THE GENERALIZED BIEBERBACH CONJECTURE
FOR SUBORDINATE FUNCTIONS

M. S. Robertson

1. INTRODUCTION

The Bieberbach conjecture is the assertion that for the class S of functions

(1.1) F(z) = 27 A z"

n=1

that are regular and schlicht in the unit disk E(z: |z| < 1), the Taylor coefficients
satisfy the inequality

(1.2) A, | <nla;] (=2 3, ).
For n = 2, 3, and 4, this conjecture is known to be correct for all F € S, and it
has been established for all n in the following special cases:
(i) F(z) is real on the real axis [2], [9],
(ii) F(z) maps E onto a domain starlike with respect to the origin [5],
(iii) F(z) maps E onto a spirallike domain [11],
(iv) F(z) maps E onto a domain convex in one direction [7],

(v) F(z) maps E onto a domain D starlike with respect to a point wg (in or
outside of D); that is, D is composed of segments of straight lines through wq, with
at most one segment on each line [1],

(vi) F(z) is close-to-convex in E [6].

Cases (ii) and (iv) are contained in case (vi), but they were treated earlier. Case
(iii), and case (v) when wg is outside D, are not included in case (vi).

If the analytic function
o0
(1.3) f(z) = 27 ayz™  (|z] < 1)
n=1

is merely regular (not necessarily schlicht) in E, and in E takes no value omitted
by the schlicht function F(z) of (1.1), then we say that f(z) is subordinate to F(z) in
E, and we write f(z) << F(z). In this situation there exists a bounded analytic func-
tion w(z), regular and satisfying in E the relations

w(0) = 0, |w(z)| < |z| <1,
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for which f(z) = F(w(z)) [4].

Following W. Rogosinski [10], we call generalized Bieberbach conjecture the
proposition that when f(z) < F(z) and F(z) is schlicht, then
(1.4) la,] <nla;] (m=1,2, ).

This proposition is known to be true [4] for n = 1, 2, and for the two cases (i) and (ii)
mentioned above [10]. Since each function F(z) is subordinate to itself, (1.4) implies
(1.2).

It is the primary purpose of this note to show that the generalized Bieberbach
conjecture is correct for all n, in the more general case (vi). In this situation,
there exists a schlicht function

(1.5) #z) = 22 a_z™ (Ja;] =1, |z] < 1)

n=1

that maps E onto a convex domain and for which

(1.6) 9 {g_:g%} >0 (zeE).

The equality sign in (1.6) can occur only in the trivial case F(z) = +iC¢(z) (C > 0),
that is, when F(z) maps aonto a convex domain. For n > 1, equality in (1.4) is
attained only when F(z) = ?1 K(ez), where |8| =1 and K(z) = z(1 - z)-z.

Even if F(z) is not schlicht, f(z) may still be subordinate to F(z), with

f(z) = Flw(z)). We shall show that in this situation (1.4) holds for a wide class of
functions of the form

2T . .
(1.7) F(z) = i et g@zelYdalt) (z € E),

where g(z) is schlicht and close-to-convex in E, and where «(t) is any nondecreas-
ing function on [0, 27}, normalized so that-

2m
S doa(t) = 1.
0

We also note that W. Rogosinski [10] has shown that
(1.8) lan] < 1yl (m=1,2, )

if £(z) << F(z), where F(z), given by (1.1), is schlicht and maps E onto a convex
domain.

We shall extend (1.8) to the case where F(z) is real on the real axis and maps E
onto a domain D convex. in the direction of the imaginary axis; that is, where the
domain D is comprised of vertical line segments with at most one segment on each
vertical line. In such a case, D is obviously symmetric about the real axis, since
F(z) is real on the real axis.
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The question whether (1.4) is also correct for the cases (iii) and (v), mentioned
earlier, remains open.

2. PROOFS OF THEOREMS

[+e]
THEOREM 1. Let F(z) = El A_z" be rvegular and schlicht in E(z: |z| < 1),
oC
and close-to-convex velative to a schlicht function ¢(z) = El dhzn (Idll = 1) that

o0
maps E onto a convex domain. Let £(z) = ES anz (ag # 0) be regular and sub-
ovdinate to ¥(z) in E. Then theve exists an analytic function g(z), regular and
subovdinate to ¢(z) in E, for which the function £'(z)/g'(z) is vegular and has a
positive real parvt in E. Fuvthermove,

o) < [n-SE=D ] 04y <nla] @)

If |la,| =n|A,| for a particular n> 1, then

s=1, |a,| =n|A{| forall n, anrd £(z) = F(nz),
where
F(z)=A1z(1-f:z)'2 and In] = el =1.

Proof. Since f(z) << F(z), we can write f(z) = F(w(z)), where

(2.1) w(z) = ? o, z", lw(z)| < lz] < 1, o, #0.
Also,

F'(z)
(2.2) 9:{—(”,2 } >0 (lz] <1).

W. Kaplan has shown [3] that w = F(z) maps each circle |z| =r <1 onto a contour
with a continuously turning tangent that never turns back on itself through an angle
larger than 7 radians.

Using the function w(z) defined in (2.1), we let
[=e]
(2.3) g(z) = ¢w(z)) = 20 Buz".
n=s

Since g(z) < ¢(z) and ¢(z) maps E onto a convex domain, we have from (1.8) the
inequalities

(2.4) | Ba| < lda;| =1 n=s, s+1, --).
From the equation g(z) = ¢(w(z)) we deduce that s = dj g, sothat |Bs]| = |eg].

Again, since f(z) = F(w(z)), we see that ag= Ajag, where A; #0, ag # 0. Thus
oy #0, Bg#0, and
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2s
Bs

We write ag/Bs = Ay e'? (0 <y < 2rm). Since

ag

a. | = |a,] 0.

f'(z) = F'(w(z)) w'(z) and g'(z) = ¢"(w(z)) w'(z),

and since F' and ¢' have no zeros in E, the functions f' and g' have no zeros ex-
cept the zeros of w'. Consequently, the function

f'(z) _ F'(w(z))
g'(z) ¢'(w(z))

is regular in E, and by (2.2) its real part is nonnegative in E. It follows further that
the function P(z), defined by the relation

(2.5) fg',_‘(zz)j = |A,| (i siny + cos v - P(z))

if cos ¥ > 0 and by the relation P(z) =1 if cos ¥ = 0, is regular in E, with P(0) = 1.
Setting z = 0 in (2.5), we see that

£(0) _ 2s _ iy _ 1 f'(O)}
='(0) B, |A1|e s Ccos lA1’ E)I{g,(o) > 0,

and therefore % P(z) > 0 in E. Let

o0
P(z) = % Prz”  (pg=1).
Since % P(z) > 0 in E, we have the inequality Ipnl <2 for n=1, 2, ---. By (2.5),
[>e] o0 . o0
27 na z" = |A,] [e17+ cos y+ 2o pkzk] [Z} mﬁmzm:l,
n=s 1 m=s
whence ag = |A;| €78, |ag| < |Ay], and

na, = |A;{|[ng, e” + cosy - {(n - 1)8,.1p1+ M -2)8, ,p, +"+8B,p, 1]

Since |Bm| <lfor m=s,s+1, >, n, and kal <2fork=12 -, n-s, we
deduce that for n> s

nla | < |Aj|[n+2cosy-{s+(s-1)++@m-1)}]

< |[A)lln+cosy-{n(n-1)-s(s - 1)}],

IN

-1
lag) < [n-2E=D ] ja)] <nlay]l @29
For n> 1, the relation |a,| =n|A;| can hold only if ¥ =0, |pix| = 2 for
k=1,2,--,n-1 and || =1 for m=1, 2, ---, n. In this case (see [10, p. 70]),
w = ¢(z) maps E onto a half-plane and
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d z
o) = v———, la;| = || = 1.

EZ

Since
€ € 3 Z
a; g(z) '<d—l $z) << 75>
we have the inequality

m{%ig(z)+1} >0 (lz] <1).
1

Therefore |BII =1 only if g(z) has the form given by

2e _ 147z _
g e@ 1= 150 (In} =1,
that is,
£ . nz
_(i—zg(z)_ l_nz'

Furthermore, when n> 1 we must have |p1| = 2 in order to obtain |an| =n |A1| .
Consequently,

P(z)=—i—f—§;, (|s|=1).

However, !anl =n |A1| only when B,, Bnh_1P1, °°*s B1Pn.1 all have the same
amplitude. Hence 1 =¢. In this case g'(z) = d;(1 - £z)-2.
For n>1 and |a,| =n|A,|, (2.5) reduces to

£'(z) B . _ |A1|d1(1+sz)
m = IAll P(Z), f'(z) = a- 82)3 s

f(Z) = aIZ(l - SZ)-Z, al = |A1|d1, lall = IAll -

The conditions [a;| = |A;| and £ < F imply that F(z) = £(71z) for some 7
(In|=1). Thus |a,| =n|A;| for some n> 1 only if F(z) is of the form

Azl - ei®z)-2 (a real), in which case Ianl =n |A1| for all n and f(z) = F(nz),
where I'n | = 1. This completes the proof of Theorem 1.

The following is an extension of Theorem 1.

[~ o]
THEOREM 2. Let u(z) = 21 cn,2z™ be vegular, schlicht, and close-to-convex in
E(z: |z| < 1). Let a(t) be a real function, nondecreasing in [0, 2], and normalized

27
so that da(t)= 1. Let

0

0
2T )
F(z) = 2o A z" = S et u(etz)dat), A= c; 0.
1
()

Let f(z) = 21 a, 2" < F(z) in E. Then ]an|_<_ n|A1| n=1, 2, -=-).
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Proof. 1(z) = F(w(z)), where
w(z) = 2J a z° and |w(z)| < |z| < 1.
1

If we write

[w(z)]k= 2 aflk) z,

n=k
then

f(z) = 22 Ak[w(z)]k, a, = 22 ozflk)Ak.
k=1

k=1

Let h(z) = p(eltw(z)) = 2;0 b, z™. Then

h(z) < pleitz) = 27 c_ el®tz?, b, = 27 agk) (ceikt).
1 k=1

Since h(z) <u(z) and pu(z) is close-to-convex in E, it follows from Theorem 1 that
]bnl <n|e 1|. Hence

n
E Cekt

k=1

Snlcll =n|A1|,

27 X
A =ckS e(k"l)ltda(t),

= T s - SZ?T [ > agk)ckeikt}e-itda(t)’

k=1 0 k=1

2T
lanl < §
0

This completes the proof of Theorem 2.

n
k). ikt
Z) a]g )Cke
k=1

27
da(t) < n|A,| S da(t) = n|A,].
0

We shall now extend Rogosinski’s result.

[+0]
THEOREM 3. Let F(z) = Z;l A, z" be vegular in E and veal on the veal axis,
and let it map E onto a domain D convex in the divection of the imaginavy axis. Let

o0
f(z) = 21 a, z? be regular and subovdinate to F(z) in B. Then
la,] < 14yl @=1,2, ).

Proof. F(z) has the representation (see [7])
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F(z) = A, Sﬂ Sz du 5 da(t),

0 0 1-2ucost+u

T
where «f(t) is nondecreasing on [0, 7] and S da(t) = 1. Thus
0

Al T gin kt
A = —k_S sint ao®).
Let f(z) = F(w(z)), and define
[~e]
hz) = A Sw(Z) o = 2 puz®
1 A 1 - 2u cos t +u?2 1
For each t, the function
Z
C(z) = A, S du = Ajz+
b 1 - 2ucos t+u?

maps E onto a convex domain, since the function
zC'Y(z) = A;z(1 - 2z cos t + z2)-1

is starlike in E. Also, h(z) < C(z), from which it follows that |b,| < |A|. How-
ever,

n
A 3
_ k 1  sinkt
b = Z)al(l)-__

n k=1 k sint ’
where
<O
[w@)] = 2 ozz(lk)zn.
n=k
Hence
oo (k)
®n " sin kt
IA1 Ele = [ba| < la4],

k=1 A k-1 ¥ sint

° i n (k)
a, = > al(qk)Ak _ ‘SW[AI > g-n—Slnkti]da(t),
ar(lk) sin kt

n
m
la'nl _<_i ‘Al kZ=>l k sint

This completes the proof of Theorem 3.

da(t) < |A,]- SW do(t) = |A,]|.
0
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o0
THEOREM 4. Let G(z) = 2Jg A, z" be regular in B(z: |z| <1). Let
RN (zG(z))' > 0 in E, so that zG(z) is um'ualent in E. Let

[>e]

f(z) = Ay + 27 a,z" < G(z)
1

in E. Then Ianl <RAy (n=1, 2, ---). The equality sign holds if f(z) = G(z"),
wheve

G(z) = Ay + 2(9IA0)(-%--1—210g(1 - z)) .
Z

Proof. Let G(z)+2G'(z) =i |Ag|sin @ + |Ay] cos @ - P(z), where Ay = |Ay| e'®
Since 9% [G(z)+ zG'(z)] > 0 in E, we see (by setting z = 0) that % Ag > 0 and
cos a > 0. It follows that P(z) is regular and % P(z) > 0 in E, with P(0) = 1. From
the representation

P(z) = Sn 1+ ze't da(t) (S da(t) = 1, oft) 1 in [0, zﬁ])

b 1 - 1 - zeit

we obtain the formula

2
(k+1)Ax = 2[Ag|cos & S eMtaa(t) (k=1,2, ).
0

Since f(z) - A, < G(z) - A, , we have the relations f(z) - Ay = G(w(z)) - A, and

n 2T
27 flk)Ak 2|Ay|cos a- S [E (k) e ]da(t),

k=1 o n k+1
where
[~ o]
@] = T a2 (k=12 ).
n=k
It is known [8] that the function
(o)
k
2 _ Z
w=-1->log(l-z) = 1+21§1k+1

maps E onto a convex domain. Consequently, if we define

nez) = 2 S -%2  (0o<t<a2n)

and determine g(z) by the equation
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2o, (t)z” = g(z) = hiw(z)) << h(z),
1

it follows from (1.8) that |b_(t)| < |h'(0)| = 1/2. However,

0 = B ().

Therefore

2T
la_] < 2]|Ag|cos a- S b, (®)] det) < BA,,
0

which was to be proved.

10.

11.
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