POSITIVE EIGENVECTORS OF POSITIVE POLYNOMIAL OPERATORS ON BANACH SPACES

Ernest J. Eckert

1. In this note we use some results by M. A. Krasnoselskii [1] to obtain two theorems on the existence of positive eigenvectors of positive polynomial operators defined in a real Banach space E with a cone K. Applications to a differential equation and an integral equation are considered at the end of the paper.

A continuous operator P from a real Banach space E into itself is called a polynomial of degree n if

$$\triangle_h^{n+1} P(x) = 0$$
 and $\triangle_h^n P(x) \neq 0$

for all h, $x \in E$, where

$$\triangle_h^1 P(x) = P(x+h) - P(x) \quad \text{and} \quad \triangle_h^k P(x) = \triangle_h^1 (\triangle_h^{k-1} P(x)) \quad (k \ge 2).$$

A polynomial of degree n can be written uniquely as

$$P(x) = U_0(x) + U_1(x) + \cdots + U_n(x),$$

where $U_k(x) = U_k^*(x, \cdots, x)$ $(k = 1, \cdots, n)$ and $U_k^*(x_1, \cdots, x_k)$ is an operator from $E \times E \times \cdots \times E$ into E that is additive and continuous in each variable x_i $(i = 1, 2, \cdots, k)$, and where $U_0(x)$ is a constant vector in E [2]. The modulus $\|P\|$ of a polynomial is defined by $\|P\| = \sup \big\{ \|P(x)\| \ \big| \ \|x\| \le 1 \big\}$.

A closed set K in E is called a cone if

- (i) $x \in K$ implies $\lambda x \in K$ for each $\lambda \geq 0$,
- (ii) $x \in K$ and $y \in K$ implies $x + y \in K$,
- (iii) $x \in K$ and $x \neq 0$ implies $-x \notin K$.

An element $x \in E$ is called *positive* if $x \in K$, and we write $x \ge 0$. The statement $x \ge y$ means that $x - y \in K$.

An operator T from E into E is called *positive* $(T \geq 0)$ if $T(x) \geq 0$ for each $x \geq 0$. A vector $u \in E$ $(u \neq 0)$ is an *eigenvector* of an operator T if there exists a number λ such that $T(u) = \lambda u$. The number λ is called the *eigenvalue* of T corresponding to the eigenvector u. We say that the set B of eigenvectors of T forms a continuous branch of length r if for each positive number r_1 $(r_1 < r)$ the intersection of B with the boundary Γ of each open set containing the zero-vector and contained in the sphere $\{x \mid \|x\| \leq r_1\}$ is nonempty.

Denoting by K_r the set $\{x \mid x \geq 0, \ \|x\| \leq r\}$, we say that an operator A from E to E is a *monotonic minorant* of an operator T on K_r if

(a)
$$x \le y$$
 (x, y \in E) implies $A(x) \le A(y)$,

Received May 7, 1965.

This paper is based on a portion of the author's doctoral thesis written under the direction of Professor D. H. Hyers at the University of Southern California.

- (b) $A(x) \leq T(x)$ for each $x \in K_r$,
- (c) there exist a vector $u \ge 0$ and two numbers c > 0, $\gamma > 0$ such that $x \gamma u \notin K$ for each $x \in K_r$ and $cA(tu) \ge tu$ $(0 < t < \gamma)$.

THEOREM 1. Let K be a cone in a real Banach space E. Let

$$P(x) = U_1(x) + U_2(x) + \cdots + U_n(x)$$

be a completely continuous polynomial of degree n from E to E with $U_i \geq 0$ (i = 1, 2, ..., n). Assume that the linear term U_1 has a positive eigenvector u with a corresponding positive eigenvalue μ such that $U_1(u) = \mu u$. Then the set of eigenvectors of P forms a continuous branch of infinite length in K.

Proof. Note first that U_1 , being linear, satisfies $U_1(x) \le U_1(y)$ whenever $x \le y$. From the positivity of each term of P it follows that $P(x) \ge U_1(x)$ for each $x \in K$.

Let r be a positive number, and let γ be a positive number such that $x - \gamma u \notin K$ for each $x \in K_r$. Such a number γ exists, for otherwise, there would exist, for each γ (no matter how large), a vector $x \in K_r$ such that $x - \gamma u \in K$. But this would imply that $x - \gamma u = u + x - (1 + \gamma)u > 0$, so that

$$\frac{1}{1+\gamma} u \ge u - \frac{1}{1+\gamma} x;$$

since $\|x\| \le r$, we would (by letting γ increase without bounds) get the contradiction that $0 \ge u$. Since

$$\frac{1}{\mu}$$
 U₁(tu) = tu for $0 \le t < \gamma$,

it follows that U_1 is a monotonic minorant of P on K_r . Applying a theorem by Krasnoselskii [1, p. 268, Theorem 2.4], we conclude that the set B of eigenvectors of P forms a continuous branch of length r in K. Since r is arbitrary, the assertion of Theorem 1 follows.

We shall say that a positive linear operator A from E to E is u_0 -bounded if there exists an element $u_0 \in K$ ($u_0 \neq 0$) such that for each nonzero $x \in K$ there exist a positive integer n and positive numbers a, b such that $au_0 \leq A^n(x) \leq bu_0$. Krasnoselskii proved that a completely continuous u_0 -bounded operator has a unique unit eigenvector $u \in K$ [1, p. 261, Theorem 2.2].

THEOREM 2. Let K be a cone in a real Banach space E, and let

$$P(x) = U_1(x) + U_2(x) + \cdots + U_n(x)$$

be a completely continuous polynomial of degree n from E to E with $U_i \geq 0$ (i = 1, 2, ..., n). Assume that the linear term U_1 is u_0 -bounded and that there exists a positive number δ such that $\|U_1(x)\| \geq \delta$ and $\|U_n(x)\| \geq \delta$ for each unit vector $x \in K$. Let $u \in K$ be the unique unit eigenvector of U_1 , and μ the corresponding eigenvalue. Then the set of eigenvalues of P consists of the interval (μ, ∞) and possibly μ .

Proof. Let B denote the infinite branch of eigenvectors of P in K whose existence is asserted in Theorem 1. Since $P(x) = \lambda x$ for $x \in B$, with $\lambda = \lambda(x) > 0$ depending continuously on $x \in B$, we can write, for $x \neq 0$,

$$(1) \quad \lambda(x) = \frac{1}{\|x\|} \|P(x)\| = \|U_1\left(\frac{x}{\|x\|}\right) + \|x\| U_2\left(\frac{x}{\|x\|}\right) + \dots + \|x\|^{n-1} U_n\left(\frac{x}{\|x\|}\right)\|.$$

We show first that

(2)
$$\lim_{\|\mathbf{x}\| \to 0, \ \mathbf{x} \in \mathbf{B}} \lambda(\mathbf{x}) = \mu,$$

Let $\{x_n\}$ be any sequence of vectors in B such that $\lim_{n\to\infty}x_n=0$. Since complete continuity of P implies complete continuity of U_1 , it follows that $\{x_n\}$ contains a subsequence $\{x_k\}$ such that

$$\lim_{k \to \infty} U_1 \left(\frac{x_k}{\|x_k\|} \right) = y$$

for some $y \in K$ which, by hypothesis, is not the zero-vector. Since by (1) $\lim_{k \to \infty} \lambda(x_k) = \|y\|$, it follows from

$$\begin{split} \left\| \frac{\mathbf{x}_{k}}{\|\mathbf{x}_{k}\|} - \frac{\mathbf{y}}{\|\mathbf{y}\|} \right\| &= \left\| \frac{1}{\lambda(\mathbf{x}_{k})} \frac{\mathbf{P}(\mathbf{x}_{k})}{\|\mathbf{x}_{k}\|} - \frac{\mathbf{y}}{\|\mathbf{y}\|} \right\| \\ &= \left\| \frac{1}{\lambda(\mathbf{x}_{k})} \mathbf{U}_{1} \left(\frac{\mathbf{x}_{k}}{\|\mathbf{x}_{k}\|} \right) - \frac{1}{\lambda(\mathbf{x}_{k})} \mathbf{y} + \frac{1}{\lambda(\mathbf{x}_{k})} \frac{\mathbf{P}(\mathbf{x}_{k}) - \mathbf{U}_{1}(\mathbf{x}_{k})}{\|\mathbf{x}_{k}\|} + \frac{1}{\lambda(\mathbf{x}_{k})} \mathbf{y} - \frac{1}{\|\mathbf{y}\|} \mathbf{y} \right\| \\ &\leq \frac{1}{\lambda(\mathbf{x}_{k})} \left\| \mathbf{U}_{1} \left(\frac{\mathbf{x}_{k}}{\|\mathbf{x}_{k}\|} \right) - \mathbf{y} \right\| \\ &+ \frac{1}{\lambda(\mathbf{x}_{k})} \left\| \|\mathbf{x}_{k}\| \mathbf{U}_{2} \left(\frac{\mathbf{x}_{k}}{\|\mathbf{x}_{k}\|} \right) + \dots + \|\mathbf{x}_{k}\|^{n-1} \mathbf{U}_{n} \left(\frac{\mathbf{x}_{k}}{\|\mathbf{x}_{k}\|} \right) \right\| + \left| \frac{1}{\lambda(\mathbf{x}_{k})} - \frac{1}{\|\mathbf{y}\|} \right\| \|\mathbf{y}\| \end{split}$$

that $\lim_{k \to \infty} \frac{x_k}{\|x_k\|} = \frac{y}{\|y\|}$.

From the continuity of U_1 it now follows that $U_1\left(\frac{y}{\|y\|}\right) = y$, that is, $U_1(y) = \|y\| y$. Since U_1 has only one unit eigenvector in K, we conclude that $\mu = \|y\|$, so that $\lim_{k \to \infty} \lambda(x_k) = \mu$, and (2) follows.

In view of (1), we can write

$$\begin{split} \lambda(\mathbf{x}) &= \|\mathbf{x}\|^{n-1} \left\| \frac{1}{\|\mathbf{x}\|^{n-1}} \, U_1 \left(\frac{\mathbf{x}}{\|\mathbf{x}\|} \right) + \dots + U_n \left(\frac{\mathbf{x}}{\|\mathbf{x}\|} \right) \right\| \\ &\geq \|\mathbf{x}\|^{n-1} \left(\left\| U_n \left(\frac{\mathbf{x}}{\|\mathbf{x}\|} \right) \right\| - \left\| \frac{1}{\|\mathbf{x}\|^{n-1}} \, U_1 \left(\frac{\mathbf{x}}{\|\mathbf{x}\|} \right) + \dots + \frac{1}{\|\mathbf{x}\|} \, U_{n-1} \left(\frac{\mathbf{x}}{\|\mathbf{x}\|} \right) \right\| \right) \\ &\geq \frac{1}{2} \, \delta \, \|\mathbf{x}\|^{n-1} \,, \end{split}$$

for sufficiently large $\|x\|$, and consequently

(3)
$$\lim_{x\to\infty, x\in B} \lambda(x) = \infty.$$

We now apply a result by Krasnoselskii [1, p. 274, Theorem 3.2], which states that if (2) and (3) are satisfied, then the set of eigenvalues of P contains the interval (μ, ∞) .

On the other hand, if $\alpha > 0$ is any eigenvalue of P, it follows from another result by Krasnoselskii [1, p. 278, Lemma 3.4] that $\alpha \ge \mu$. The theorem is proved.

2. As an application of Theorem 1, consider the differential equation

(4)
$$y'' + \frac{1}{\lambda} (y + ay^2) = 0,$$

subject to the two-point boundary condition y(0) = y(1) = 0. Here a = a(t) is a non-negative continuous function defined on $0 \le t \le 1$. The equivalent integral equation is

(5)
$$\int_0^1 K(s, t) (y(t) + a(t) y^2(t)) dt = \lambda y(s),$$

where K(s, t) = s(1 - t) for $0 \le s \le t$ and K(s, t) = t(1 - s) for $t \le s \le 1$. If we let E be the space of all continuous functions y(t) defined on $0 \le t \le 1$ with y(0) = y(1) = 0, and with norm $||y|| = \sup\{|y(t)| \mid 0 \le t \le 1\}$, and if K denotes the cone $\{x \in E \mid x(t) \ge 0\}$, then the left-hand member of (5) is a polynomial of degree 2 for which the conditions of Theorem 1 are satisfied. We write this polynomial in the form

$$P(y) = U_1(y) + U_2(y) = \int_0^1 K(s, t) y(t) dt + \int_0^1 K(s, t) a(t) y^2(t) dt.$$

In K, the linear part $U_1(y)$ has the unit eigenvector $u(t) = \sin \pi t$ with corresponding eigenvalue $\lambda = 1/\pi^2$; Theorem 1 implies that the set of eigenvectors of P forms a continuous branch B of infinite length in K.

We have shown that for each positive number α there exist a nonnegative continuous function $\phi(t)$, defined on $0 \le t \le 1$ with $\|\phi\| = \alpha$, and a positive number μ such that $\phi(t)$ is a solution of (4) with $\lambda = \mu$ satisfying the condition $\phi(0) = \phi(1) = 0$.

As an application of Theorem 2, consider the integral equation

$$P(x) = U_1(x) + U_2(x) + \cdots + U_n(x)$$

$$= \int_0^1 K_1(s, t) x(t) dt + \int_0^1 K_2(s, t) x^2(t) dt + \cdots + \int_0^1 K_n(s, t) x^n(t) dt = \lambda x(s).$$

We let E be the space $L^1(0, 1)$, and K the cone of nonnegative functions in E. Under the assumption that the nonnegative kernels K_1, K_2, \dots, K_n are continuous

on the square $0 \le s$, $t \le 1$ and that $K_i(s,t) \ge \delta$ ($i=1,n; 0 \le s, t \le 1$) for some positive number δ , it follows that P is a completely continuous polynomial of degree n, that $U_i \ge 0$ ($i=1,2,\cdots,n$), and that $\|U_i(x)\| \ge \delta$ (i=1,n) for each $x \in K$ with $\|x\| = 1$. If we take $u_0(t) \equiv 1$ and $x \in K$, then the inequalities

$$\delta \|x\| = \delta \int_0^1 x(t) dt \le \int_0^1 K_1(s, t) x(t) dt \le M \int_0^1 x(t) dt = M \|x\|,$$

where $M = \sup \{K_1(s,t) \mid 0 \le s, t \le 1\}$, guarantee that U_1 is u_0 -bounded. All conditions of Theorem 2 are now satisfied, and we conclude that (6) has a solution for each $\lambda > \mu$, where μ is the positive eigenvalue corresponding to the positive eigenvector of U_1 .

REFERENCES

- 1. M. A. Krasnoselskii, Topological methods in the theory of nonlinear integral equations, The Macmillan Company, New York, 1964.
- 2. S. Mazur and W. Orlicz, Grundlegende Eigenschaften der polynomischen Operationen, Studia Math. 5 (1934), 50-68 and 179-189.

University of Southern California and California State College at Los Angeles