POSITIVE EIGENVECTORS OF
POSITIVE POLYNOMIAL OPERATORS ON BANACH SPACES

Ernest J. Eckert

1. In this note we use some results by M. A. Krasnoselskil [1] to obtain two
theorems on the existence of positive eigenvectors of positive polynomial operators
defined in a real Banach space E with a cone K. Applications to a differential equa-
tion and an integral equation are considered at the end of the paper.

A continuous operator P from a real Banach space E into itself is called a
polynomial of degree n if
AP'P(x) = 0 and  APP(x) % 0
for all h, x € E, where
1 k 1, k-1
AhP(X) = P(x+ h) -~ P(x) and AhP(x) = Ah(Ah P(x)) (k> 2).
A polynomial of degree n can be written uniquely as
P(x) = Uy(x) + Uy (x) + - + U (%),

where U (x) = Uf(x, ---, x) (k=1, ---, n) and Ui(x, , ---, %) is an operator from
E XE X .- XE into E that is additive and continuous in each variable x;

(i=1, 2, -+, k), and where Uy(x) is a constant vector in E [2]. The modulus | P||
of a polynomial is defined by ||P|| =sup {[[P(x)ll | Ixll < 1}.

A closed set K in E is called a cone if

(i) x € K implies Ax € K for each A > 0,
(ii) x €e K and y € K implies x+y € X,
(iii) x € K and x # 0 implies -x ¢ K.

An element x € E is called positive if x € K, and we write x > 0. The statement
X >y means that x -y € K.

An operator T from E into E is called positive (T > 0) if T(x) > 0 for each
x> 0. Avector u € E (u #0) is an eigenvector of an operator T if there exists a
number A such that T(u) = Au. The number A is called the eigenvalue of T corre-
sponding to the eigenvector u. We say that the set B of eigenvectors of T forms a
continuous branch of length r if for each positive number r; (r; <r) the intersec-
tion of B with the boundary I' of each open set containing the zero-vector and con-
tained in the sphere {x| |x| < r; + is nonempty.

Denoting by K, the set {x | x>0, x| < r}, we say that an operator A from
E to E is a monotonic mirnovant of an operator T on K, if

(a) x <y (x, y € E) implies A(x) < A(y),
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(b) A(x) < T(x) for each x € K.,

(c) there exist a vector u > 0 and two numbers ¢ > 0, ¥ > 0 such that
x - yu ¢ K for each x € K, and cA(tu) > tu (0 <t <v).

THEOREM 1. Let K be a cone in a veal Banach space E. Let
P(x) = U, (x) + Uz(x) 4 e + Un(x)

be a completely continuous polynomial of degrvee n from E to E with U; > 0

(i=1, 2, -=-, n). Assume that the linear term Uy has a positive eigenvector u with
a corresponding positive eigenvalue p such that Uy(u) = pu. Then the set of eigen-
vectors of P forms a continuous branch of infinite length in K.

Proof. Note first that U, being linear, satisfies Uj(x) < U;(y) whenever
x <y. From the positivity of each term of P it follows that P(x) > U;(x) for each
x € K.

Let r be a positive number, and let ¥ be a positive number such that x - yu ¢ K
for each x € K,.. Such a number y exists, for otherwise, there would exist, for each
v (no matter how large), a vector x € K, such that x - yu € K. But this would im-
ply that x -yu=u+x - (1 +y)u> 0, so that

1+'yu—>—u~1+'y

X5
since || x|| < r, we would (by letting y increase without bounds) get the contradiction
that 0 > u. Since

—1}IU1(tu)=tu for 0<t<y,

it follows that U; is a monotonic minorant of P on K,. Applying a theorem by
KrasnoselskiY [1, p. 268, Theorem 2.4], we conclude that the set B of eigenvectors
~ of P forms a continuous branch of length r in K. Since r is arbitrary, the asser-
tion of Theorem 1 follows.

We shall say that a positive linear operator A from E to E is ug-bounded if
there exists an element uy € K (uy # 0) such that for each nonzero x € K there
exist a positive integer n and positive numbers a, b such that aug < A™(x) < bug.
Krasnoselskif proved that a completely continuous ug-bounded operator has a unique
unit eigenvector u € K [1, p. 261, Theorem 2.2].

THEOREM 2. Let K be a cone in a rveal Banach space E, and let
P(x) = Uy(x) + Up(x) + +-+ + U, (x)

be a completely continuous polynomial of degree n from E to E with U; > 0
(i=1, 2, «--, n). Assume that the linear term Uj is ug-bounded and that there
exists a positive number & such that |U1(x)|| > 6 and || Un(x)| > 6 for each unit
vector x € K. Let u € K be the unique unit eigenvector of Uy, and |1 the corve-
sponding eigenvalue. Then the set of eigenvalues of P consists of the intevval

(1, ©) and possibly ..

Proof. Let B denote the infinite branch of eigenvectors of P in K whose
existence is asserted in Theorem 1. Since P(x) = Ax for x € B, with A = A(x) >0
depending continuously on x € B, we can write, for x # 0,
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® 3 = g 1200l - “ ul(ﬁ) + x| v, (u—iﬂ) s ”xlln-lUn("_iW) “

We show first that

(2) lim }\(X) =u,

=0, xen

Let {xn} be any sequence of vectors in B such that lim x = 0. Since com-
n— co

plete continuity of P implies complete continuity of U, , it follows that {xn} con-
tains a subsequence {x_} such that

. ( Xk
lim U){——=) =V
koeo  \[x

for some y € K which, by hypothesis, is not the zero-vector. Since by (1)
lim A(x,) = ||y||, it follows from

k— oo
- gil- bl
[zl vl MED =, | Iyl
_ 1 Uy Xk 1 N 1 P(Xk)-Ul(Xk)+ 1 v - 1
") N\ ) XD T A T [xg]] YEN A
1 Xx
=36 Ul(uxku)"’“
L S I D n-1y Xk _1 1
YES) "Xk"U"‘(llxkl|)+ + [ x| Un(llxkil "+ G “Y"‘"yu
. Xk y
that lim =
k—o x|yl

From the continuity of U; it now follows that U; (__“y ” ) =y, that is,
y
U, (y) = ||y|| y. Since U; has only one unit eigenvector in K, we conclude that
p'= |lyl, so that 1lim A(x.) = ., and (2) follows.

k — 0

In view of (1), we can write

PR (n—xn) o U(ﬁ)“
> b (o) || e o () + -+ o (D))

1 ]
> 5 6]x|™t,

AG) = |x[??
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for sufficiently large "x" , and consequently

(3) Lim AMx) = o,

x— 0 x€B

We now apply a result by Krasnoselskil [1, p. 274, Theorem 3.2], which states
that if (2) and (3) are satisfied, then the set of eigenvalues of P contains the interval
(1, o).

On the other hand, if @ > 0 is any eigenvalue of P, it follows from another re-
sult by Krasnoselskii [1, p. 278, Lemma 3.4] that @ > u. The theorem is proved.

2. As an application of Theorem 1, consider the differential equation
(4) y"+-71;(y+ay2) =0,

subject to the two-point boundary condition y(0) = y(1) = 0. Here a = a(t) is a non-
negative continuous function defined on 0 <t < 1. The equivalent integral equation
is

1
(5) j K(s, t) (y(t) + a(t)¥2 ) dt = ay(s),
0

where K(s, t) =s(l -t) for 0<s <t and K(s, t) =t(1 - s) for t<s < 1. If we let
E be the space of all continuous functions y(t) defined on 0 <t <1 with

y(0) = y(1) = 0, and with norm ||y| =sup {|y(t)| | 0<t <1}, and if K denotes the
cone {x € E| x(t) > 0}, then the left-hand member of (5) is a polynomial of degree
2 for which the conditions of Theorem 1 are satisfied. We write this polynomial in
the form

1 1
PY) = U,0)+ U, = | K, y®at+ | KGs, ha®yAt)at.
0 0

In K, the linear part U,(y) has the unit eigenvector u(t) = sin #t with corresponding
eigenvalue A = 1/1r2; Theorem 1 implies that the set of eigenvectors of P forms a
continuous branch B of infinite length in K.

We have shown that for each positive number « there exist a nonnegative con-
tinuous function ¢(t), defined on 0 <t <1 with || ¢|| = «a, and a positive number [
such that ¢(t) is a solution of (4) with X = y satisfying the condition ¢(0) = ¢(1) = 0.

As an application of Theorem 2, consider the integral equation
P(x)
(6)

U (x)+ Uy(x)+ -+ + U_(x)

1 1 1
(T xy6 vxwat+ § k06, 0x2@at+ -+ [k 6, D20 at = ax(6).
0 0 0

We let E be the space LI(Q, 1), and K the cone of nonnegative functions in E.
Under the assumption that the nonnegative kernels K{, K,, -+, K are continuous
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on the square 0<s,t <1 and that Ki(s,t)>6 (i=1,n; 0<s, t<1) for some
positive number 6, it follows that P is a completely continuous polynomial of de-
gree n, that U; >0 (i=1, 2, -=-, n), and that |Ui(x)|| > 6 (i =1, n) for each x € K
with ||x| = 1. If we take uyt) =1 and x € K, then the inequalities

8llxff = o Solx(t)dt < Sol Ki(s, t)x(t)dt < M ‘S: x(t)dt = M || x|,

where M = sup {Kl(s, t) | 0<s,t <1}, guarantee that U, is ug-bounded. All con-
ditions of Theorem 2 are now satisfied, and we conclude that (6) has a solution for
each A > pu, where p is the positive eigenvalue corresponding to the positive eigen-
vector of U, .
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