ON CONSISTENCY OF ¢-¢ METHODS OF SUMMATION
H. I. Brown and V. F. Cowling

1. INTRODUCTION

Let ¢ and m denote the space of absolutely convergent series and the space of
bounded sequences, respectively. Let A denote an infinite matrix defining a series-
to-series transformation that preserves absolute convergence of series, and let £,
denote its absolute summability field. We prove a number of results that relate with
one another the concepts of perfectness, reversibility, and type M*. We also prove
some theorems giving conditions for absolute consistency of two matrix methods and
for the existence of matrices A with the property that if f € ¢}, (the dual space of
£p), then there exists a matrix B such that ¢, C fg and B(x) = f(x) for x € (4.
Finally, we extend to the class of perfect matrices a theorem that Macphail [2]
proved for reversible matrices, and we demonstrate the existence of a nonreversible
perfect matrix. Our results belong largely to a class of theorems due to Mazur (3],
Mazur and Orlicz [4], Wilansky [6], and Zeller [9].

2. MATRIX MAPPINGS

Let A = (a,;) and x = {x_} be a matrix and a sequence of complex numbers,
respectively. We write formally

(1) Yo = Ap(x) = %ankxk’

and we say that the sequence x (and the corresponding series Ek (xy - x3_y) with
x_j = 0) is absolutely summable if each series in (1) converges and Z)n Iyn| < o,
We say the method is an £-¢ method provided En Iynl < o whenever En |xn| < oo,
and that it is absolutely regular provided in addition En Yn = En X, whenever

En Ixn| < «, Regarding these concepts the following theorem was proved by Knopp
and Lorentz [1] and by Mears [3].

THEOREM (Knopp, Lorentz, Mears). The malrix A defines an (-4 method if
and only if

(2) 2 Iankl <M (M independent of k).
n

The method A is absolutely vegulay if and only if in addition to (2) it satlisfies the
condition
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(3) 2a, =1(k=0,1,2, ).

Macphail concerned himself with reversible ¢-¢ methods, that is, with methods

for which the equations y, = Ek anKk Xk have exactly one solution x € £, for each
y € £. This requirement essentially enables one to assume that the sequence space
£, is a Banach space under an appropriate norm.

An application of Theorem 5 of [8, p. 230] shows that every f € ¢}, may be
evaluated as

(4) f(x) = 27t A _(x)+ 2Ja_x_

for some t, a € m. Here the series En a, X, converges for x € £, and
A (x) = 2y ap X . If we now set A(x) = 20, 27y a, X), then it is easily seen that

A€ 2. ¥ B is an ¢-¢ matrix such that ¢, C ¢y, then B(x) = 27,27, b1 %, is a
continuous linear functional on £, , and hence

B(x) = EtnAn(x) + Eanxn

for some t, 2 € m and all x € ¢, . Following Macphail, we write B > A if
2o C fp,and B~ A if B(x) = A(x) for x € £. If B(x) = A(x) for x € L5 N Lp, We
say B is absolutely consistent with A. The method A is said to be of fype M* if
for every bounded sequence {g, } the condition

?gnank=0 k=0,1,2 )

implies that g, =0 for n=0, 1, 2, ---. The following theorem is due to Macphail [2].

THEOREM. In ovdevr that a veversible (-0 method A be absolulely consistent
with every -0 method B such that B > A and B ~ A, it is necessary and sufficient
that A be of type M*.

We now define an ¢-¢ method to be perfect if ¢ is dense in ¢, in the seminorm
topology [8, p. 226].

3. PRINCIPAL RESULTS

In this section we prove three theorems that make precise the results promised
in the Introduction.

THEOREM 1. Let A be an (-0 malvix. In ovder that A be perfect, it is suffi-
cient that

(5) Etn Z)ankxk = EZtnankxk
n k k n

Sfor each t € m and x € 5. It is necessary that whenever t € m and the vight-hand
member of (5) exists for all x € 0, , then (5) hold for each x € {,.
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Proof. Suppose (5) holds, and let f be an element of ¢}, that vanishes on ¢.
Then £(eP) = 0, where eP = {0, 0, ---, 1, 0, ---} (the sequence of zeros except for a
1 in the pth coordinate). But since

f(x) = Z)tn§ a . X+ E;akxk

for some t, a € m, we see that 0 = f(eP) = Z)n tyayp +a, for all p. From this we
deduce, since Ep a, X, converges for x € £ 4, that

Z)apxp=—z>(2tnanp)xp for x€ £,,
P b n
and hence that

f(X) = Etn Eankxk - Z) Z; tnankxk.
n k k n

By (5), f(x) =0 for x € £, . Hence ¢ is dense in £, .

For the proof of the second part of the theorem, we follow [7, p. 336]. Suppose
A is perfect. Let t € m be such that the right-hand member of equation (5) con-
verges for all x € ¢, . Then

f(x) = 2 t, 2 a, Xy - 27 Xy 27 t,a .
n k k n

is a continuous linear functional on ¢, . Hence ftJ- is closed. Therefore the set Q

of points in ¢ 5 such that equation (5) holds for each t € m for which the right-hand
member of (5) exists for each x € £ 5 is closed. But clearly ¢ C Q. Therefore
£ C Q, and if A is perfect it follows that Q = £, .

THEOREM 2. A reversible 1-0 wmethod is pevfect if and only if it is of type M*.

Proof. Suppose A is of type M*, and let f € ¢}y and f(x) = O for all x € ¢. Now
for some t,a € m and x € £,,

f(x) = 2o t, 27 an Xt 2 a X .
n k k

Since A is reversible, we can easily show that a; = 0 for all k. Therefore

0 = £(eP) = 2 tya,, forall p.
b ok

But since A is of type M¥, it follows that t, = 0 for all n. Hence, f(x) = 0 for
x € £,, and so A is perfect. Conversely, suppose A is perfect, and let t € m be

such that En t,ay = 0 for all k. If now A is not of type M*, then tp # 0 for at
least one p. Choose €P € ¢, so that En t, eg # 0. By the reversibility of A, there

exists a unique x' € £, such that ef = Z)k a ;. X . Therefore, we must have the
relation
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(6) Etne£=ztn§ankxl'<¢0.

But (t,a,;) is an £-¢ method not weaker than A. Indeed,

27 [than| < N (independent of k),
n

and if x € £, , then, since [t | <M, say,

E|Z>tnankxk| <M EIE ankxk] < oo,
n k - n k

Thus Z) t, Ek a,; X defines an element of ¢, . ¥ x € £ and t € m, then
Z) 22 t.a X, converges absolutely. Thus '

n n“nk

E t, E A Xy = %) %) tha 1 X for xe ¢,

and since 27, tya, = 0 for all k, it follows that the functional 27, t, 20y a; X}
vanishes on ¢. But since A is perfect, f(x) must vanish on £, , that is,

Ezt ankxk—o

for x € £, . This contradicts (6), and hence A is of type M*.

THEOREM 3. A necessary and sufficient condition for an 2-0 method A to be
absolutely consistent with every (-0 method B for which B A and B ~ A is that
A be perfect.

Proof. Suppose A is perfect and that B> A and B ~ A. Then F(x) = B(x) - A(x)
is a continuous linear functional on ¢, that vanishes on £. Hence F(x) = 0 for
X € 0p, that is, B(x) = A(x) for x € £, . Conversely, suppose A is absolutely con-
sistent with every B for which B » A and B ~ A. In order to show that A is per-
fect, we use the following lemma.

LEMMA. Let A be an 0-0 method and £ € 0\ . Then theve exists a method B
such that B> A and B(x) = £(x) for all x € £, .

Proof. Let f € 2. Then f(x) = Z}n t, Ekankxk+ Z)k ay x;. for some
t, a € m. Define

-(n+1)

by = 2 ax +thay for all n and k.

Since
Dbyl = T 127" artiay] < T2 May |+ Tl taan] <=

(H independent of k), B = (bnk) is an £-¢ method. Furthermore, for x € ¢, we
have the relations
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27 20 [2° (n+1)ak+t a . lx, = 2 Z} 2’(n+l)a X +Z> Zt 0301 X

n k

B(x)

Il

2 a, x, + 27 20 ta,x = f(x).
k n k

Therefore B > A, and B(x) = f(x) for all x € £, . This completes the proof of the
lemma.

We now complete the proof of the necessity portion of the theorem. Let f € ¢
be such that f(x) = 0 for x € ¢. By the lemma there exists an ¢-¢ method B such
that B > A and B(x) = f(x) for x € £, . We easily see that if we set c ik = b+ ank
for all n and k, then C = (cp;) is an £-¢ method and C(x) = B(x) + A(x). So C > A
and C ~ A, since B(x) = 0 on £. Thus, by hypothesis, C(x) = A(x) for x € ¢, and
so f(x) =0 for x € £, . Hence A is perfect. This completes the proof of the theo-
rem.

The theorem of Macphail now becomes a corollary. In order to demonstrate that
the results of Theorem 3 extend the theorem of Mcphail, it is only necessary to
demonstrate the existence of a perfect nonreversible ¢-f method that maps into ¢
some sequence not in ¢, Let A = (ank) be the matrix with all elements in the first
row equal to one and all other elements zero. This is an ¢-¢ method that maps the

sequence Xx = {xn} into the sequence {Z) X;, 0, 0, «-- ¢ if x is contained in the
space (C) of convergent series. Since A maps mto (0, 0, ---) every sequence
{x,} belonging to (C) that converges to 0, it is not reversible. ¥ f e 2, and f
vanishes on ¢, then

£f(x) = 2o t, 27 a X - E E t,a . % for some t € m.
n k

But if x € (C), then f(x) = 0, and so A is perfect. In this case, £, = (C).

The authors take this occasion to acknowledge their debt to the referee for num-
erous suggestions concerning the organization of the material in this paper.
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