h(b))$. Then $\lambda=r_{J,\alpha}$ for some $\alpha<\mathfrak{c}$. Obviously,

$$|\{\xi \geq \alpha \colon x_{\xi} = a\}| = |\{\xi \geq \alpha \colon x_{\xi} = b\}| = c.$$

Hence we can choose μ and η so that $\mu > \eta > \alpha$ and $x_{\mu} = a$ and $x_{\eta} = b$. Then $|[a,b] \cap h^{-1}(\lambda)| = |\mu|$, by the construction of h. But since there are $\mathfrak c$ such choices for μ , it follows that $|[a,b] \cap h^{-1}(\lambda)| = \mathfrak c$. Hence, $h \in \mathscr D$, and moreover, $h^{-1}(\lambda)$ is empty or has cardinality $\mathfrak c$ for each λ . This completes the proof of Theorem 1.

Although some pairs of comparable \mathscr{D} -functions admit no intermediate \mathscr{D} -function (see Example 1), every pair admits an intermediate \mathscr{U} -function. In fact, using the method of proof of Theorem 1, we can insert a \mathscr{U} -function between any two comparable \mathscr{U} -functions. To show this, we need the following lemma, whose conclusion is a weakened version of the hypothesis of Theorem 1.

LEMMA 1. Let g < f and $f, g \in \mathcal{U}$, and let D be any countable dense subset of the reals. Then for each $a, b \in I$ the set

$$\left\{\lambda \in M(a,\,b) \colon \left| \left\{z \in [a,\,b] \colon g(z) < \lambda < f(z) \right\} \right| \, = \mathfrak{c} \, \right\}$$

is dense in $D \cap M(a, b)$.

Proof. Let J = (d, e) be any open interval in M(a, b). Let

$$Z = \{z \in [a, b]: (g(z), f(z)) \cap J \neq \Lambda \}.$$

Then |Z| = c. To show this, suppose that f(z) < e for some $z \in [a, b]$. Then, since $f \in \mathcal{U}$, it follows that f maps c points in (a, b) into J, whence |Z| = c. Similarly, if g(z) > d for some $z \in [a, b]$, then |Z| = c. On the other hand, if there were no $z \in [a, b]$ for which g(z) > d or f(z) < e, then it would follow that $J \subseteq (g(z), f(z))$ for all $z \in [a, b]$, in which case |Z| = c. Hence, |Z| = c in all cases.

For each $z \in Z$, the open interval (g(z), f(z)) contains a member of $D \cap J$. Hence, since $|Z| = \mathfrak{c}$ and $|D| = \aleph_0$, it follows that there is some $r \in D \cap J$ for which $|\{z \in Z : r \in (g(z), f(z))\}| = \mathfrak{c}$; this concludes the proof.

THEOREM 2. Let g < f and f, $g \in \mathcal{U}$, and let D be any countable dense subset of the reals. Then there exists a \mathcal{U} -function h from I into D such that g < h < f.

Proof. Our proof is a modification of the proof of Theorem 1, with Lemma 1 "replacing" the hypothesis of Theorem 1. For a, b ϵ I, put

$$R_{a,b} = \{r \in D: |\{z \in (a, b): g(z) < r < f(z)\}| = c \}.$$

By Lemma 1, $R_{a,b}$ is dense in M(a, b). We enumerate each $R_{a,b}$ as $\{r_{a,b,n}\}_{n=1}^{\infty}$.

The construction of h_1 is as before, except that we use $r_{a,b,1}$ instead of $r_{J,1}$. Now suppose that for each $\beta < \xi$ we have defined a function h_{β} with domain D_{β} such that conditions (1) and (2) are satisfied, together with (3)': for each $\alpha < \beta$ with $x_{\alpha} \neq x_{\beta}$ and $J = (h_{\beta}(x_{\alpha}), h_{\beta}(x_{\beta})) \neq \Lambda$,

$$\left| \left[\mathbf{x}_{\alpha} , \, \mathbf{x}_{\beta} \right] \, \cap \, \mathbf{h}_{\beta}^{-1}(\mathbf{r}) \right| \, = \, \left| \alpha \right| \quad \text{ for all } \mathbf{r} \in \mathbf{J} \, \cap \, \left\{ \mathbf{r}_{\mathbf{a}, \mathbf{b}, \mathbf{n}} \colon \mathbf{n} < \alpha \right\}.$$

We modify Lemma A so that its conclusion is

$$\left| \left[y(\eta), b \right] \cap e^{-1}(\mathbf{r}) \right| = \left| \xi \right| \quad \text{for all } \mathbf{r} \in (k(y(\eta)), k(b)) \cap \left\{ \mathbf{r}_{y(\eta), b, n} : n < \xi \right\}.$$

This can be done without difficulty if one begins by well-ordering not

$$\{\langle \beta, \alpha \rangle : \alpha \leq \beta < \xi\},\$$

but $\{\langle \beta, s \rangle\}$, where s is restricted to the appropriate countable subset of D.

As before, we define h_{ξ}^{t} and extend it to h_{ξ} by the modified version of Lemma A. With h defined as before, it merely remains to show $h \in \mathcal{U}$. To this end, suppose $h(a) \neq h(b)$ and $s \in R_{a,b}$. Then $s = r_{a,b,m}$ for some m. Now choose μ and η so that $\mu > \eta > \omega_0$ with $x_{\mu} = a$ and $x_{\eta} = b$. Then, by construction,

$$\left| \, \left[\, [a, \, b] \, \cap \, h_{\mu}^{-1}(r) \, \right| \, = \, \left| \, \mu \, \right| \qquad \text{for all } r \, \in \, (a, \, b) \, \cap \, \left\{ \, r_{a, \, b, \, n}; \, n < \eta \, \right\} \, .$$

In particular, $|[a, b] \cap h^{-1}(s)| = |\mu|$. But since $|\{\mu: x_{\mu} = a\}| = \epsilon$, we see that $|[a, b] \cap h^{-1}(s)| = \epsilon$. Hence, $h \in \mathcal{U}$, and Theorem 2 is proved.

Before showing how to insert a \mathcal{DB}_2 -function between two comparable \mathcal{DB}_1 -functions, we need four lemmas. We suspect that the first of them is known in some form; but since we have not been able to find a reference for it, we outline its proof.

LEMMA 2. Let B be an uncountable Borel subset of I, and let f and g be Borel measurable functions on I. Then there exists a perfect subset P of B such that f \mid P and g \mid P are continuous.

Proof. Since B is an uncountable Borel set, it contains a perfect subset Q, which in turn contains a homeomorph C of the Cantor set. But on C there exists a nontrivial Lebesgue-Stieltjes measure λ (Besicovitch [1]). Therefore, we can apply Lusin's theorem to get closed sets F_1 and F_2 such that $\lambda(C - F_i) < 1/2$ and $f \mid F_1$ and $g \mid F_2$ are continuous. But $F_1 \cap F_2$, having positive measure, is a closed set of cardinality $\mathfrak c$. Hence, it contains a perfect subset P; this completes the proof. (An alternate proof may be devised by means of the results on p. 306 in [6].)

The next lemma asserts, in part, that two comparable \mathcal{DB}_1 -functions satisfy the hypothesis of Theorem 1, and that hence they admit a \mathcal{D} -function between them.

LEMMA 3. Let g < f and f, $g \in \mathcal{DB}_1$. Then $\{z \in [a, b]: g(z) < \lambda < f(z)\}$ is an uncountable F_{σ} -set, for all a, $b \in I$ and each $\lambda \in M(a, b)$.

Proof. Let a, b \in I and $\lambda \in$ M(a, b). Let C be the \mathbf{F}_{σ} -set

$$\{z \in [a, b]: g(z) < \lambda < f(z)\}$$
.

Put $A = [\lambda \leq g]$ and $B = [f \leq \lambda]$. If either of A or B is empty, then $|C| = \mathfrak{c}$, since g, $f \in \mathcal{D}$. We therefore assume that $A \neq A \neq B$ and that $|C| < \mathfrak{c}$. Then $A \cap B = \Lambda$, $A \cup B \cup C = I$, and $|C| \leq \aleph_0$. Since f, $g \in \mathcal{DB}_1$, both A and B have only compact components (Neugebauer [7]). Clearly, the set

$$K = I - \bigcup \{Q^0 : Q \text{ is a component of A or B}\}$$

is perfect, and $K \supseteq C \cup (\partial A \cap \partial B)$, where ∂ is the boundary operator.

Moreover, both $A \cap K$ and $B \cap K$ are dense in K. To show this, let U be any open interval that meets K. Then $A \cup C$ and $B \cup C$ are F_{σ} -sets in the complete metric space $\overline{U} \cap K$, and hence, by the Baire Category Theorem, one of these sets, say $A \cup C$, contains a set $V \cap K$, where V is an open interval. Choose $a_1 \in A \cap K \cap V$. Since C is countable and K is uncountable, V must contain a point b_1 of B with, say, $b_1 < a_1$. If $\{b_1\}$ is a component of B, then clearly $b_1 \in \partial A \cap \partial B \subseteq K$, so that $B \cap K \neq \Lambda$. On the other hand, if $\{b_1\}$ is not a component of B, let Q = [d, e] be the component of B that contains b_1 . It follows then that $e < a_1$ and $e \in \partial A \cap \partial B \subseteq K$, so that $B \cap K \neq \Lambda$. Hence, $A \cap K$ and $B \cap K$ are dense in K.

The sets of discontinuities of $f \mid K$ and $g \mid K$ are of first category in K. Hence, the set of common points of continuity is of second category, hence uncountable. Therefore, we can choose an $x_0 \in K$ - C such that $f \mid K$ and $g \mid K$ are continuous at x_0 . Now let $a_n \to x_0$ and $b_n \to x_0$, where $a_n \in A \cap K$ and $b_n \in B \cap K$. Then $g(x_0) = \lim_{k \to \infty} g(a_k) \ge k \ge \lim_{k \to \infty} f(b_k) = f(x_0)$; this contradicts the fact that g < f on I. Therefore |C| = c, and the lemma is proved.

We say that the subset A of $B \subseteq I$ is $\mathfrak{c}\text{-dense}$ in B if each open set U meeting B meets A in \mathfrak{c} points.

LEMMA 4. Let $\left\{A_{m}\right\}_{m=1}^{\infty}$ be a sequence of sets that are ambiguous of class 2 (respectively, of additive class $\alpha \geq 2$), each \mathfrak{c} -dense in itself. Then there exists a sequence $\left\{C_{m}\right\}_{m=1}^{\infty}$ of disjoint sets, ambiguous of class 2 (respectively, ambiguous of class $\alpha+1$), such that each C_{m} is \mathfrak{c} -dense in A_{m} and

$$\bigcup_{m=1}^{\infty} A_m = \bigcup_{m=1}^{\infty} C_m.$$

Proof. From a theorem of Ceder [4] it follows that each $\mathfrak c$ -dense in itself Borel set contains $\mathfrak c$ disjoint F_σ -sets, each $\mathfrak c$ -dense in the given set. Let $\{A_{1\alpha}\}_{\alpha<\mathfrak c}$ be such a collection of F_σ -subsets of A_1 . Fix n>1. Then there are at most countably many ordinals α for which $A_n-A_{1\alpha}$ is not $\mathfrak c$ -dense in A_2 . For otherwise there would exist an uncountable set Γ such that $\alpha\in\Gamma$ implies $A_n-A_{1\alpha}$ is not $\mathfrak c$ -dense in A_2 . Hence, for each $\alpha\in\Gamma$ there would exist a rational interval U_α that meets A_2 and for which $|(A_n-A_{1\alpha})\cap U|<\mathfrak c$. Thus there would exist some rational interval U and α , $\beta\in\Gamma$ for which $\alpha\neq\beta$ and such that

$$|(A_n - A_{1\alpha}) \cap U| < \epsilon$$
 and $|(A_n - A_{1\beta}) \cap U| < \epsilon$.

This would contradict the fact that $A_{1\alpha}$ and $A_{1\beta}$ are disjoint and \mathfrak{c} -dense in A_1 . Therefore, for each n>1, there exists an $\alpha_n<\mathfrak{c}$ such that $A_n-A_{1\alpha}$ is \mathfrak{c} -dense in A_n whenever $\alpha\geq\alpha_n$.

Next, let γ be the least upper bound of the sequence $\{\alpha_n\}_{n=2}^{\infty}$. Then

$$A_{1\gamma}$$
, A_2 - $A_{1\gamma}$, ..., A_n - $A_{1\gamma}$, ...

are c-dense in $A_1, A_2, \cdots, A_n, \cdots$, respectively. Now we repeat the above argument on the sequence $\left\{A_n - A_{1\gamma}\right\}_{n=3}^{\infty}$, after finding in $A_2 - A_{1\gamma}$ c disjoint F_{σ} -sets, each c-dense in $A_2 - A_{1\gamma}$.

Proceeding in this manner by induction, we obtain a sequence $\left\{B_n\right\}_{n=1}^{\infty}$ of disjoint $F_{\sigma}\text{-sets},$ each $\mathfrak c\text{-dense}$ in A_n . We define

$$C_{n} = B_{n} \cup \left(A_{n} - \bigcup_{k=1}^{\infty} B_{k} - \bigcup_{i=1}^{n-1} A_{i}\right).$$

Then $C_n \cap C_m = \Lambda$ for $n \neq m$, $\bigcup_{n=1}^{\infty} C_n = \bigcup_{n=1}^{\infty} A_n$, and each C_n is c-dense in A_n . Moreover, it is easily seen that if each A_n is ambiguous of class 2 (respectively, additive of class α), then each C_n will be ambiguous of class 2 (respectively, ambiguous of class $\alpha + 1$). This completes the proof.

LEMMA 5. Let A be an ambiguous set of class 2, c-dense in itself, and let J be any closed interval. Then there exists a function h from A onto J such that $h(B \cap A) = J$ for each interval B that meets A. Moreover, $h \in \mathcal{B}_2$, and $h^{-1}(G)$ is ambiguous of class 2 for each open G.

Proof. Let $\{B_n\}_{n=1}^{\infty}$ be a countable base of the family of intervals that meet A. Then we can easily find a sequence $\{C_n\}_{n=1}^{\infty}$ of disjoint sets, each homeomorphic to the Cantor set, such that $C_n \subseteq B_n$ for each n. Now choose h_n to be a continuous function (that is, a "Cantor function") from C_n onto J. Define $h = h_n$ on C_n , and for $x \notin \bigcup_{n=1}^{\infty} C_n$, let h(x) be the midpoint of J. Then obviously $h(B \cap A) = J$, for each interval B that meets A. Moreover, for each open set G, we have the relation

$$h^{-1}(G) = \left(\bigcup_{n=1}^{\infty} h_n^{-1}(G)\right) \cup \left(A - \bigcup_{n=1}^{\infty} C_n\right);$$

the right-hand member is both an $F_{\sigma\delta}$ - and a $G_{\delta\sigma}$ -set, and the proof is complete.

THEOREM 3. Let g < f and f, $g \in \mathcal{DB}_1$. Then there exists an $h \in \mathcal{DB}_2$ such that g < h < f and $h^{-1}(G)$ is ambiguous of class 2, for each open G.

Proof. For rational numbers r and s with r < s, put

$$D_{r,s} = \{x: g(x) < r < s < f(x)\}.$$

Let $\Gamma = \{\langle a, b \rangle \colon |D_{a,b}| = \mathfrak{c} \}$. For each $\langle r, s \rangle \in \Gamma$, we can decompose $D_{r,s}$ into disjoint sets $E_{r,s}$ and $A_{r,s}$, the first countable, the second \mathfrak{c} -dense in itself. Since $D_{r,s}$ is an F_{σ} -set, $A_{r,s}$ is ambiguous of class 2. Define the set K by $K = I - \bigcup_{\Gamma} A_{r,s}$. Then K is countable and contains $\bigcup_{\Gamma} E_{r,s}$.

By Lemma 4, we can find a collection $\{C_{r,s}\}_{\langle r,s\rangle \in \Gamma}$ of disjoint sets, each ambiguous of class 2, such that each $C_{r,s}$ is a c-dense subset of $A_{r,s}$ and $\bigcup_{\Gamma} C_{r,s} = \bigcup_{\Gamma} A_{r,s} = I - K$. According to Lemma 5, we can find a function h_{rs} from $C_{r,s}$ onto [r,s] such that, for each open interval B that meets $C_{r,s}$, $h_{rs}(B \cap C_{r,s}) = [r,s]$, and such that $h_{rs}^{-1}(G)$ is ambiguous of class 2 for each open G. Now define $h = \bigcup_{\Gamma} h_{rs}$.

Then h is a Darboux function over I - K (that is, it sends relative intervals into intervals). To show this, suppose h(a) < λ < h(b). We want to find an x ϵ [a, b] - K such that h(x) = λ . By Lemma 3, {z ϵ [a, b]: g(z) < λ < f(z)} is an uncountable F_o-set, and therefore, by Lemma 2, it contains a perfect set P on which both f and g are continuous. Pick x ϵ P \cap (a, b), and select rationals r and s such that g(x) < r < λ < s < f(x). Then obviously, for each neighborhood U of x, |U \cap D_{r,s}| = c and hence |U \cap C_{r,s}| = c. So, by the construction of h_{rs}, there exists a y ϵ U \cap C_{r,s} such that h_{rs}(y) = h(y) = λ .

Now we must define h on K so that h is a Darboux function over all of I. For $x \in K$, let h(x) be any point in the set

$$\{y: y = \lim_{n \to \infty} h(x_n) \text{ for } x_n \to x \text{ and } x_n \notin K \cup \{x\}\}.$$

Since $h \in \mathcal{U}$ on I - K, the latter set is easily seen to be a nonempty closed interval. With this extension of h to K, h clearly becomes a Darboux function on I.

Since obviously g < h < f, it remains only to prove that $h^{-1}(G)$ is both an $F_{\sigma \delta}$ -and a $G_{\delta \sigma}$ -set, for each open G. But

$$h^{-1}(G) = \bigcup_{\Gamma} h_{rs}^{-1}(G) \cup K_1,$$

where $K_1 \subseteq K$. Therefore, since each $h_{rs}^{-1}(G)$ is ambiguous of class 2, $h^{-1}(G)$ is also ambiguous of class 2. The proof of the theorem is complete.

Note that the h in Theorem 3 is a special \mathcal{B}_2 -function, inasmuch as h⁻¹(G) is not only a $G_{\delta\sigma}$ - but also an $F_{\sigma\delta}$ -set. It remains unknown whether Theorem 3 can be improved so that h may be taken to be a \mathcal{DB}_1 -function.

Theorem 3 cannot be extended so that it gives a $\mathscr{DB}_{\alpha+1}$ -function between two comparable \mathscr{DB}_{α} -functions. In fact, the following example shows that there need not exist \mathscr{D} -functions between two comparable \mathscr{DB}_{2} -functions.

EXAMPLE 1. There exist two comparable \mathcal{DB}_2 -functions admitting no \mathcal{D} -function between them.

Proof. First we invoke the following lemma from [3]: Lemma B. Let A be a Borel set c-dense in itself. Then A contains a sequence $\{A_i\}_{i=1}^{\infty}$ of disjoint F_{σ} -sets, each c-dense in A; therefore, A can be decomposed into the c-dense Borel sets $\{A_i\}_{i=2}^{\infty}$ and $A_1 \cup (A - \bigcup_{i=2}^{\infty} A_i)$.

Applying this lemma to I, we can decompose I into $\bigcup_{i=1}^4 A_i$, where each A_i is ambiguous of class 2 and \mathfrak{c} -dense in I. By a modified version of Lemma 5 in which J is an arbitrary interval, we can find functions k_1 and k_2 from A_1 and A_2 , respectively, onto $(0, +\infty)$ and $(-\infty, 0)$, respectively, such that k_1 and k_2 take each positive (respectively, negative) value on each subinterval of I, and such that moreover, $k_i^{-1}(G)$ is ambiguous of class 2 for i=1, 2, for each open set G.

Now define f and g as follows:

$$f(x) = \begin{cases} k_1(x) & \text{for } x \in A_1, \\ 2g(x) & \text{for } x \in A_2, \\ 0 & \text{for } x \in A_3, \end{cases} \quad g(x) = \begin{cases} k_2(x) & \text{for } x \in A_1, \\ \frac{1}{2}f(x) & \text{for } x \in A_2, \\ -1 & \text{for } x \in A_3, \end{cases}$$

$$1 & \text{for } x \in A_4, \end{cases}$$

Then clearly $f, g \in \mathscr{DB}_2$ and g < f. But 0 cannot be in the range of any function between g and f.

Although we cannot necessarily insert a \mathscr{D} -function between two comparable \mathscr{DB}_2 -functions, we can insert not only a \mathscr{U} -function, as guaranteed by Theorem 2, but also a \mathscr{UB}_3 -function, as the following theorem demonstrates. The theorem is stated so as to exclude the case where $\alpha=1$; for in this case the assertion would be considerably weaker than that of Theorem 3, because, although $\mathscr{UB}_1=\mathscr{DB}_1$, the class \mathscr{DB}_2 is a proper subset of \mathscr{UB}_2 (see [2] or [3]).

THEOREM 4. Let g < f and f, $g \in \mathcal{UB}_{\alpha}$, where $\alpha \geq 2$. Then there exists an $h \in \mathcal{UB}_{\alpha+1}$ such that g < h < f and such that $h^{-1}(G)$ is ambiguous of class $\alpha+1$ for each open G.

Proof. The proof is similar to that of Theorem 3. As in that proof, form the sets $D_{r,s}$, $A_{r,s}$, and $C_{r,s}$. Each $D_{r,s}$, and hence each $A_{r,s}$, is of additive class α , and by Lemma 4, each $C_{r,s}$ is of ambiguous class $\alpha+1$. We shall select a function h_{rs} mapping $C_{r,s}$ onto the rationals in [r,s] so that $h_{rs}(B\cap C_{r,s})=h_{rs}(C_{r,s})$ for each open B that meets $C_{r,s}$, so that $h_{rs}^{-1}(G)$ is ambiguous of class $\alpha+1$ for each open G, and so that $h^{-1}(\lambda)$ is empty or has cardinality $\mathfrak c$. This can be done as follows: by Lemma B, we can decompose each $C_{r,s}$ into countably many disjoint sets $\{C_n\}_{n=1}^\infty$, where each C_n is ambiguous of class $\alpha+1$ and $\mathfrak c$ -dense in $C_{r,s}$. Define h_{rs} to map C_n onto the nth rational in [r,s]. Then h_{rs} has the desired properties.

As before, define $h = \bigcup_{\Gamma} h_{rs}$ on I - K. To show that $h \in \mathcal{U}$ relative to I - K, let J be an open interval inside (h(a), h(b)), and let $|C| < \mathfrak{c}$. By Lemma 1, there exists a rational $\lambda \in J$ such that $|E| = \mathfrak{c}$, where $E = \{z \in [a, b]: g(z) < \lambda < f(z)\}$. By Lemma 2, there exists a perfect subset P of E such that $f \mid P$ and $g \mid P$ are continuous. Now pick $x \in P \cap (a, b)$ and rationals r, s so that

$$g(x) < r < \lambda < s < f(x)$$
.

As before, $|C_{r,s} \cap U| = \mathfrak{c}$ for each neighborhood of x. Hence, $|h_{rs}^{-1}(\lambda) \cap U| = \mathfrak{c}$. Therefore $h^{-1}(J) \cap ([a,b]-C) \neq \Lambda$; this shows that $h \in \mathscr{U}$ over I - K.

Again, we extend h to I, and it is easily verified that h $\in \mathscr{UB}_{\alpha+1}$, that g < h < f, and that $h^{-1}(G)$ is ambiguous of class $\alpha + 1$, for each open G.

REFERENCES

- 1. A. S. Besicovitch, Concentrated and rarified sets of points, Acta Math. 62 (1934), 289-300.
- 2. A. M. Bruckner and J. G. Ceder, *Darboux continuity*, Jber. Deutsch. Math. Verein. 67 (1965), 93-117.
- 3. A. M. Bruckner, J. G. Ceder, and M. L. Weiss, On uniform limits of Darboux functions, Colloq. Math. (to appear).
- 4. J. G. Ceder, On maximally Borel resolvable spaces, Rev. Math. Pures Appl. 11 (1966), 89-94.
- 5. J. G. Ceder and M. L. Weiss, Some approximation theorems for Darboux and Darboux Borel functions, Rev. Math. Pures Appl. (to appear).
- 6. C. Kuratowski, Topologie, I, 4th Edition, Warszawa, 1958.
- 7. C. J. Neugebauer, Darboux functions of Baire class one and derivatives, Proc. Amer. Math. Soc. 13 (1962), 838-843.

University of California, Santa Barbara