ON THE THOM CLASS OF A SUBMANIFOLD

Hans Samelson

To H. Hopf on his 70th birthday, with admiration and gratitude.

1. INTRODUCTION

Let M and N be compact, connected, oriented topological manifolds, of dimensions m and n, with N contained in M (a subspace of M) and with n < m; let μ and ν be fundamental cycles of M and N (see [6]), that is, generators of the (singular) homology groups $H_m(M)$ and $H_n(N)$. It is our purpose (a) to indicate a simple construction of the Thom class $u = u_N \in H^{m-n}(M, M-N)$ and the Thom isomorphism $H^s(N) \approx H^{s+m-n}(M, M-N)$ [essentially given by cup-product with u], together with a proof that the Thom class, made absolute, is Poincaré-dual to the image of ν in $H_n(M)$ (see [7], where all this originated), and (b) to prove for two submanifolds of M of dual dimensions, whose intersection is a finite set, that the intersection number (defined νia cohomology, as usual) is what intuitively it should be, namely the sum of the indices of the intersection points (a "well-known fact"). Our basic tool is a lemma of V. Klee concerning local flatness [3].

2. THOM CLASS

Homology means singular homology with integral coefficients. We write D^q and S^{q-1} for unit-disk and unit-sphere in real q-space R^q ; we let d^q and δ_q denote the standard generators of

$$H^{q}(\mathbb{R}^{q}, \mathbb{R}^{q} - \{0\})$$
 and $H_{q}(\mathbb{R}^{q}, \mathbb{R}^{q} - \{0\})$.

We write ϵ for the homology class defined by a point with multiplicity 1. With m and n as in Section 1, we shall throughout identify R^n , respectively, R^{m-n} , with the subspaces of R^m spanned by the first n, respectively, the last m - n, axes. We recall the definitions (a) of N being locally flat in M: each point p of N has a ("flat") neighborhood T such that the pair $(T, T \cap N)$ is homeomorphic to the pair (R^m, R^n) , and (b) of N having a normal bundle neighborhood in M: a neighborhood V and a retraction $r: V \to N$ such that each point p of N has a neighborhood W in N with $r: r^{-1}(W) \to W$ equivalent to $p_1: W \times R^{m-n} \to W$.

To construct the Thom class, we first assume N locally flat in M. Let U be an open set in N, whose closure is contained in a "flat" neighborhood T (see (a) above). The relative cohomology group $H^s((M-N)\cup U, M-N)$ is isomorphic, by excision, first to $H^s((R^m-R^n)\cup U, R^m-R^n)$ then to

$$H^{s}(U \times R^{m-n}, U \times (R^{m-n} - \{0\})) = H^{s}(U \times (R^{m-n}, R^{m-n} - \{0\})),$$

and finally to $H^{s-m+n}(U)$, by the correspondence $x \leftrightarrow x \times d^{m-n}$ (Künneth Theorem). It is therefore 0 for s < m - n; and for s = m - n there is the class u_U corresponding to $1 \in H^0(U)$ and characterized by the fact that $\langle u_U, \gamma \rangle = 1$ for any

Received December 4, 1964.

Work done with support from NSF grant GP-2510.

"transversal" (m - n)-cell, in other words, for any $\gamma \in H_{m-n}((M-N) \cup U, M-N)$ that corresponds to $\epsilon \times \delta_{m-n}$ in $H_{m-n}(U \times (R^{m-n}, R^{m-n} - \{0\}))$.

We now build up the Thom class u in $H^{m-n}(M, M-N)$ (characterized by $\langle u, \gamma \rangle = 1$ for any γ as above, at any point of N) and prove at the same time that $H^s(M, M-N) = 0$ for s < m-n, by the standard procedure of covering N with a finite number of U's, adjoining one at a time and using the Mayer-Vietoris sequence.

We now turn to the general case. A lemma of Klee [3] shows, by a simple construction, that N (= N × 0) is always locally flat in M × Dⁿ $\stackrel{\text{def}}{=}$ P; thus there is a Thom class u' in P, of dimension m (it makes no difference for the proof that P has a boundary). We now note that the pair (P, P - N) can be written as (M, M - N) × (Dⁿ, Dⁿ - {0}). The correspondence $x \leftrightarrow x \times d^n$ is therefore an isomorphism, say κ , of H*(M, M - N) and H*(P, P - N). We define the Thom class u as the class with $u \times d^n = u'$. This is consistent with the earlier definition, in case N happens to be locally flat.

3. THOM ISOMORPHISM

Let V be a neighborhood of N in M, with inclusion map k: $V \subset M$, that retracts onto N; let r be a retraction (for existence of V and r see [4, 12.2a and 19.2]). Let e^* be the excision map $H^*(V, V - N) \approx H^*(M, M - N)$.

THEOREM A. The map ϕ^* : H*(N) \rightarrow H*(M, M - N), defined by

$$\phi^* x = e^*(r^* x \cdot k^* u).$$

is an isomorphism; it is independent of the choice of V and r.

(There is a similar isomorphism in homology.)

We first show that the choice of r does not matter: Let V' be a second neighborhood of N, contained in V, with retraction $r'\colon V'\to N$, such that r' is homotopic to the identity of V' within V; this exists, of course. By a little diagramchasing one sees that $H^*(V,V')$ maps onto $H^*(V,N)$. For a given $x\in H^*(N)$, let y be any element of $H^*(V)$ that restricts to x (as does r^*x). Then $y-r^*x$ pulls back into $H^*(V,N)$ and therefore also into $H^*(V,V')$. The product with k^*u lies in $H^*(V,V'\cup (V-N))=0$.

Next, it is clear from naturality that the choice of V also doesn't matter; thus ϕ^* is well-defined.

To prove ϕ^* an isomorphism, we work in P (so that N is locally flat), with u' in place of u; V is a neighborhood of N in P. Let U be a small open set in N, as in Section 2. We can then replace $H^*((P-N) \cup U, P-N)$ by

$$H^*(U \times R^m, U \times (R^m - \{0\})),$$

and the latter by $H^*(W, W - U)$, where W is the (open) subset of $U \times R^m$ corresponding to $r^{-1}(U)$. Clearly, the Thom class u' goes over into the class represented by the generator d^m of $H^m(R^m, R^m - \{0\})$, and the map ϕ^* , transferred to W, gives an isomorphism of $H^*(U)$ with $H^*(W, W - U)$ (by excision and the Künneth theorem; we note that, as pointed out above, we can in the definition of ϕ^* replace the retraction $r = r \mid W$ of W onto U by the ordinary projection of $W \subset U \times R^m$ onto U). Thus ϕ^* gives an isomorphism from $H^*(U)$ to $H^*((P - N) \cup U, P - N)$. Covering N by a finite number of U's and repeatedly applying the Mayer-Vietoris

sequence yields Theorem A for P. The result for M follows immediately from the isomorphism $x \leftrightarrow x \times d^n$ of Section 2.

[A shorter, less elementary approach to all this goes as follows: The results of Curtis-Lashof and Milnor [1], [5] and of Kister [2] show that N has a normal bundle neighborhood in $M \times D^q$ for large q. We transfer the standard Thom class and isomorphism for this bundle back to M by an isomorphism like κ above.]

4. POINCARÉ DUALITY

THEOREM B. Let M, N, μ , ν be as in Section 1, and let u be the Thom class of N in M; then the image of ν in $H_n(M)$ is the Poincaré-dual to \widetilde{u} , the image of u in $H^{m-n}(M)$: $\widetilde{u} = i_* \nu$. (Here i: $N \subset M$ and $\widetilde{v} = \cap \mu$.)

Proof. We first assume that N is locally flat in M. Let V, k: $V \subset M$, and r: $V \to N$ be as in the beginning of Section 3, and let r be homotopic to the identity map of V within M. Let $\widetilde{\mu}$ be the element of $H_n(M, M - N)$ determined by μ ; then

$$\mathfrak{bu} = \mathfrak{u} \cap \mu = \mathfrak{u} \cap \mu = \mathfrak{u} \cap \mathfrak{u}$$

[H*(M, M - N) and H*(M, M - N) are paired to H*(M)]. From naturality it is clear that $u \cap \widetilde{\mu}$ is k*-image of an element of H*(N). Our homotopy assumption on r implies that k* = i* · r*, and thus $u \cap \widetilde{\mu}$ is i*-image of some element of H*(N); in other words, $u \cap \mu = t \cdot i_* \nu$ for some integer t. We must show that t = 1; we do this by a local argument.

Let p be a point of N, and let T be a "flat" neighborhood of p; that is, let $(T,T\cap N)\approx (R^m,R^n)$, with p going to 0. The Thom class u turns into the Thom class u_0 of R^n in R^m . The cycle μ yields, via excision, the fundamental cycle μ_0 of R^m mod $R^m - \{0\}$, and similarly ν yields the fundamental cycle ν_0 of R^n mod $R^n - \{0\}$, or equivalently of R^m mod $R^m - R^{m-n}$. Naturality and the elementary relation $u_0\cap \mu_0=\nu_0$ imply t=1. [In more detail: We may assume that V near p is just T; let Q be the set in T corresponding to R^{m-n} . We interpret u in $H^{m-n}(V,V-N)$, μ in $H_m(V,V-\{p\})$, with $u\cap \mu$ in $H_n(V,V-Q)$ (because $V-\{p\}=(V-N)\cup (V-Q)$). By excision of V-T, the last two groups are equal to $H_m(R^m,R^m-\{0\})$ and $H_n(R^m,R^m-R^{m-n})$. We then apply the permanence relation for $g\colon T\subset V$ in the form $g_*(g^*u\cap \mu_0)=u\cap g_*\mu_0$, with $g^*u=u_0$. Thus $i_*\nu=g_*\nu_0=g_*(u_0\cap \mu_0)=u\cap g_*\mu_0=u\cap \mu=t\cdot i_*\nu$ (in $H_n(V,V-Q)$, and so t=1].

For the general case we go to $P=M\times D^n$. We have the relations $\widetilde{\mu}_P=\widetilde{\mu}\times \delta_n$, $u'=u\times d^n$, $d^n\cap \delta_n=\epsilon$, and

$$\mathbf{u} \cap \widetilde{\mu}_{\mathbf{p}} = (\mathbf{u} \cap \widetilde{\mu}) \times (\mathbf{d}^{\mathbf{n}} \cap \delta_{\mathbf{n}}) = (\mathbf{u} \cap \widetilde{\mu}) \times \varepsilon;$$

and it follows that $u \cap \tilde{\mu} = i_* \nu$. (The fact that P has a boundary introduces no complications, since u' exists on P.)

5. INTERSECTION NUMBER

Let A and B be two submanifolds (compact, connected, oriented) of M, of dual dimensions n and m - n = q, with fundamental cycles α and β . The intersection number A \circ B is defined as

$$\langle \mathfrak{b}^{-1} i_* \alpha \cup \mathfrak{b}^{-1} j_* \beta, \mu \rangle;$$

here i, j are the respective inclusions of A, B in M. Suppose now the intersection $A \cap B$ is finite. With each p of $A \cap B$ one associates an index or a local intersection number j_p as follows: Let V be a small neighborhood of p, homeomorphic to R^m , and let A_0 be the component of $V \cap A$ containing p. Then $H_{q-1}(V-A_0)$ is infinite cyclic (by Alexander duality), with a preferred generator σ determined by the orientations of A_0 (from that of A) and of V (from that of M). (We could again use the device of making A locally flat, by multiplying with D^n ; the structure of $H_{q-1}(V-A_0)$ follows then from the Künneth theorem.) A small (q-1)-sphere around p in B, with orientation induced from B, yields the element $j_p \sigma$ of $H_{q-1}(V-A_0)$. It is clear that j_p is independent of the choices made.

THEOREM C. A \circ B = $\sum_{p \in A \cap B} j_p$; that is, the (global) intersection number is the sum of the local intersection numbers.

Proof. We write u and v for the Thom classes of A and B, and \tilde{u} , \tilde{v} for the corresponding absolute elements, so that

$$\mathbf{A} \circ \mathbf{B} = \left\langle \widetilde{\mathbf{u}} \cup \widetilde{\mathbf{v}}, \mu \right\rangle = \left\langle \widetilde{\mathbf{u}}, \widetilde{\mathbf{v}} \cap \mu \right\rangle = \left\langle \widetilde{\mathbf{u}}, \mathbf{i}_{*} \beta \right\rangle,$$

by Theorem B; writing $\beta^!$ for the element of $H_q(M,\,M-A)$ determined by $i_*\beta,$ we have thus the relation $A\circ B=\left\langle u,\,\beta^!\right\rangle.$ We assume now first that A is locally flat, and take a small neighborhood V of A in M such that near each $p\in A\cap B$ the pair $(V,\,A)$ looks like $(R^m\,,\,R^n).$ Clearly, the relative cycle of $R^m \mod R^m$ - R^n determined by $\beta^!,\, \emph{via}$ excision, is $j_p\gamma_p,$ where γ_p corresponds to the generator of $H_q(R^{m-n}\,,\,R^{m-n}$ - $\{0\}).$ Thus the element of $H_q(V,\,V$ - A) determined by $\beta^!$ is $\sum j_p\gamma_p.$ The Thom class u is represented by a class $\bar u\in H^q(V,\,V$ - A) with $\langle \bar u,\,\gamma_p\rangle=1$ for all $p\in A\cap B.$ Thus

$$\mathbf{A} \circ \mathbf{B} = \langle \mathbf{u}, \beta' \rangle = \langle \bar{\mathbf{u}}, \sum_{\mathbf{j_p} \gamma_{\mathbf{p}}} \rangle = \sum_{\mathbf{j_p}}$$

For the general case we use again $P = M \times D^n$, in which $A = A \times 0$ is locally flat, and replace B by $B \times D^n$ (fundamental cycle $\beta \times \delta_n$). Then

$$A \circ B = \langle \widetilde{u} \cup \widetilde{v}, \mu \rangle = \langle \widetilde{u} \times 1 \cup \widetilde{v} \times d^{n}, \mu \times \delta_{n} \rangle = (i_{*}\alpha \times \epsilon) \circ (i_{*}\beta \times \delta_{n}),$$

and it is clear from the special case that this equals $\sum j_p$, since the intersections of A and B on the one hand and $A \times 0$ and $B \times D^n$ on the other hand correspond and have the same indices j_p . (The fact that P and $B \times D^n$ have a boundary makes no difference, that is, in the special case we could have allowed M and B to have a boundary, with $\partial B \subset \partial M$.)

6. REMARK

All the results are easily generalized to the case where N, M (and A, B) have boundaries, with $\partial N \subset \partial M$ and ∂A , $\partial B \subset \partial M$, but $A \cap B \subset M - \partial M$. To construct the Thom class of N we double M, that is, identify M with another copy of M along ∂M , automatically doubling N; we then restrict the Thom class from the doubled manifolds to M (i.e., to (M, M - N)). It is easy to carry out all the necessary steps in this generalized setting; we may assume (a) that ∂N is locally flat in ∂M (if

necessary, multiply by D^{n-1}) and (b) that N and ∂M are simultaneously locally flat (in the obvious sense) at each point of ∂N ("expand" M by attaching $I \times \partial M$ to it; in other words, identify ∂M with $0 \times \partial M$; this "expands" N at the same time, and makes the configuration of N and ∂M reasonable at the points of ∂N ; the homology, absolute and relative, does not change).

For theorem A we have a commutative diagram

where d* is the usual map

$$H^*(\partial M, \partial M - \partial N) \approx H^*((M - N) \cup \partial M, M - N) \rightarrow H^*((M - N) \cup \partial M)$$

$$\rightarrow H^*(M, (M - N) \cup \partial M):$$

the last vertical map is a "relative" Thom isomorphism.

REFERENCES

- 1. M. Curtis and R. K. Lashof, On product and bundle neighborhoods, Proc. Amer. Math. Soc. 13 (1962), 934-937.
- 2. J. M. Kister, Microbundles are fibre bundles, Ann. of Math. (2) 80 (1964), 190-199.
- 3. V. L. Klee, Jr., Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30-45.
- 4. S. Lefschetz, *Topics in topology*, Annals of Mathematics Studies no. 10, Princeton, 1942.
- 5. J. W. Milnor, Microbundles, I, mimeographed notes, Princeton, 1963.
- 6. H. Samelson, On Poincaré duality, J. Analyse Math. 14 (1965); 323-336.
- 7. R. Thom, Espaces fibrées en sphères et carrés de Steenrod, Ann. Sci. Ecole Norm. Sup. (3) 69 (1952), 109-182.

Stanford University