MONOTONE FUNCTIONS AND CONVEX FUNCTIONS

Togo Nishiura and Franz Schnitzer

In their note [1], A. S. Besicovitch and R. O. Davies prove the following interesting theorem concerning monotone functions of a real variable.

THEOREM. Let f be a real-valued, nonnegative, continuous, monotone function defined on $I=[0,\,1].$ Then there exist two convex functions g_1 and g_2 on I such that $0\leq g_1\leq f\leq g_2$ and

$$2 \int_0^1 g_1 dx \ge \int_0^1 f dx \ge \frac{1}{2} \int_0^1 g_2 dx.$$

Furthermore, the constants 2 and 1/2 are best possible.

In the present note, we extend this theorem to functions that are monotone on I^n , the n-fold cartesian product of I. Of course, the constants involved will depend upon n. The extension is an immediate corollary of Theorem A below, which concerns the measure of a certain family of subsets of euclidean n-space. The present proof is not an extension of that in [1], and in a sense it is better, since it avoids a transfinite construction.

1. THE STATEMENT OF THE MAIN THEOREM.

By R we mean the real numbers, and by P the nonnegative real numbers. $X^n = X \times \cdots \times X$ will denote the n-fold cartesian product of a set X.

For each point $x = (x^1, x^2, \dots, x^n) \in P^n$, let

$$B_n(x) = \{ y \in R^n | 0 \le y^i < x^i (i = 1, 2, \dots, n) \},$$

 $\mathcal{M}_n = \{M \subset \mathbb{R}^n \mid M \text{ is a bounded open set such that } \}$

$$x~\in~M~\cap~P^n~implies~B_n(x) \subset M\,\big\}$$
 .

We shall partially order R^n by agreeing that $x \ge 0$ if and only if $x^i \ge 0$ ($i = 1, 2, \dots, n$). For each point $x \in R^n$ such that $x^i > 0$ ($i = 1, 2, \dots, n$), we let

$$K_n(x) = \{ y \in \mathbb{R}^n \mid \sum_{i=1}^n (y^i/x^i) \ge n \}.$$

Corresponding to each $M \in \mathcal{M}_n$, we define three sets $O_n(M)$, $C_n(M)$, and $H_n(M)$ as follows:

Received June 8, 1965.

The first author was supported by National Science Foundation Research Grant GP 3834.

$$O_n(M) = P^n \cap M$$

 $C_n(M) = P^n \setminus (closed convex hull of P^n \setminus M),$

 $H_n(M) = P^n \setminus \bigcap K_n(x)$, where the intersection is taken over all x in the interior of $O_n(M)$.

By m_n [·] we denote Lebesgue measure on R^n .

THEOREM A. If $M \in \mathcal{M}_n$, then

$$C_n(M) \subseteq O_n(M) \subseteq H_n(M) \quad \text{ and } \quad n! \; m_n[C_n(M)] \geq m_n[O_n(M)] \geq \frac{n!}{n^n} \; m_n[H_n(M)] \, .$$

Furthermore, the constants n! and n!/n are best possible.

COROLLARY. Let $f\colon I^n\to R$ be such that $f\geq 0$ and f(x+h) - $f(x)\geq 0$ for $h\geq 0$ and $x+h\in I^n$. Then there exist two convex functions g_1 and g_2 such that

$$0 \le g_1 \le f \le g_2 \quad \text{and} \quad (n+1)! \int g_1 dx \ge \int f dx \ge \frac{n!}{(n+1)^n} \int g_2 dx.$$

Furthermore, the constants are best possible.

The corollary follows easily from Theorem A, which will be proved in the next section. We remark that the convex function g_2 of the corollary need not be continuous at points $x \in I^n$ with $x^i = 1$ for some $i = 1, 2, \dots, n$. If f is continuous, then g_2 can be chosen continuous also.

2. PROOF OF THEOREM A

If $X \subset \mathbb{R}^n$ and $t \in \mathbb{R}$, we write

$$S(X, t, n) = \{(x^1, x^2, \dots, x^{n-1}) \mid (x^1, x^2, \dots, x^{n-1}, t) \in X\}.$$

LEMMA 1. For each $M \in \mathcal{M}_n$ we have the relation $S(M, t, n) \in \mathcal{M}_{n-1}$. Furthermore, $S(O_n(M), t, n) = O_{n-1}(S(M, t, n))$.

For each measurable set $A \subseteq R^{n-1}$ and for a < b, we let $D_n(A, a, b) = A \times [a, b)$. Clearly, $m_n[D_n(A, a, b)] = m_n[D_n(A, 0, b - a)] = (b - a) m_{n-1}[A]$. Next, suppose A is a measurable subset of P^{n-1} and r > 0. Then we let

$$E_n(A, r) = \{(x, y) \in P^{n-1} \times P \mid \exists \bar{x} \in A \text{ and } t \in R \text{ such that } \}$$

$$(x, y) = t(\bar{x}, 0) + (1 - t)(0, r)$$

and

$$\mathbf{F}_{\mathbf{n}}(\mathbf{A}, \mathbf{r}) = \left\{ (\mathbf{x}, \mathbf{y}) \in \mathbf{P}^{\mathbf{n}-1} \times \mathbf{P} \mid \exists \ \bar{\mathbf{x}} \in \mathbf{A} \text{ and } \mathbf{t} \in \mathbf{R} \text{ such that} \right.$$

$$(\mathbf{x}, \mathbf{y}) = \mathbf{t}(\bar{\mathbf{x}}, \mathbf{r}) + (1 - \mathbf{t})(0, \mathbf{nr}) \right\}.$$

A simple calculation shows that

$$m_n[\dot{E}_n(A, r)] = \frac{1}{n} m_n[D_n(A, 0, r)] = \frac{r}{n} m_{n-1}[A]$$

and

$$m_n[F_n(A, r)] = \left(\frac{n}{n-1}\right)^{n-1} m_n[D_n(A, 0, r)] = \left(\frac{n}{n-1}\right)^{n-1} r m_{n-1}[A].$$

Finally, let A_1 , A_2 , ..., A_k be subsets of P^n . Then $\bigoplus_{i=1}^k A_i \equiv A_1 \oplus A_2 \oplus \cdots \oplus A_k$

is defined to be the set of points (x^1, x^2, \dots, x^n) in P^n with the following property: For some nonempty subset J of $\{1, 2, \dots, k\}$, there exist points

$$(x^1, x^2, \dots, x^{n-1}, x_i^n) \in A_i$$

with i ε J, such that $0 \leq x^n < \sum_{i \, \varepsilon \, J} \, x_i^n$.

The proof of the following lemma is easy, and we omit it.

LEMMA 2. (1) Suppose $M_i \in \mathcal{M}_n$ (i = 1, 2, ..., k). Then

$$m_n \begin{bmatrix} k \\ \bigoplus_{i=1}^k O_n(M_i) \end{bmatrix} = \sum_{i=1}^k m_n [O_n(M_i)].$$

(2) Suppose $M \in \mathcal{M}_{n-1}$. Then

$$E_n(O_{n-1}(M), r) \subset D_n(O_{n-1}(M), 0, r) \subset F_n(O_{n-1}(M), r).$$

We are now ready to prove Theorem A. The inclusion relations are easily verified, since the elements M of \mathcal{M}_n are open sets. The remainder of the proof is by induction. The theorem is obvious when n = 1. Let us assume the theorem is true for n - 1, and let $M \in \mathcal{M}_n$. We assume $O_n(M) \neq \square$, for otherwise the conclusion is obvious. Let

L =
$$\sup \{t \in R \mid (x^1, x^2, \dots, x^{n-1}, t) \in O_n(M)\}$$
.

Then $0 < L < \infty$. Let N be a fixed positive integer, and for each integer i, let $A_i = S(O_n(M), \frac{i}{N} L, n)$. Clearly,

$$\begin{split} \bigoplus_{i\geq 1} D_n\left(A_i, 0, \frac{L}{N}\right) &= \bigcup_{i\geq 1} D_n\left(A_i, \frac{i-1}{N} L, \frac{i}{N} L\right) \subset O_n(M) \\ &\subset \bigcup_{i\geq 0} D_n\left(A_i, \frac{i}{N} L, \frac{i+1}{N} L\right) = \bigoplus_{i\geq 0} D_n\left(A_i, 0, \frac{L}{N}\right). \end{split}$$

Furthermore,

$$\begin{split} \lim_{N \to \infty} \sum_{i \ge 1} \ m_n \bigg[D_n \Big(A_i, \frac{i-1}{N} L, \frac{i}{N} L \Big) \bigg] &= m_n [O_n(M)] \\ &= \lim_{N \to \infty} \sum_{i \ge 0} \ m_n \bigg[D_n \Big(A_i, \frac{i}{N} L, \frac{i+1}{N} L \Big) \bigg]. \end{split}$$

The sets $E_n\left(C_{n-1}(A_i), \frac{L}{N}\right)$ have the property

$$\bigoplus_{i \geq 1} \ E_n\left(C_{n-1}(A_i), \frac{L}{N}\right) \subset \bigoplus_{i \geq 1} \ D_n\left(C_{n-1}(A_i), \ 0, \frac{L}{N}\right) \subset O_n(M).$$

Also, $P^n \setminus \bigoplus_{i \geq 1} E_n\left(C_{n-1}(A_i), \frac{L}{N}\right)$ is a closed convex set containing $P^n \setminus M$. Hence,

$$C_n(M) \supset \bigoplus_{i \geq 1} E_n(C_{n-1}(A_i), \frac{L}{N}).$$

Since

$$\begin{split} m_n \bigg[& E_n \bigg(C_{n-1}(A_i), \frac{L}{N} \bigg) \bigg] &= \frac{N}{nL} \; m_{n-1} \left[C_{n-1}(A_i) \right] \geq \frac{N}{Ln!} \; m_{n-1} \left[A_i \right] \\ &= \frac{1}{n!} \; m_n \bigg[\; D_n \bigg(A_i, \frac{i-1}{N} \; L, \frac{i}{N} \; L \bigg) \, \bigg] \end{split}$$

for all i and N, we conclude that $m_n[C_n(M)] \ge \frac{1}{n!} m_n[O_n(M)]$.

Next we consider the sets $F_n\left(H_n(A_i),\frac{L}{N}\right)$. Suppose $(x^1,\,x^2,\,\cdots,\,x^{n-1},\,x^n)$ is an interior point of $O_n(M)$. Then $S(B_n(x),\,t,\,n)\subset S(O_n(M),\,t,\,n)$. Hence

$$P^{n-1} \setminus K_{n-1}(x^1, x^2, \dots, x^{n-1}) \subset H_{n-1}(S(O_n(M), t, n))$$

whenever $x^n > t$. A simple calculation shows that

$$\mathbf{P}^{n}\setminus K_{n}(\mathbf{x})\subset \bigoplus_{i>0} F_{n}\left(H_{n-1}(A_{i}),\frac{L}{N}\right).$$

Since

$$\begin{split} m_{n} \left[F_{n} \left(H_{n-1}(A_{i}), \frac{L}{N} \right) \right] &= \left(\frac{n}{n-1} \right)^{n-1} \frac{N}{L} m_{n-1} [H_{n-1}(A_{i})] \\ &\leq \left(\frac{n}{n-1} \right)^{n-1} \frac{N}{L} \frac{(n-1)^{n-1}}{(n-1)!} m_{n-1} [A_{i}] = \frac{n^{n}}{n!} m_{n} \left[D_{n} \left(A_{i}, \frac{i}{N} L, \frac{i+1}{N} L \right) \right] , \end{split}$$

we see that

$$m_n \left[\bigoplus_{i \geq 0} F_n \left(H_{n-1}(A_i), \frac{L}{N} \right) \right] \leq \frac{n^n}{n!} m_n \left[\bigoplus_{i \geq 0} D_n \left(A_i, \frac{i}{N} L, \frac{i+1}{N} L \right) \right]$$

for every N. Also,

$$H_n(M) = \bigcup (P^n \setminus K_n(x)) \subset \bigoplus_{i>0} F_n(H_{n-1}(A_i), \frac{L}{N})$$

for every N, where the union is taken over all interior points x of $O_n(M)$. Thus we have shown that $m_n[H_n(M)] \leq \frac{n^n}{n!} \, m_n[O_n(M)]$, and the induction is complete.

To see that the constants are best possible, we need only consider the set $M=\left\{x\mid x\in R^n, \left|x^i\right|<1\ (i=1,\,2,\,\cdots,\,n)\right\}$.

REFERENCE

1. A. S. Besicovitch and R. O. Davies, Two problems on convex functions, Math. Gaz. 49 (1965), 66-69.

Wayne State University