ON THE MONOTONICITY OF THE ZEROS OF
TWO POWER SERIES

Eduard Wirsing

1. In the preceding paper, Peyerimhoff considers the functions f, and g, de-
fined by the equations

f.(z) = 2 m+1)¥z" and gu(z) = 25 (1-cH)* 22 (0<e<)

n=0 n=0

in the unit circle, and by analytic continuation in C*, the complex plane with a cut
from 1 to « along the positive real axis. In particular, he shows that these func-
tions have exactly k zeros (k < k <k + 1) in C*, and that the zeros are all nega-
tive and simple. His proof, as well as certain numerical calculations, indicate that
the zeros are monotone functions of k. For the sake of a better understanding of the
functions f, and gg, it seems worthwhile to investigate this question. A proof that
the two zeros of f, nearest to the origin and the first zero of g, are monotonic was
communicated to me by A. Peyerimhoff. In this paper we shall show that all zeros
of £y and gy arve monotonically increasing functions of K.

2. Let us consider f, first. We denote the zeros by Si(fc), with
0> & (k) > - > & (x).
From the paper of Peyerimhoff we take the relation
(1) g +1) < &(k) < &(k+1) (1<i<k).
Since the &,(k) are simple and f4(0)=12>0,
sgn £, (£, (k) = (-1)*"L.
From the relation

ag (k) atk(&(x)) /,
Lt = L SO ()

it will follow that dil{_ (k) > 0, when we have shown that

of  (£5(x))

dk = (-1)".

(2) sgn

From the definition of f, we see that
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of, (z) 2
;K = 2 M+ 1) log(n+1).
n=1
Since
1 _n 1 pn n rl n
-————(110 tl/)tdt = S 5 < dxdt =S S t*dt dx =S 25 = log(1+n),
g 0 “0 0 *0 0

this implies that

0f, (2) (1 (£ (2) - £, (tz))dt

(3) ak  Yq log 1/t

So far the formula is proved in the unit disk only, but analytic continuation shows
immediately that it holds in the region C*. We shall need it only for z < 0. I we
replace z by & (k), (3) takes the simpler form

otk (& (k) Slf,c(t«fi(lc))dt S £ (x)dx
oK - , log 1/t B (K)I £,(k) Tog £ (k)/x -

We split this integral into two integrals from £;(x) to &;_;(x - 1) (the latter value
lies-to the right of £;(k), because of (1)) and from §,_1(k - 1) to 0. Partial integra-
tion of this last mtegral with the help of the relation f,(z) = (zf,_,(z))', yields the
equations

SO £, (x)dx
gi-l(K'l) log gi(K)/x

Ei_l(h’ - l)fx_l(gi_l(’f - 1)) _ 50 f,{_l(x)dx
log & (Kk)/%;. (k- 1) & (x-1) [log £(x)/x]?

SO fK _I(X) dx
&_1(x-1) [log & (x)/x]?
We continue in this manner; that is, we split the last integral into two integrals

from & _,(k - 1) to & _,(k - 2) and from £;_,(k - 2) to 0, and integrate the latter
integral by parts, and so forth. This procedure leads to the formula

(4)

1 1)! g
ok |5 (")l ( )J(] ) Sﬁi_jﬂ(}c-jﬂ) [log £;(x)/x]’

where £,(k - i) stands for 0.

Now, since f,(0) =1> 0 and £, changes sign at each zero, it follows from (1)
that

(€ s (e -3+ 1), & (e -3) © (&

ier (=T +1), & (K‘J+1))

i-j+1



ON THE MONOTONICITY OF THE ZEROS OF TWO POWER SERIES 217
and therefore
sgnfy_j,1(x) = (-1)*"J in the interval (§;_jp2(k = §+1), g%_j(,{ - ).
From (4) we now obtain (2) and thereby our proposition. |

3. We now pass to g, . The proof is similar to the proof in Section 2, but
slightly more complicated because in the summation by parts that follows, the ana-
logue to the term that vanished in Section 2 is not zero.

Let 7,(k) denote the zeros of g, , with
0 > (k) > (k) > - > ) <k <k+1).
Peyerimhoff’s proof of the existence of k zeros of g, shows that
(5) ek +1) <n () <mle+1) (i=1,2,,k).
The problem is again to show that

(6) Sgn_a_g'f(_’?i(fﬁ = (_1)-‘1_

K

For this purpose we choose the integers n; (j =1, 2, --*, i - 1) subject to the condi-
tion
. . +1
(7) in <y (k-3 <My @ =n;0)),
and we take ng=0 and n;=«. By (5), ng<n;<---<nj;_j.

Expanding log (1 - c®tl) jinto a Taylor series and changing the order of summa-
tion in the formula

o0
agK(z) ntlyK _n +1
- _nZ:)Ou K g6 (1 - L)
we find that
0g, (z2) 2 v
(8) a’f{ Y = gx(cV z).

v=1

Like (3), this formula holds not only for |z| < 1, but for all z € C*,

In (8), with z = 7;(x) = 17, and using the relation g, (z) =g, _,(z) - cg,_; (cz), we
sum by parts from n; to «:

co ©0

c¥ c? ‘
21 Togle¥n) = 2 (g, (c¥n) - cgyy (¥ in))
V=n1 llznl
c'1 n S

1 cV y
Tl—g“-l(c n)- 2 -,;(—v—_—l—)g,c-l(c n).
V=n1+l
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More generally, for j=1, 2, ---, i - 1 we get the formula

> (j-1)!c?
Vi. v(v -1)--(v -j+1) gK-j+1(cV77)
9@
U c 3. > jte?
= nj(nj - 1)-..(nj -j+1) gK—j(C Jn) - V:E—i—l RS\ ORS) gK_j(cvn)_
J

Repeated application of (9) to (8) leads to the equation

. el
ogx(m) _ . G- 1)tev
a"'K = Z_) (-1) 27 O 1) (Vc— Ty Bl )
J_l V=nj_]_+1
1o i-1 . n.
(‘I)J G-1'c J n.
+j§ nin; - 1)+ (n; - j+1) gk-j(c In).

For n;_; < v <n;, it follows from (5) and (8) that
n.
c/n <eldp <my (ke -3) < my_j(k -j+1),
n: ;+1 :
/g >cil Ty > "i-j+1(" -j+1).
Since g,(0)=1> 0 and g, changes sign at each zero, we see that
(11) sgn g_j+1 (€¥ ) = (<17 if nj_; <w <n;.

Similarly, the inequalities

- n- -
My sy (= 3) < e lmy 5@k -3) <edn <oy (k- 3)
imply that

. (-1)
(12) sgn gK-j (cn.]n) =
or 0.

Now (6) is an immediate consequence of (10), (11), and (12).
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