LOCAL HOMEOMORPHISMS OF EUCLIDEAN SPACE
ONTO ARBITRARY MANIFOLDS
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INTRODUCTION

We define an n-manifold as a separable, connected metric space in which each
point has an open neighborhood homeomorphic to Euclidean n-space R". A local
homeomorphism of a space X into a space Y is a mapping such that each point of X
has an open neighborhood that goes homeomorphically onto an open set in Y. The
main purpose of this paper is to point out (Theorem 1) that for each manifold M"
there exists a local homeomorphism f of R™ onto M™.

Intuitively we think of M™ as a surface and of R as an infinitely long piece of
tape, and we ask whether the piece of tape can be wrapped around the surface. Once
we know that this can be done, it is natural to investigate the “most economical”
wrapping of R™ onto M™. That is, if f is a local homeomorphism as above, we let
N(f) be the supremum of the cardinalities of the sets f~1(x), for x € M™. We define
the wrapping numbey:

w(M™) = inf {N(f) | f is a local homeomorphism of M™ onto R"} .

It is easy to see that w(M™) is countable, and that when M" is compact, w(M™
is finite. We prove (Theorem 2) that if M™ is compact and w(M™) = 2, then M™ has
the n-sphere S™ as a twofold covering space. Theorem 3 asserts that if M® is com-
pact, is not the n-sphere, and can be covered with r open celis, then w(M™) < r.

We remark that if M™ is a differentiable or piecewise linear manifold, -then the
local homeomorphisms constructed in Theorems 1 and 3 can be constructed so as to
be differentiable or piecewise linear immersions, respectively.

Finally, Theorem 4 is an analogue of Theorem 1 for manifolds with nonempty
connected boundary.

The author would like to thank Professor Morton Brown for several extremely
useful discussions concerning this paper.

1. CONSTRUCTION OF THE LOCAL HOMEOMORPHISM
We shall let B™( r) denote the closed ball of radius r about the origin in R"™. We
write B?(1) = B®, B" denotes the interior of B,
If £ is a mapping, then |f| denotes the image of f.
¥ ACX, then Cl1 A and Int A are the closure and interior of A in X.

An n-cell Q in the manifold M" is said to be flat if there exists an embedding f
of B"(2) into M" such that Q = £f(B™(1)). Any homeomorphism of a cell Q onto a
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flat n-cell Q' in M" is called a flat embedding of Q into M™. We assume a
familiarity with the elementary properties of flat cells.

To avoid discussion of trivial cases we shall suppose, in all that follows, that our
manifolds are of dimension n > 1. Theorems 1 to 4 are all true in dimension one.

LEMMA 0. If g is a flat embedding of B*~1 x [i, i + 3] into the manifold M™, Q
is a flat n-cell in M™ disjoint from |g|, and U is an open neighborvhood of Q, then
theve exists a flat embedding f of B"-! x [i, i + 3] into M® such that

(i) f(B*>1x@i+2 i+3)>Q,
(i) (B !x[i+2,i+3])cU,
(iii) £|B* Ix[i,i+1]=g| B 1 x[4, i+1].
We omit the proof.
The crux of the matter is now given by Lemma 1.

LEMMA 1. If M" is an n-dimensional manifold, then theve exists a mapping f
of B2-1x[0, ) onto M™ such that

1) £(B™-1x (0, ») = M™,
2) fl Bn-1x [2i, 2i + 3] is @ homeomorphism (i=0, 1, 2, ---).

Proof. Let Q;, Q2, Q3, - be an infinite sequence of flat cells (not necessarily
distinct) in M™, such that M™ is the union of the Q; and Q; N Q;+1 = 9 for all i.

Since Q; is flat and Q] N Q2 = @, there exists a flat embedding f; of

B2-1x [0, 3] into M™ such that
£,.B"1x(2,3)5Q;, and £(B'x[238)NnQ,=4.

Suppose that flat embeddings f; 1<j<r) of B™-1x[2j - 2, 2j+ 1] into M™

have been defined so that
() £(B°1 % (25, 2§ + 1)) D @,
(i) B! x[2), 2§ +11) N Q4 = 8,
(i) f;| B! x[2§ - 2, 2j - 1] =1£;_, | B™ 1 x[25 -2 25-1] if'j> 2.

Since f_(B®-! x[2r, 2r + 1]) is a flat cell disjoint from Q,4], there exists an ex-
tension of f .| B™-1 x [2r, 2r + 1] to a flat embedding g,+; of B™-1 x [2r, 2r + 3]
into M™ such that |g,.,.;| N Q,,;= 9. Note that M™ - Q_,, is a neighborhood of
Q.+, and apply Lemma 0; thus there exists a flat embedding f.+; of

Bn-1 x [2r, 2r + 3] into M® such that (i) to (iii) hold, with j = r + 1.
Proceeding inductively, we get an infinite sequence f;, f,, ---. Define
f: BP-1x [0, ©) — M™ by the condition that
£ B2-1x[2f - 2, 2j+1] = ;.
From (i) and (iii) and the fact that each f is a homeomorphism, it follows that f is a
well-defined map with the desired properties. Q. E.D.

THEOREM 1. If M" is a topological n-manifold, then theve exists a local
homeomovphism of R® onto M?,

Proof. Let g be a homeomorphism of R™ onto B-1 (0, ), and let f be as in
Lemma 1. Then h = fg is a local homeomorphism of R™ onto M”.
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2. THE CASE w(M") = 2

This section will be devoted to a proof of the following theorem.

THEOREM 2. If M" is a compact n- manifold and w(M™) = 2, then M"™ has S™
as a twofold covering space.

Proof. By hypothesis there exists a local homeomorphism f of R"™ onto M"
such that f-1f(x) consists of at most two points, for each x in R®. Let X be the
set of all points x € R™ such that f-1f(x) = x. ¥ x € R™ - X, let T(x) denote the
other point having the same image as Xx.

(1). X is compact. Indeed, since f is a local homeomorphism, R" - X is open.
Thus X is closed. To see that X is bounded, note that by the compactness of M,
there exists an integer r such that f(B™(r)) = M™. Since

f(X - B'(r)) = £(X) - {(B™(r)) ={(X) - M" =g,

X is included in B™(r).

(2). T is a homeomorphism of R™ - X onto itself. In fact, T is a local homeo-
morphism that is both one-to-one and onto.

(3). T takes sequences converging to infinity onto sequences converging to X,
and vice versa. To see this, suppose {xi} is a sequence of points converging to
infinity such that {T(xi‘)} does not converge to X. By taking a subsequence, if
necessary, we may assume that {T(x;)} is bounded away from X, and that {f(x;)}
converges to some point yg of the compact manifold M™. Since {xi} converges to
infinity, f-1(yy) must consist of exactly one point, and {T(x;)} converges to £-1(y,).
But f-l(yo) € X. This contradicts the fact that { T(xi)} is bounded away from X. A
similar argument shows that sequences converging to X are mapped by T onto se-
quences converging to infinity.

(4). If V is an open neighborhood of infinity in R™ - X, then X+ T(V) is an open
neighborhood of X. If W is an open neighborhood of X, then T(W - X) is an open
neighborhood of infinity. To prove the first assertion, note that T(V) is open. Hence
we need only show that X ¢ Int (X + T(V)). Suppose that {x;} is a sequence of points
of R® - X converging to X. Then {T(x;)} eventually lies in V, by (3). Therefore
{x;} eventually lies in T(V). Thus X + T(V) is a neighborhood of X. The second
assertion is proved similarly.

(5). X is cellular. To show this, let W be any open neighborhood of X. We shall
exhibit an n-cell Q suchthat XC Int Q C Q C W. We may assume that W is
bounded.

K S is any (n - 1)-sphere in R™, we let B[S] and U[S] represent the open,
bounded and unbounded complementary domains of S in R™, respectively.

By (4), T(W - X) is a neighborhood of infinity. Let S be a large round (n - 1)-
sphere in T(W - X) such that U[S] c T(W - X). Now,

X+ T(U[S]) c X+T(UI[S])+T(S) c W.

But X + T(U[S]) is a bounded open set containing X whose boundary consists pre-
cisely of the sphere T(S). Hence, X + T(U[S]) = B[T(S)]. Since S is bicollared,
T(S) is bicollared. Therefore, by [1], the closed complementary domains of T(S)
are closed cells. Hence X+ T(U[S]) + T(S) = C1(B[T(S)]) is an n-cell with the
desired properties.



496 MARSHALL M. COHEN

(6). We now construct a local homeomorphism g of S® onto M™ that is exactly
two-to-one. Such a map is known to be a covering map.

It is easy to prove (in any case, it follows from [4]) that there exists a neighbor-
hood W of X on which f is one-to-one. Using (5), choose an n-cell Q that contains
X in its interior, and such that f | Q is one-to-one. Note that f(X) is cellular in
Int £(Q). Hence, by Theorem 1 of [1], there exists a mapping ¥ of M™ onto itself
such that ¥ | M"-fQ)=1, ¢ | M™ - £(X) is a homeomorphism, and ¥(X) is a
single point of M™, say yg. Let xg = (f | Q)'l(yo).

Let g'* R™ —» M", where
g'|Q=£|Q and g |R"-Q=vyf|R"-Q.

Then g' is a local homeomorphism that is exactly two-to-one on R™ - x3. Extend
g' to g: S® — M™ by defining g(x) = yo. Then g is one-to-one in a neighborhood of
infinity, and by (3), g is continuous. Thus g is a local homeomorphism. Q. E.D.

3. AN UPPER BOUND FOR w(M")

In this section we use a sharpened form of the technique of Lemma 1 to get an
upper bound on w(M™). This allows us to calculate w(M™) in a few cases.

THEOREM 3. If M" is a compact manifold, other than the n-sphere, that can
be coverved with r open cells, then w(M™) < r.

Proof. By compactness of M™, there exist flat (closed) n-cells Q;, Q,, ***, Q..
such that M" = Q; + - + Q.. It will suffice to prove that the following proposition
(P;) holds, whenever 1 <i<r:

(P,) Theve exists a locally one-to-one map f;: B"™ — M" such that
(@) £;(BM > Qp + -+ +Q;,
(b) for each x € M™, £:1(x) consists of at most i points,
(c) There is a point x; € dB™ such that f;(x;) ¢ Q;4; (i <r -1).

We shall use the fact that, since M™ # S™, M" cannot be expressed as the union
of two flat cells. For a discussion of this, see [5].

If N is a subset of 29B™ and A is a set of positive reals, we shall write
NxA={tx|teA, xeN}.

We leave (P;) to the reader, with the suggestion that he use the fact that M" is
not a sphere.

Now suppose (P;) is known to be true (i < r), and that f; and x; satisfy (a) to (c)
above. We claim that f; and x; could have been chosen so that they also satisfy the
following: There exists a round closed neighborhood N of x; in ?aB"™, together with
an extension of f; to a map g;: B™ + (N %X [1, 4] ) — M™ such that

(i) g; is one-to-one on some neighborhood of N X [1, 4],
(i) g,(Nx[1, 4]) cM" - Q;,,
(iii) g, (N X [a, b]) isaflat cell (1 <a<b < 4).

Indeed, if f; and x; do not satisfy these extra conditions, there exists a small num-
ber 7 > 0 such that f; | B™(1 - ) and (1 - 7)x; do satisfy (a) to (c) and (i) to (iii).
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We let B* = B™ + (N x[1, 4]).

Now let h; be a homeomorphism of M™ onto itself that reduces to the identity
on g;(N x[1, 2]), and such that
This is pbssible, since g;(N x[1, 2]) and g;(N x[3, 4]) are disjoint flat cells in the
complement of the flat cell Qj4;.

At this stage we must make sure that the mapping under construction will behave
properly with respect to Qi4+2. K i+1=1r,1let hp =1. ¥ i+ 1 #r, we notice that,
since M"™ is not a sphere, there exists a point y such that

y € M" - [hl gi(N x [1; 4]) + Qi-I-Z] cM” - [gi(N X [1; 2]) + Qi-i-l + Qi+2] .
Let h, be a homeomorphism of M™ reducing to the identity on g;(N X [1, 2])+ Q;4;
and taking h, g;(4x;) onto y.

Define f; +1 B* - M™ as follows:
fl.,| B =g;|B" = £,
£, [Nx[1,4] = h,h,g, | Nx[1, 4]..

Now fl;; is a locally one-to-one map of B*, and it is one-to-one on N X [1, 4].
Since f; is at most i-to-one, f},; is at most (i + 1)-to-one. Clearly,

fi1(Int BY)D Q)+ -+ +Qyy;  and  f£iy)(4xy) ¢ Qiyp.
Let ¢ be a homeomorphism of B™ onto B*. Let f;11= f;+1 ¢, and let
X;,1 = ¢-1(4x;). This proves (P;y;). Q.E.D.
COROLLARY 1. w(S") = 3, whenever n> 2.

To see this, let Q; and Q3 be the upper and lower hemispheres of S™, respec-
tively, and let Qz be a flat cell in the interior of Q. Then the construction in the
above proof gives a local homeomorphism of R"™ onto S™ that is at most three-to-
one. Thus w(S™) < 3. By Theorem 2, w(S™) = 3.

COROLLARY 2. If M" is a compact triangulable n-manifold, then
w(M™) <n+1.

Brown and Rosen have proved [3] that such a manifold can be covered with n + 1
open cells.

COROLLARY 3. If M? is a compact 2-mamfold then W(M ) = 3, unless M
the projective plane P2%. Moreover, w(P2) = 2.

This follows from the triangulability of 2-manifolds, Corollary 2, and Theorem 2,

COROLLARY 4. If M" is a closed, connected, combinatovial n-manifold that is
geometrically [n/r] - connected (r > 3), then w(M™) < r.

This is a consequence of Theorem 3 and of Corollary 2 of [6].
COROLLARY 5. w(S" x 8™) = 3, whenever n, m > 1.

S™ x 8™ can be covered with three open cells. Apply Theorems 2 and 3.
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4. MANIFOLDS WITH BOUNDARY

By an n-manifold with boundary we mean a separable connected metric space
M" in which each point has an open neighborhood homeomorphic to an open subset of
R™-! x [0, ) and in which 9M™ # @. The boundary of M™ (3MP) is the set of all
points of M™ having no neighborhood homeomorphic to R™. The interior of M”"
(Int M™) is equal to M™ - 9M™, If oM™ is connected, then oM™ is an (n - 1)-mani-
fold. (Recall that our definition of manifold includes connectedness.)

THEOREM 4. If M™ is an n-manifold with nonempty connected boundary Mn'l,
then theve exists a local homeomorphism of R™-1 x [0, ©) onto M™.

Proof. We apply Theorem 1 to get a local homeomorphism ¢ of R™-1 onto
m2-1, we may assume that ¢ | Br-lisa homeomorphism. By [‘2] there exists a
homeomorphism F of m2-1x [0, 2) onto a neighborhood of M®~! in M™ such that
F(m, 0) = m for all m € M™-1, Define f': R®-1 x [0, 1] — M™ by setting
f'(x, t) = F(¢(x), t). Then f' is a locally one-to-one mapping, and f'| B®-1x [0, 1]
is a homeomorphism.

By a slight change in the proof of Lemma 1, we can conclude that there exists a
mapping £" of BP-1x [0, «) into M™ such that
£"| B 1 x[o, 1] = £'| B* ! x[o, 1],
£"(B™1 x (0, ©)) = It M™ = £"(B""! x (0, ),

and £" | B®-1 x [2i, 2i + 3] is a homeomorphism (i=0, 1, 2, ***).

Define f: (R™-1 x [0, 1]) + (B™-1 X [0, »)) - M™ by demanding that f agree with
f' and f" on their respective domains. Let g be a homeomorphism of R2-1 x [0, =)
onto (R™-! x [0, 1)) + B2-1 x [0, »)). Then y = fg is a local homeomorphism of
R™-1 x [0, ©) onto M*. Q.E.D. .
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