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1. INTRODUCTION

Let € be the class of all objects (X, Z, u, T), where (X, Z, ) is a measure
space with X € Z and p(X) =1, and where T: X — X is a g -measurable measure-
preserving transformation, that is, where for every A € Z we have the relations

T-1A e =X and u(T-1A) = p(A).

Where no confusion can arise, we shall write (X, u, T) instead of (X, Z, u, T).
If (X, 1, T) € @, we denote by U the linear isometry of LZ(X, p) into itself
defined by
Upf=foT for fe L3X, u).

We say that (X, u, T) € @ is the homomorphic image of (X, Lo, To) € € if
there exists a linear isometry

D LZ(X; IJ') - LZ(XO, U'())

satisfying the two conditions
1) ®U = UTO D,

2) ®(fg) = ®(f) - ®(g) for f, g € L™(X, )

[the conditions imply that ®L7(X, 1) € L*(X,, itg)]. For example, we can obtain
such an isometry & from a measure-preserving transformation ¢: Xy — X such that
$oTy = Tod¢ by putting

®f = fo¢p for f e LAX, u).

Under certain conditions, every such isometry can be obtained in this way (see [2,
pp. 42-45] and [3, pp. 294-302]).

We say that (X, g, To) € € is auniversal model for a class ¢'C @ if every
(X, u, T) € €' is a homomorphic image of (Xg, g, To)-

In this paper we shall construct a universal model (N ,u, T) € € for the class
@e,s Of the (X, Z, p, T) such that T is evgodic and (X, p) is separable (that is,
there exists a countable subset =' € Z such that to every A € = and every & > 0
there corresponds A' € Z' _with p(AAA'") <eg; or, equivalently, L%(X, p) is separ-
able). The transformation T is invertible (modulo ,u) but it is not ergodic, and the
measure space (N L) is not separable; in fact, a universal model for the class
©.,s cannot be separable.
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The idea of this model was suggested by an “heuristic proof” indicated in [2] (see
the end of the paragraph “Comments on the ergodic theorem?”).

The following problems are still open:
I. Is there a universal evgodic model for €. ¢ ?

I. Is (N, i, 7) a universal model for the class €. of the separable but not nec-
essarily ergodic measure spaces (X, , T)? If the answer is negative, is there a
universal model for €4 ?

The main result is established in Section 5; the other paragraphs are introduc-
tory, and the proofs are given for the sake of the completeness.

2. THE SPACE N

Consider the space N = {1, 2, -} equipped with the discrete Jtopology, and let
N be the Stone-Cech compact1f1cat10n of N. Then N is dense in N, and every
bounded complex sequence can be uniquely extended to a contmuous function on N
[1, p. 872], so that we can identify the algebra m of bounded complex sequences
(with the usual multiplication of coordinates) with the algebra C(N) of the complex
continuous functions on N, and N itself with the space of the maximal ideals of m.

Every point of N is open in ﬂ, therefore the set N_ = N-N is compact.
LEMMA 1. A point x € N belongs to N, if and only if
[f(x)| < lim sup |f(n)| for every f € C(ﬁ).

n—coo

Suppose that x = p € N, and consider the function f € C(N) defined by f(n) = 1/n
for n € N. Then lim sup,_, . |f(n)| = 0, but |f(x)| = 1/p > 0.

Conversely, let x € N, and f € C(N). There exists a sequence {np} in N such
that limp_, f(n ) = £(x). In fact, we can suppose that f(x) = 0. If the desired se-

quence {np} does not exist, then lim inf [f(x)| > 0. Put

1/f(n)  if f(n) # 0,

g(n) =
1 if f(n)= 0

Then {g(n)} € m and g(n)f(n) = 1, except for finitely many values n. It is now

evident that f(z)g(z) = 1 on N_, and in particular f(x) # 0, which contradicts our
hypothesis.

3. THE TRANSFORMATION 7
Consider the mapping T: C(I:T) — C(I:T) defined by

(7f)(n) = fn+1) forall fe C(N) and n € N.

We remark that every function g € C(ﬁ) is of the form g = 7f for some f € C(ﬁ)

For every x € N, the mapping f — (7f)(x) is a continuous homomorphism of
C(N) onto the algebra of complex numbers; therefore there exists a point TxeN
such that
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(7£)(x) = £f(Tx) for every f ¢ C(N).
. PROPOSITION 1. The mapping T N—-N is one-to-one and continuous, and
T(N_ )=

Let x,, x5 € N be such that 'rxl = 7?x2 . Let g = 7f be an arbitrary function of
C(N) Then (7f)(x;) = (7£)(x,), that is, g(x,) = g(x,). Therefore X; = X,, whence T
is one-to-one.

To prove that T is continuous, let x, € ﬁ, and let V be a neighbourhood of '?xo
to the form
v = {x: |fj(x) - fj('?xo)l < g fj € C(N), j=1, 2, *-, k} .
Then
= {X: l('Tfj)(X) - Tfj(xo)i < £ j= 1, 2, oo, k}

is a neighbourhood of x;,, and TW Cc V.
We remark that if n € N, then Tn=n+ 1. If x € N, , then, by Lemma 1,

[#(7x)| = |7#x)] < lim sup |(7£)(n)| = lim sup |[f(n+ 1)| = lim sup |t(n)|

n— o0 n—oo

for every f € C(N). Therefore, again by Lemma 1, 7x € N_ . It follows that
7(N,) S N, .

Conversely, let y € N, . For every function f € C(N) define the function
fr € cN) vy £ +{1)=0 and f s+ 1) =1£(n) for n € N. It follows that 7(f,) = f.
Moreover, ('Tf) (z) = 1(z) for z € N, . Since the mapping f — f_(y) is a contlnuous
homomorph1sm of C(N) onto the algebra of the complex numbers, there exists a
point x € N such that

f(x) = f,r(y) for every f € C(N).
By virtue of Lemma 1, we conclude that x € N,,. Consequently,
£#(7x) = (1£)(x) = (7f), (y) = 1(y) for every £ e C(N),

and therefore 7Tx = y.
COROLLARY. The vestriction 7o Of T to N is a homeomorphism of Ny .
In fact, N, is compact, 7., is continuous and one-to-one, and 7,(N,) = N, .
Remark. There exists no fixed point of N, for 7. . Indeed, suppose that
ToY =Y for some y € N, . Then

f(y) = (7f)(y) for every f € C(ﬁT),

and in partlcular this is true for the function g defined by the sequence

{0, 1, 0, 1, -+ }. The function 7g is defined by the sequence {1, 0, 1, 0, ---}, and
since g+ 7g =1 and g-7g = 0, it follows that 2g(y) = 1 and g(y)% = O Wthh is
impossible.
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4, THE MEASURE [

For every function f € C(ﬁT), put

|£(1) + £(2) + -+ + £(n)| .

|||f|u = lim sup o
Then [|£]| < |||, where
||f|| = sup ]f(x)| = sup If(n)l,
x €N n€N

and ||£]| is a seminorm on C(N).

Consider now the set Cy of functions f € C(N) such that the sequence

{ £(1) + £(2) + - + £(n) }

n

converges. Then C is a linear subspace of c() containing all constant functions,
and ‘

£(1) + £(2) + - + £(n)
n

I(f) = lim

n —» 0o
is a linear functional on C satisfying the inequality
l1®)] < £l for fe Cq.

Moreover, if f € Cg and > 0, then I(f) = [|£]| > 0, and if lim,,_, ., f(n) = ¢, then
I(f) = c; in particular, I(1) = 1,

PIiOleSETION 2. There exists a positive, regulayr Borvel measure L on N such
that (N, i, 7) € & and

gfdﬁ = m IR+ ) g o

n— n

Moreover, T is invertible (modulo ﬁ), but is not evgodic with vespect to any measure
U satisfying the preceding conditions.

Using the Hahn-Banach theorem, we can extend I to a linear functional Ton C(I:T)
such that

IT@E)] < £l for fe c(N).

The functional Iis positive. Indeed, let f > 0 be a function of C(ﬁ) . To prove
that I(f) > 0, we take a function g € Cg such that f < g (for example, g(x) = |f]).

Then I(g) = [|g]l and 0< g - £ < g, and therefore. [|g - £]| < [lg|. It follows that
fe) - i) = e -0 < [T -0 < fle-£ll < lell,

whence I(f) > f(g) - IHgIH

I

0.
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. By the Riesz-Kakutani theorem, there exists a positive regular Borel measure
i on N such that

= Sfdﬁ for £ € C(N).
In particular, for f € Cg,

f(1) + --- + £(n)
n

{tan =10 = um
n— oo
and [iL(N) = I(l) =1.
Since 7 is continuous, it is p. -measurable. The transformation 7 is also
measure-preserving. In fact, for every function f € C(N) we can write

(- 7))+ - 7£)2) + -+ (£ - 7H)(n) _ £(1) - f(n+ 1)
n n

—)O.

Therefore f - 7f € Cg and I(f - 7£) =0, and consex}\};ently () = £(71). It follows that
L(A) = o(7-1 A) for every [i- measurable set A C

It remains to prove that 7 is not ergodic with respect to u Consider the func-
tion f € C(N) defined by

1 if (2k - 1)2 < n < (2k)Z,
f(n) =
0 if (2k)2 < n < (2k+ 1)%,

This function takes only the values 0 and 1; hence it is the characteristic function
of a set M C N that is closed and open.

For every n € N, let h = h(n) € N be defined by the inequalities

(2h - 1)%2 < n < (2h+ 1)2,
Then
h-1 h
> [(2k)% - (2k - 1)2] z  [(2k)Z - (2k - 1)2]
k=1 ) f(1) + - + £(n) k=1
< <
(2h + 1)2 = n -

(2h - 1)2 ’
and a simple computation shows that

o2h%Z - 3h+1 _ £f(1)+ «-- + £(n) < 2h% + h
(2h+1)2 — n — (2h - 1)2°

Since h — «© as n — %, we deduce that

lim £(1) + oo + £(n) _ 1;

n—s o0 n

[\

therefore f € Cy and (M) = Sfdﬁ. =1/2.
On the other hand,
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| 7£(1) - £(1)| + | 7£2) - £(2)] + «o0 + | TH(n) - £(n)| < __2h
n = (2h - 1)%’

and therefore I(|f - f|) = 0. It follows that
pMAT-1 M) = I(| 7f - £|) =

consequently 7 is not ergodic.

We shall show that u,(N) = 0, which implies that u. is concentrated on N . In-
deed, every point p € N is open and closed in N and the characteristic function fp
of the set {p} defined by f (n) Opn 1is contmuous. Since

£(1) + o + £p(n)
n

1
—H_—)O (p_<_n—-) )’

f €,Co and p{p} = I(fp) = 0. It follows that if we consider the transformation

: N — N with 7'(n)=n for n € N and 71(x) = 7(x) for x € N,,, we obtain an in-
vert1b1e measurable transformation, [i-almost everywhere equal to '? therefore 7
is itself invertible modulo &,

~

Remavrk. The measure [ is not unique. In the sequel, we assume that L is
fixed.

5. THE MAIN RESULT

THEOREM. (f\I [l, '?) is a universal model for the class €e,s.

Let (X, i1, T) € ¢, . For every function f € L1(u), the individual ergodic
theorem for ergodic transformations [2, pp. 31-34] implies that

(1 lig 100+ £(Tx) + -+ + (TP %) =S fap

n-—oco n

KL -almost everywhere.
There exists a countable set « C L™(X, 1) with the following properties:

1) f, g € « implies fg € A& and af + Bg € « for all rational complex numbers
a,B; £=1¢€A;

2) f € # implies f € A
3) « is dense in L2(X, u);
4) f € A& implies foT € .

In fact, we can start from a countable set ¢ dense in L%(X, 1), then take the
set ¢, of functions of the form foT™ and foT™ with f € Ay and n=0, 1, 2,
and finally take .o, the algebra over the complex rational numbers generated by
1. We may also suppose that

5) |#x)] < [fll for every x € X and f € .

Since « is countable, there exists a 1 -negligible set Ng € X such that (1) holds
for every x € X - Ng and for every f € 4. Let y € X - Ng. For every { € «, the
sequence {f(T"y)} is bounded, hence it belongs to m.
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We now define the mapping &: « — C(N) by the equation
(2) (®2f)(n) = £(T"y) for f € & and n € N.

From equation (1) we deduce that for f € . the function ®f belongs to C, and that

(3) X@fd,& = Sfdu..

We remark that &f depends on the choice of the element y, but that the integral
.S‘cIJf dit is independent of y. In the sequel, y will be fixed.

It is easy to verify that & has the following properties:

(i) ®(af+ Bg) = a &(f) + B®(g) for f, g € & and for all rational complex num-
bers a, B; 1 =1;

(ii) ®(fg) = ®f-dg for f, g € A
(iii) ®(f) = &f for f € A
(iv) ®Ug = U7 &.

For instance, for every f € & and n € N we have the relations
@ Uy f(n) = &(fo T)n) = (T ly) = &f(n+ 1) = &f(7n) = Uz &f(n).

From (3) we deduce that & is an isometry from  C L2(X, p) into
c(N) c L2(N, i)

¢, ¢) = (gap = (a@ai = (or-a@ap = (o1-Tgai = (at, 2e).

Since - is dense in LZ(X u) it follows that & can be extended to a linear
isometry from L2(X, u) into L (N .); we shall also denote the extension by &.
Equation (iv) remains valid for the extended &.

It remains to prove that equation (ii) remains valid for f, g € L™(X, ). We
shall prove more, namely, that the equation remains valid for f € L2(u) and
g € L*(un). We shall divide the proof into several parts.

a) Equation (ii) is valid for f € A and g € L™(u). In fact, there exists a se-
quence {g,} in « converging to g in L2(u). Since f is bounded, fg, — fg in
L2(y). Therefore &(g,) — ®(g) and &(fg,) — &(fg) in L%(u). Since &f is bounded
(being continuous on N) we see that

&f . dg, — df-dg  in LZ(u).

For every n, &(fg,) = ®(f) ®(g,); therefore, passing to the limit, we obtain the rela-
tion

&(fg) = of- dg.
b) If g € L™®(u), then ®g € L™(1) and

(4) leel, < lel,-



116 N. DINCULEANU and C. FOIAS
For f € &, condition 5) implies that

max |®£(x)| = sup |£(T"y)| < |l
x€N n

so that (4) is valid for g =f € «. Hence, denoting by  the closure of .« in
L*(u1), we deduce from continuity that & is a linear multiplicative mapping of o
into L({i) and that it satisfies (4). But « is a subalgebra of L®(i.) satisfying the
conditions

a) 1le oA;
B) f € « implies € .
For c > 0, let ¢_ be defined on the set of complex numbers by

Z if |z]<c,
¢.(2z) =

c2  if |z| >ec.

|2]

Evidently ¢ is continuous and can be unlformly approximated on Izl < C by
polynomials p(z, Z) in z and Z. Thus, if f € _and ][f" < C, then ¢, of is the
limit in L*(x) of elements of the form p(t, f) € A ; hence qSCOf € o forall c> 0
and all C < e,

Now let g € L™(1) be given, and suppose f, € « and fn — g in LZ(u). Takmg
e>0, c= ]|g||oo +¢,and h, = ¢c0f,, we deduce that h, € « and h, — g in L 2(1);
hence ®h, — dg in L (). Moreover, we may suppose that ®h, — &g, . -almost
everywhere. Since (4) is valid for the functmns of ., we see that

|#hafle < e = [lefe + &.

Thus, |®g| < ||g]l. +& B-almost everywhere, that is, ||®gl« < ||g]w +£. Since
€ > 0 is arbitrary, we obtain (4) for every g € L™(u).

c) Equation (ii) holds for fe L%u) and g € L™(p). Let {f,} be a sequence in
«f such that f, — f in 1.2(u). Since g € L™(u), we see that f g — fg. Therefore

&(f,) —» ®(f) and &, g) — &(fg) in L23(1).

Since by b) &g € L°(i1), we deduce that &(f,) ®(g) — &(f)&(g). For every n, a) im-
plies that &(f, g) = &(f,) ®(g); therefore, passing to the limit, we conclude that
& (fg) = &(f) 2(g).

Rewmark. The countability hypothesis was used only to get a point y € X such
that (1) holds for every function of a class .« satisfying conditions 1) to 4), and
this last property was indeed used in the proof; therefore (N, i, 7) is a universal
model for the class of all ergodic transformatmns possessing the preceeding prop-
erty. An interesting problem is whether (N ., 7) itself has this property.

PROPOSITION 3. There exists no separable univevsal model for the class
%e s*
Suppose that (Xg, g, To) is a universal model for &_ .. Let X be the com-

plex unit circle, and let ¢ denote Haar measure on X. Let c € X be such that
c#1 for n = +1, +2, ---, and define the transformation T: X —» X by Tx = cx
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for x € X. Then (X, u, T) € %e s [2 pp. 25-30]. Moreover, T is invertible. Con-
sider the unitary operator Uy on L2(X, u) induced by T. The function f(x)=x
satisfies the condition

f(ex) = cf(x) for x € X,

that is, U f = cf.
Let &: L2(X, n) — L2(Xg, [tg) be a linear isometry such that ®U = Uty @.
Then

UT0¢’f = @Upf = dcf = cPf;

therefore ¢ is a proper value for UTo . Since the set of numbers ¢ € X with c? #1
for n = +1, +2, --- is uncountable, it follows that the set of proper values of UTO

is uncountable, and therefore L2 (Xg, ko) contains an uncountable family of ortho-
gonal elements different from O. We deduce that (X 0> u.o) is not separable.
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