A UNIVERSAL MODEL FOR ERGODIC TRANSFORMATIONS ON SEPARABLE MEASURE SPACES

N. Dinculeanu and C. Foiaș

1. INTRODUCTION

Let $\mathscr C$ be the class of all objects (X, Σ, μ, T) , where (X, Σ, μ) is a measure space with $X \in \Sigma$ and $\mu(X) = 1$, and where $T: X \to X$ is a μ -measurable measure-preserving transformation, that is, where for every $A \in \Sigma$ we have the relations

$$T^{-1}A \in \Sigma$$
 and $\mu(T^{-1}A) = \mu(A)$.

Where no confusion can arise, we shall write (X, μ, T) instead of (X, Σ, μ, T) .

If $(X, \mu, T) \in \mathcal{C}$, we denote by U_T the linear isometry of $L^2(X, \mu)$ into itself defined by

$$U_T f = f \circ T$$
 for $f \in L^2(X, \mu)$.

We say that $(X, \mu, T) \in \mathscr{C}$ is the homomorphic image of $(X_0, \mu_0, T_0) \in \mathscr{C}$ if there exists a linear isometry

$$\Phi: L^2(X, \mu) \to L^2(X_0, \mu_0)$$

satisfying the two conditions

1)
$$\Phi \mathbf{U}_{\mathrm{T}} = \mathbf{U}_{\mathrm{T}_{\mathrm{O}}} \Phi$$
,

2)
$$\Phi(fg) = \Phi(f) \cdot \Phi(g)$$
 for $f, g \in L^{\infty}(X, \mu)$

[the conditions imply that $\Phi L^{\infty}(X, \mu) \subset L^{\infty}(X_0, \mu_0)$]. For example, we can obtain such an isometry Φ from a measure-preserving transformation $\phi \colon X_0 \to X$ such that $\phi \circ T_0 = T \circ \phi$ by putting

$$\Phi f = f \circ \phi$$
 for $f \in L^2(X, \mu)$.

Under certain conditions, every such isometry can be obtained in this way (see [2, pp. 42-45] and [3, pp. 294-302]).

We say that $(X_0, \mu_0, T_0) \in \mathscr{C}$ is a *universal model* for a class $\mathscr{C}' \subseteq \mathscr{C}$ if every $(X, \mu, T) \in \mathscr{C}'$ is a homomorphic image of (X_0, μ_0, T_0) .

In this paper we shall construct a universal model $(\hat{\mathbf{N}}, \hat{\mu}, \hat{\tau}) \in \mathscr{C}$ for the class $\mathscr{C}_{\mathbf{e},s}$ of the $(\mathbf{X}, \Sigma, \mu, \mathbf{T})$ such that \mathbf{T} is ergodic and (\mathbf{X}, μ) is separable (that is, there exists a countable subset $\Sigma' \subset \Sigma$ such that to every $\mathbf{A} \in \Sigma$ and every $\varepsilon > 0$ there corresponds $\mathbf{A}' \in \Sigma'$ with $\mu(\mathbf{A} \triangle \mathbf{A}') < \varepsilon$; or, equivalently, $\mathbf{L}^2(\mathbf{X}, \mu)$ is separable). The transformation $\hat{\tau}$ is invertible (modulo μ), but it is not ergodic, and the measure space $(\hat{\mathbf{N}}, \hat{\mu})$ is not separable; in fact, a universal model for the class $\mathscr{C}_{\mathbf{e},\mathbf{S}}$ cannot be separable.

Received July 21, 1965.

The idea of this model was suggested by an "heuristic proof" indicated in [2] (see the end of the paragraph "Comments on the ergodic theorem").

The following problems are still open:

I. Is there a universal ergodic model for $\mathscr{C}_{e,s}$?

II. Is $(\hat{N}, \hat{\mu}, \hat{\tau})$ a universal model for the class \mathscr{C}_s of the separable but not necessarily ergodic measure spaces (X, μ, T) ? If the answer is negative, is there a universal model for \mathscr{C}_s ?

The main result is established in Section 5; the other paragraphs are introductory, and the proofs are given for the sake of the completeness.

2. THE SPACE N

Consider the space $N = \{1, 2, \cdots\}$ equipped with the discrete topology, and let \hat{N} be the Stone-Čech compactification of N. Then N is dense in \hat{N} , and every bounded complex sequence can be uniquely extended to a continuous function on \hat{N} [1, p. 872], so that we can identify the algebra m of bounded complex sequences (with the usual multiplication of coordinates) with the algebra $C(\hat{N})$ of the complex continuous functions on \hat{N} , and \hat{N} itself with the space of the maximal ideals of m.

Every point of N is open in \hat{N} , therefore the set $N_{\infty} = \hat{N} - N$ is compact.

LEMMA 1. A point $x \in \hat{N}$ belongs to N_{∞} if and only if

$$|f(x)| \leq \limsup_{n \to \infty} |f(n)|$$
 for every $f \in C(\hat{N})$.

Suppose that $x = p \in N$, and consider the function $f \in C(\hat{N})$ defined by f(n) = 1/n for $n \in N$. Then $\lim \sup_{n \to \infty} |f(n)| = 0$, but |f(x)| = 1/p > 0.

Conversely, let $x \in N_{\infty}$ and $f \in C(\hat{N})$. There exists a sequence $\{n_p\}$ in N such that $\lim_{p \to \infty} f(n_p) = f(x)$. In fact, we can suppose that f(x) = 0. If the desired sequence $\{n_p\}$ does not exist, then $\lim\inf|f(x)| > 0$. Put

g(n) =
$$\begin{cases} 1/f(n) & \text{if } f(n) \neq 0, \\ 1 & \text{if } f(n) = 0. \end{cases}$$

Then $\{g(n)\}\in m$ and g(n)f(n)=1, except for finitely many values n. It is now evident that f(z)g(z)=1 on N_{∞} , and in particular $f(x)\neq 0$, which contradicts our hypothesis.

3. THE TRANSFORMATION $\hat{ au}$

Consider the mapping $\tau \colon C(\hat{N}) \to C(\hat{N})$ defined by

$$(\tau f)(n) = f(n+1)$$
 for all $f \in C(\hat{N})$ and $n \in N$.

We remark that every function $g \in C(\hat{N})$ is of the form $g = \tau f$ for some $f \in C(\hat{N})$.

For every $x \in \hat{N}$, the mapping $f \to (\tau f)(x)$ is a continuous homomorphism of $C(\hat{N})$ onto the algebra of complex numbers; therefore there exists a point $\hat{\tau}x \in \hat{N}$ such that

$$(\tau f)(x) = f(\hat{\tau}x)$$
 for every $f \in C(\hat{N})$.

PROPOSITION 1. The mapping $\hat{\tau}\colon \hat{N}\to \hat{N}$ is one-to-one and continuous, and $\hat{\tau}(N_{\infty})=N_{\infty}$.

Let $x_1, x_2 \in \hat{N}$ be such that $\hat{\tau}x_1 = \hat{\tau}x_2$. Let $g = \tau f$ be an arbitrary function of $C(\hat{N})$. Then $(\tau f)(x_1) = (\tau f)(x_2)$, that is, $g(x_1) = g(x_2)$. Therefore $x_1 = x_2$, whence $\hat{\tau}$ is one-to-one.

To prove that $\hat{\tau}$ is continuous, let $\mathbf{x}_0 \in \hat{\mathbf{N}},$ and let V be a neighbourhood of $\hat{\tau}\mathbf{x}_0$ to the form

$$V = \{x: |f_{j}(x) - f_{j}(\hat{\tau}x_{0})| < \epsilon; f_{j} \in C(\hat{N}), j = 1, 2, \dots, k\}.$$

Then

W =
$$\{x: |(\tau f_j)(x) - \tau f_j(x_0)| < \epsilon; j = 1, 2, \dots, k\}$$

is a neighbourhood of x_0 , and $\hat{\tau}W \subseteq V$.

We remark that if $n \in N$, then $\hat{\tau}n = n + 1$. If $x \in N_{\infty}$, then, by Lemma 1,

$$\left|f(\widehat{\tau}x)\right| = \left|\tau f(x)\right| \leq \limsup_{n \to \infty} \left|(\tau f)(n)\right| = \limsup_{n \to \infty} \left|f(n+1)\right| = \limsup_{n \to \infty} \left|f(n)\right|$$

for every $f \in C(\hat{N})$. Therefore, again by Lemma 1, $\hat{\tau}x \in N_{\infty}$. It follows that $\hat{\tau}(N_{\infty}) \subseteq N_{\infty}$.

Conversely, let $y \in N_{\infty}$. For every function $f \in C(\widehat{N})$, define the function $f_{\mathcal{T}} \in C(\widehat{N})$ by $f_{\mathcal{T}}(1) = 0$ and $f_{\mathcal{T}}(n+1) = f(n)$ for $n \in N$. It follows that $\mathcal{T}(f_{\mathcal{T}}) = f$. Moreover, $(\mathcal{T}f)_{\mathcal{T}}(z) = f(z)$ for $z \in N_{\infty}$. Since the mapping $f \to f_{\mathcal{T}}(y)$ is a continuous homomorphism of $C(\widehat{N})$ onto the algebra of the complex numbers, there exists a point $x \in \widehat{N}$ such that

$$f(x) = f_{\tau}(y)$$
 for every $f \in C(\hat{N})$.

By virtue of Lemma 1, we conclude that $x \in N_{\infty}$. Consequently,

$$f(\hat{\tau}x) = (\tau f)(x) = (\tau f)_{\tau}(y) = f(y)$$
 for every $f \in C(\hat{N})$,

and therefore $\hat{\tau}x = y$.

COROLLARY. The restriction τ_∞ of $\hat{\tau}$ to N_∞ is a homeomorphism of N_∞ .

In fact, N_{∞} is compact, τ_{∞} is continuous and one-to-one, and $\tau_{\infty}(N_{\infty})$ = N_{∞} .

Remark. There exists no fixed point of N_∞ for τ_∞ . Indeed, suppose that τ_∞ y = y for some y \in N_∞ . Then

$$f(y) = (\tau f)(y)$$
 for every $f \in C(\hat{N})$,

and in particular, this is true for the function g defined by the sequence $\{0, 1, 0, 1, \cdots\}$. The function τg is defined by the sequence $\{1, 0, 1, 0, \cdots\}$, and since $g + \tau g = 1$ and $g \cdot \tau g = 0$, it follows that 2g(y) = 1 and $g(y)^2 = 0$, which is impossible.

4. THE MEASURE $\hat{\mu}$

For every function $f \in C(\hat{N})$, put

$$\| f \| = \lim \sup \frac{|f(1) + f(2) + \cdots + f(n)|}{n}.$$

Then $\| \mathbf{f} \| \le \| \mathbf{f} \|$, where

$$\|f\| = \sup_{x \in \hat{N}} |f(x)| = \sup_{n \in N} |f(n)|,$$

and |||f||| is a seminorm on $C(\hat{N})$.

Consider now the set C_0 of functions $f \in C(\hat{N})$ such that the sequence

$$\left\{\frac{f(1)+f(2)+\cdots+f(n)}{n}\right\}$$

converges. Then \mathbf{C}_0 is a linear subspace of $\mathbf{C}(\mathbf{\hat{N}})$ containing all constant functions, and

$$I(f) = \lim_{n \to \infty} \frac{f(1) + f(2) + \cdots + f(n)}{n}$$

is a linear functional on C satisfying the inequality

$$|I(f)| < |||f|||$$
 for $f \in C_0$.

Moreover, if $f \in C_0$ and $f \ge 0$, then $I(f) = |||f||| \ge 0$, and if $\lim_{n \to \infty} f(n) = c$, then I(f) = c; in particular, I(1) = 1.

PROPOSITION 2. There exists a positive, regular Borel measure $\hat{\mu}$ on \hat{N} such that $(\hat{N}, \hat{\mu}, \hat{\tau}) \in \mathscr{C}$ and

$$\int f d\hat{\mu} = \lim_{n \to \infty} \frac{f(1) + f(2) + \dots + f(n)}{n} \quad \text{for } f \in C_0.$$

Moreover, $\hat{\tau}$ is invertible (modulo $\hat{\mu}$), but is not ergodic with respect to any measure $\hat{\mu}$ satisfying the preceding conditions.

Using the Hahn-Banach theorem, we can extend I to a linear functional \hat{I} on $\,C(\hat{N})\,$ such that

$$|\hat{\mathbf{I}}(f)| \le |||f||| \quad \text{for } f \in C(\hat{N}).$$

The functional $\hat{\mathbf{I}}$ is positive. Indeed, let $f \geq 0$ be a function of $C(\hat{N})$. To prove that $\hat{\mathbf{I}}(f) \geq 0$, we take a function $g \in C_0$ such that $f \leq g$ (for example, $g(x) \equiv \|f\|$). Then $\hat{\mathbf{I}}(g) = \|g\|$ and $0 \leq g - f \leq g$, and therefore $\|g - f\| \leq \|g\|$. It follows that

$$\hat{I}(g) - \hat{I}(f) = \hat{I}(g - f) \le |\hat{I}(g - f)| \le ||g - f|| \le ||g||$$
,

whence $\hat{I}(f) \geq \hat{I}(g) - ||g|| = 0$.

By the Riesz-Kakutani theorem, there exists a positive regular Borel measure $\hat{\mu}$ on $\hat{\mathbf{N}}$ such that

$$\hat{I}(f) = \int f d\hat{\mu}$$
 for $f \in C(\hat{N})$.

In particular, for $f \in C_0$,

$$\int f d\hat{\mu} = I(f) = \lim_{n \to \infty} \frac{f(1) + \dots + f(n)}{n}$$

and $\hat{\mu}(N) = I(1) = 1$.

Since $\hat{\tau}$ is continuous, it is $\hat{\mu}$ -measurable. The transformation $\hat{\tau}$ is also measure-preserving. In fact, for every function $f \in C(\hat{N})$, we can write

$$\frac{(f - \tau f)(1) + (f - \tau f)(2) + \cdots + (f - \tau f)(n)}{n} = \frac{f(1) - f(n+1)}{n} \to 0.$$

Therefore $f - \tau f \in C_0$ and $I(f - \tau f) = 0$, and consequently $\hat{I}(f) = \hat{I}(\tau f)$. It follows that $\hat{\mu}(A) = \hat{\mu}(\hat{\tau}^{-1} A)$ for every $\hat{\mu}$ -measurable set $A \subset \hat{N}$.

It remains to prove that $\hat{\tau}$ is not ergodic with respect to $\hat{\mu}$. Consider the function $f \in C(\hat{N})$ defined by

$$f(n) = \begin{cases} 1 & \text{if } (2k-1)^2 < n \le (2k)^2, \\ 0 & \text{if } (2k)^2 < n \le (2k+1)^2. \end{cases}$$

This function takes only the values 0 and 1; hence it is the characteristic function of a set $M \subset \hat{N}$ that is closed and open.

For every $n \in N$, let $h = h(n) \in N$ be defined by the inequalities

$$(2h - 1)^2 < n \le (2h + 1)^2$$
.

Then

$$\frac{\sum\limits_{k=1}^{h-1}\left[(2k)^2-(2k-1)^2\right]}{(2h+1)^2}\leq \frac{f(1)+\cdots+f(n)}{n}\leq \frac{\sum\limits_{k=1}^{h}\left[(2k)^2-(2k-1)^2\right]}{(2h-1)^2},$$

and a simple computation shows that

$$\frac{2h^2 - 3h + 1}{(2h+1)^2} \le \frac{f(1) + \dots + f(n)}{n} \le \frac{2h^2 + h}{(2h-1)^2}.$$

Since $h \to \infty$ as $n \to \infty$, we deduce that

$$\lim_{n\to\infty}\frac{f(1)+\cdots+f(n)}{n}=\frac{1}{2};$$

therefore $f \in C_0$ and $\hat{\mu}(M) = \int f d\hat{\mu} = 1/2$.

On the other hand,

$$\frac{|\tau f(1) - f(1)| + |\tau f(2) - f(2)| + \dots + |\tau f(n) - f(n)|}{n} \leq \frac{2h}{(2h-1)^2},$$

and therefore $I(|\tau f - f|) = 0$. It follows that

$$\hat{\mu}(M \triangle \hat{\tau}^{-1} M) = I(|\tau f - f|) = 0;$$

consequently $\hat{\tau}$ is not ergodic.

We shall show that $\hat{\mu}(N)=0$, which implies that $\hat{\mu}$ is concentrated on N_{∞} . Indeed, every point $p\in N$ is open and closed in \hat{N} , and the characteristic function f_p of the set $\{p\}$ defined by $f_p(n)=\delta_{pn}$ is continuous. Since

$$\frac{f_p(1)+\cdots+f_p(n)}{n}=\frac{1}{n}\to 0 \qquad (p\leq n\to\infty),$$

 $f_p \in C_0$ and $\hat{\mu}(\{p\}) = I(f_p) = 0$. It follows that if we consider the transformation $\tau' \colon \hat{N} \to \hat{N}$ with $\tau'(n) = n$ for $n \in N$ and $\tau'(x) = \hat{\tau}(x)$ for $x \in N_{\infty}$, we obtain an invertible measurable transformation, $\hat{\mu}$ -almost everywhere equal to $\hat{\tau}$; therefore $\hat{\tau}$ is itself invertible modulo $\hat{\mu}$.

Remark. The measure $\hat{\mu}$ is not unique. In the sequel, we assume that $\hat{\mu}$ is fixed.

5. THE MAIN RESULT

THEOREM. $(\hat{N}, \hat{\mu}, \hat{\tau})$ is a universal model for the class $\mathscr{C}_{e,s}$.

Let $(X, \mu, T) \in \mathcal{C}_{e,s}$. For every function $f \in L^1(\mu)$, the individual ergodic theorem for ergodic transformations [2, pp. 31-34] implies that

(1)
$$\lim_{n\to\infty} \frac{f(x)+f(Tx)+\cdots+f(T^{n-1}x)}{n} = \int_X f d\mu$$

 μ -almost everywhere.

There exists a countable set $\mathcal{A} \subseteq L^{\infty}(X, \mu)$ with the following properties:

- 1) f, g \in \mathscr{A} implies fg \in \mathscr{A} and $\alpha f + \beta g \in \mathscr{A}$ for all rational complex numbers α, β ; f \equiv 1 \in \mathscr{A} ;
 - 2) $f \in \mathcal{A}$ implies $\bar{f} \in \mathcal{A}$;
 - 3) \mathcal{A} is dense in $L^2(X, \mu)$;
 - 4) $f \in \mathcal{A}$ implies $f \circ T \in \mathcal{A}$.

In fact, we can start from a countable set \mathcal{A}_0 dense in $L^2(X, \mu)$, then take the set \mathcal{A}_1 of functions of the form $f \circ T^n$ and $\overline{f} \circ T^n$ with $f \in \mathcal{A}_0$ and $n = 0, 1, 2, \cdots$, and finally take \mathcal{A} , the algebra over the complex rational numbers generated by \mathcal{A}_1 . We may also suppose that

5) $|f(x)| \le ||f||_{\infty}$ for every $x \in X$ and $f \in \mathcal{A}$.

Since \mathscr{A} is countable, there exists a μ -negligible set $N_0 \subset X$ such that (1) holds for every $x \in X - N_0$ and for every $f \in \mathscr{A}$. Let $y \in X - N_0$. For every $f \in \mathscr{A}$, the sequence $\{f(T^ny)\}$ is bounded, hence it belongs to m.

We now define the mapping $\Phi: \mathscr{A} \to C(\hat{N})$ by the equation

(2)
$$(\Phi f)(n) = f(T^n y)$$
 for $f \in \mathcal{A}$ and $n \in N$.

From equation (1) we deduce that for f ϵ ${\mathscr A}$ the function Φf belongs to C_0 and that

$$\int \Phi f d\hat{\mu} = \int f d\mu.$$

We remark that Φf depends on the choice of the element y, but that the integral $\int \Phi f \, d\hat{\mu}$ is independent of y. In the sequel, y will be fixed.

It is easy to verify that Φ has the following properties:

- (i) $\Phi(\alpha f + \beta g) = \alpha \Phi(f) + \beta \Phi(g)$ for f, $g \in \mathcal{A}$ and for all rational complex numbers α , β ; $\Phi 1 = 1$;
 - (ii) $\Phi(fg) = \Phi f \cdot \Phi g$ for $f, g \in \mathcal{A}$;
 - (iii) $\Phi(\overline{f}) = \overline{\Phi f}$ for $f \in \mathcal{A}$;
 - (iv) $\Phi U_T = U_{\tau} \Phi$.

For instance, for every $f \in \mathcal{A}$ and $n \in N$ we have the relations

$$\Phi U_T f(n) = \Phi(f \circ T)(n) = f(T^{n+1}y) = \Phi f(n+1) = \Phi f(\hat{\tau}n) = U_{\hat{\tau}} \Phi f(n)$$
.

From (3) we deduce that Φ is an isometry from $\mathcal{A} \subset L^2(X, \mu)$ into $C(\widehat{N}) \subseteq L^2(\widehat{N}, \widehat{\mu})$:

$$(\mathbf{f},\,\mathbf{g}) \,=\, \int \,\mathbf{f}\bar{\mathbf{g}}\,\mathrm{d}\mu \,=\, \int \,\Phi(\mathbf{f}\bar{\mathbf{g}})\,\mathrm{d}\hat{\mu} \,=\, \int \,\Phi\mathbf{f}\cdot\Phi(\bar{\mathbf{g}})\,\mathrm{d}\hat{\mu} \,=\, \int \Phi\mathbf{f}\cdot\overline{\Phi\mathbf{g}}\,\mathrm{d}\hat{\mu} \,=\, (\Phi\mathbf{f},\,\Phi\mathbf{g})\,.$$

Since \mathcal{A} is dense in $L^2(X, \mu)$, it follows that Φ can be extended to a linear isometry from $L^2(X, \mu)$ into $L^2(\hat{N}, \hat{\mu})$; we shall also denote the extension by Φ . Equation (iv) remains valid for the extended Φ .

It remains to prove that equation (ii) remains valid for f, $g \in L^{\infty}(X, \mu)$. We shall prove more, namely, that the equation remains valid for $f \in L^{2}(\mu)$ and $g \in L^{\infty}(\mu)$. We shall divide the proof into several parts.

a) Equation (ii) is valid for $f \in \mathcal{A}$ and $g \in L^{\infty}(\mu)$. In fact, there exists a sequence $\{g_n\}$ in \mathcal{A} converging to g in $L^2(\mu)$. Since f is bounded, $fg_n \to fg$ in $L^2(\mu)$. Therefore $\Phi(g_n) \to \Phi(g)$ and $\Phi(fg_n) \to \Phi(fg)$ in $L^2(\mu)$. Since Φf is bounded (being continuous on \hat{N}) we see that

$$\Phi f \cdot \Phi g_n \to \Phi f \cdot \Phi g$$
 in $L^2(\mu)$.

For every n, $\Phi(fg_n) = \Phi(f)\Phi(g_n)$; therefore, passing to the limit, we obtain the relation

$$\Phi(fg) = \Phi f \cdot \Phi g.$$

b) If $g \in L^{\infty}(\mu)$, then $\Phi g \in L^{\infty}(\hat{\mu})$ and

$$\|\Phi g\|_{\infty} \leq \|g\|_{\infty}.$$

For $f \in \mathcal{A}$, condition 5) implies that

$$\max_{\mathbf{x} \in \hat{\mathbf{N}}} |\Phi \mathbf{f}(\mathbf{x})| = \sup_{\mathbf{n}} |\mathbf{f}(\mathbf{T}^{\mathbf{n}}\mathbf{y})| \leq \|\mathbf{f}\|_{\infty},$$

so that (4) is valid for $g = f \in \mathscr{A}$. Hence, denoting by $\overline{\mathscr{A}}$ the closure of \mathscr{A} in $L^{\infty}(\mu)$, we deduce from continuity that Φ is a linear multiplicative mapping of $\overline{\mathscr{A}}$ into $L^{\infty}(\hat{\mu})$ and that it satisfies (4). But $\overline{\mathscr{A}}$ is a subalgebra of $L^{\infty}(\mu)$ satisfying the conditions

- α) $1 \in \overline{\mathscr{A}}$;
- β) $f \in \overline{\mathcal{A}}$ implies $\overline{f} \in \overline{\mathcal{A}}$.

For c>0, let ϕ_c be defined on the set of complex numbers by

$$\phi_{c}(z) = \begin{cases} z & \text{if } |z| < c, \\ c \frac{z}{|z|} & \text{if } |z| \ge c. \end{cases}$$

Evidently $\phi_{\underline{c}}$ is continuous and can be uniformly approximated on $|z| \leq C$ by polynomials $p(z,\bar{z})$ in z and \bar{z} . Thus, if $f \in \overline{\mathscr{A}}$ and $||f||_{\infty} \leq C$, then $\phi_{\underline{c}} \circ f$ is the limit in $L^{\infty}(\mu)$ of elements of the form $p(f,\bar{f}) \in \overline{\mathscr{A}}$; hence $\phi_{\underline{c}} \circ f \in \overline{\mathscr{A}}$ for all c > 0 and all $C < \infty$.

Now let $g \in L^{\infty}(\mu)$ be given, and suppose $f_n \in \mathscr{A}$ and $f_n \to g$ in $L^2(\mu)$. Taking $\epsilon > 0$, $c = \|g\|_{\infty} + \epsilon$, and $h_n = \phi_c \circ f_n$, we deduce that $h_n \in \mathscr{A}$ and $h_n \to g$ in $L^2(\mu)$; hence $\Phi h_n \to \Phi g$ in $L^2(\hat{\mu})$. Moreover, we may suppose that $\Phi h_n \to \Phi g$, $\hat{\mu}$ -almost everywhere. Since (4) is valid for the functions of \mathscr{A} , we see that

$$\|\Phi h_n\|_{\infty} \le c = \|g\|_{\infty} + \epsilon$$
.

Thus, $|\Phi g| \leq ||g||_{\infty} + \varepsilon \hat{\mu}$ -almost everywhere, that is, $||\Phi g||_{\infty} \leq ||g||_{\infty} + \varepsilon$. Since $\varepsilon > 0$ is arbitrary, we obtain (4) for every $g \in L^{\infty}(\mu)$.

c) Equation (ii) holds for $f \in L^2(\mu)$ and $g \in L^\infty(\mu)$. Let $\{f_n\}$ be a sequence in $\mathscr A$ such that $f_n \to f$ in $L^2(\mu)$. Since $g \in L^\infty(\mu)$, we see that $f_n g \to fg$. Therefore

$$\Phi(f_n) \,\to\, \Phi(f) \qquad \text{and} \qquad \Phi(f_n \, g) \,\to\, \Phi(fg) \qquad \text{in $L^2(\hat{\mu})$.}$$

Since by b) $\Phi g \in L^{\infty}(\hat{\mu})$, we deduce that $\Phi(f_n)\Phi(g) \to \Phi(f)\Phi(g)$. For every n, a) implies that $\Phi(f_n g) = \Phi(f_n)\Phi(g)$; therefore, passing to the limit, we conclude that $\Phi(fg) = \Phi(f)\Phi(g)$.

Remark. The countability hypothesis was used only to get a point $y \in X$ such that (1) holds for every function of a class \mathscr{A} satisfying conditions 1) to 4), and this last property was indeed used in the proof; therefore $(\hat{N}, \hat{\mu}, \hat{\tau})$ is a universal model for the class of all ergodic transformations possessing the preceding property. An interesting problem is whether $(\hat{N}, \hat{\mu}, \hat{\tau})$ itself has this property.

PROPOSITION 3. There exists no separable universal model for the class $\mathscr{C}_{e,s}$.

Suppose that (X_0, μ_0, T_0) is a universal model for $\mathscr{C}_{e,s}$. Let X be the complex unit circle, and let μ denote Haar measure on X. Let $c \in X$ be such that $c^n \neq 1$ for $n = \pm 1, \pm 2, \cdots$, and define the transformation T: $X \to X$ by Tx = cx

for $x \in X$. Then $(X, \mu, T) \in \mathscr{C}_{e,s}$ [2, pp. 25-30]. Moreover, T is invertible. Consider the unitary operator U_T on $L^2(X, \mu)$ induced by T. The function f(x) = x satisfies the condition

$$f(cx) = c f(x)$$
 for $x \in X$,

that is, $U_T f = cf$.

Let Φ : $L^2(X, \mu) \to L^2(X_0, \hat{\mu}_0)$ be a linear isometry such that $\Phi U_T = U_{T_0} \Phi$. Then

$$U_{T_0} \Phi f = \Phi U_T f = \Phi c f = c \Phi f;$$

therefore c is a proper value for U_{T_0} . Since the set of numbers $c \in X$ with $c^n \neq 1$ for $n = \pm 1, \, \pm 2, \, \cdots$ is uncountable, it follows that the set of proper values of U_{T_0} is uncountable, and therefore $L^2(X_0, \, \mu_0)$ contains an uncountable family of orthogonal elements different from 0. We deduce that $(X_0, \, \mu_0)$ is not separable.

REFERENCES

- 1. N. Dunford and S. Schwarz, *Linear operators, Part II*, Interscience, New York, 1958.
- 2. P. Halmos, Lectures on ergodic theory, Chelsea, New York, 1956.
- 3. J. von Neumann, Collected works, vol. II, Pergamon Press, New York, 1961.

Mathematical Institute of the Rumanian Academy Bucarest