ON THE THOM CLASS OF A SUBMANIFOLD

Hans Samelson

To H. Hopf on his 70th birthday, with admiration and gratitude.

1. INTRODUCTION

Let M and N be compact, connected, oriented topological manifolds, of dimen-
sions m and n, with N contained in M (a subspace of M) and with n < m; let u
and v be fundamental cycles of M and N (see [6]), that is, generators of the
(singular) homology groups H,, (M) and H,(N). It is our purpose (a) to indicate a
simple construction of the Thom class u = uy € H”?(M, M - N) and the Thom
isomorphism HS(N) ~ HS"™-%(M, M - N) [essentially given by cup-product with u],
together with a proof that the Thom class, made absolute, is Poincaré-dual to the
image of v in H,(M) (see [7], where all this originated), and (b) to prove for two
submanifolds of M of dual dimensions, whose intersection is a finite set, that the
intersection number (defined via cohomology, as usual) is what intuitively it should
be, namely the sum of the indices of the intersection points (a “well-known fact”).
Our basic tool is a lemma of V. Klee concerning local flatness [3].

2. THOM CLASS

Homology means singular homology with integral coefficients. We write D2 and
S2-1 for unit-disk and unit-sphere in real q-space R%; we let d and 0, denote
the standard generators of

HYR?, R? - {0}) and Hy R, R? - {0}).

We write ¢ for the homology class defined by a point with multiplicity 1. With m
and n as in Section 1, we shall throughout identify R™, respectively, R™""  with
the subspaces of R™ spanned by the first n, respectively, the last m - n, axes. We
recall the definitions (a) of N being locally flat in M: each point p of N has a
(“flat”) neighborhood T such that the pair (T, T N N) is homeomorphic to the pair
(R™, R™), and (b) of N having a normal bundle neighborhood in M: a neighborhood
V and a retraction r: V — N such that each point p of N has a neighborhood W in
N with r: r~1(W) - W equivalent to p;: WXR™M W,

To construct the Thom class, we first assume N locally flat in M. Let U be an
open set in N, whose closure is contained in a “flat” neighborhood T (see (a) above).
The relative cohomology group H3((M - N) U U, M - N) is isomorphic, by excision,
first to H*((R™ - R™) U U, R™ - R") then to

H*(U x R™™7, Ux (R™" = {0})) = H¥(U x (R™™", R™"" - {0})),
and finally to HS-™%2(U), by the correspondence x <> x X d™-? (Kiinneth Theorem).

It is therefore 0 for s <m - nj and for s =m - n there is the class uy correspond-
ing to 1 € HO(U) and characterized by the fact that <uU, -y) =1 for any
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“transversal” (m - n)-cell, in other words, for any v € H,_ (M - N) UU, M - N)
that corresponds to € X 6, _,, in Hp, (U X (R™-?, R™-1 _ ?0})).

We now build up the Thom class u in H"™™(M, M - N) (characterized by
u, -y) =1 for any 7y as above, at any point of N) and prove at the same time that
H%(M, M - N) = 0 for s < in - n, by the standard procedure of covering N with a
finite number of U’s, adjoining one at a time and using the Mayer-Vietoris sequence.

We now turn to the general case. A lemma of Klee [3] shows, by a simple con-
struction, that N (= N X 0) is always locally flat in M x D™ 9€¢f p; thus there is a
Thom class u' in P, of dimension m (it makes no difference for the proof that P
has a boundary). We now note that the pair (P, P - N) can be written as
(M, M - N) X (D®, D™ - {0}). The correspondence x'<» x X d? is therefore an
isomorphism, say k, of H*(M, M - N) and H*(P, P - N). We define the Thom class
u as the class with u X d™ = u'. This is consistent with the earlier definition, in
case N happens to be locally flat.

3. THOM ISOMORPHISM

Let V be a neighborhood of N in M, with inclusion map k: V C M, that retracts
onto N let r be a retraction (for existence of V and r see [4, 12.2a and 19.2]).
Let e* be the excision map H*(V, V - N) ~ H¥*(M, M - N).

THEOREM A. The map ¢*: H¥(N) - H¥(M, M - N), defined by
¢*x = e*(r*x-k*u),

is an isomorphism; it is independent of the choice of V and r.
(There is a similar isomorphism in homology.)

We first show that the choice of r does not matter: Let V' be a second
neighborhood of N, contained in V, with retraction r': V' — N, such that r! is
homotopic to the identity of V' wzthm V; this exists, of course. By a little diagram-
chasing one sees that H*(V, V') maps onto H*(V, N) For a given x € H*(N) let y
be any element of H*(V) that restricts to x (as does r*x). Then y - r*x pulls back
into H¥(V, N) and therefore also into H*(V, V'). The product with k*u lies in
H*(V, VI U(V -N)) =

Next, it is clear from naturality that the choice of V also doesn’t matter; thus
¢* is well-defined.

To prove ¢* an isomorphism, we work in P (so that N is locally flat), with u'
in place of u; V is a neighborhood of N in P. Let U be a small open set in N, as
in Section 2. We can then replace H*((P - N) U U, P - N) by

H*(U X R™, U x (R™ - {0})),

and the latter by H*(W, W - U), where W is the (open) subset of U X R™ corre-
sponding to r~ (U) Clearly, the Thom class u' goes over 1nto the class represented
by the generator 4™ of H™(R™, R™ - {0}), and the map ¢*, transferred to W,
gives an isomorphism of H*(U) with H*(W, W - U) (by excision and the Kﬁnneth
theorem; we note that, as pointed out above, we can in the definition of ¢* replace
the retraction r =r | W of W onto U by the ordinary projection of W c U X R™

onto U). Thus ¢* gives an isomorphism from H*(U) to H*((P - N) U U, P - N).
Covering N by a finite number of U’s and repeatedly applying the Mayer-Vietoris
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sequence yields Theorem A for P. The result for M follows immediately from the
isomorphism x <> x X d™ of Section 2.

[A shorter, less elementary approach to all this goes as follows: The results of
Curtis-Lashof and Milnor [1], [5] and of Kister [2] show that N has a normal bundle
neighborhood in M X D9 for large q. We transfer the standard Thom class and iso-
morphism for this bundle back to M by an isomorphism like k above.]

4. POINCARE DUALITY

THEOREM B. Let M, N, 1, v be as in Section 1, and let u be the Thom class
of N in M; then the image of v in Hp(M) is the Poincavé-dual to 1, the image of u

in HT (M) bf1'=i*v. (Here i: NC M and b= N pu.)

Proof. We first assume that N is locally flat in M. Let V, k: VC M, and
r: V — N be as in the beginning of Section 3, and let r be homotopic to the identity
map of V within M. Let g be the element of H (M, M - N) determined by g; then

pU=dNp=unp=unfg

[H*(M, M - N) and H,(M, M - N) are paired to H,(M)]. From naturality it is clear
that u N I is k,-image of an element of H,(V). Our homotopy assumption on r
implies that k, =i, -r,, and thus u N [l is i -image of some element of Hy(N); in
other words, u N =t-i, v for some integer t. We must show that t = 1; we do
this by a local argument.

Let p be a point of N, and let T be a “flat” neighborhood of p; that is, let
(T, T N N) = (R™, R"), with p going to 0. The Thom class u turns into the Thom
class ug of R™ in R™. The cycle p yields, via excision, the fundamental cycle
po of R™ mod R™ - {0}, and similarly v yields the fundamental cycle vg of
R™ mod R™ - {0}, or equivalently of R™ mod R™ - R™-_ Naturality and the ele-
mentary relation ug N g =vg imply t=1. [In more detail: We may assume that
V near p is just T; let Q be the set in T corresponding to R™-?, We interpret u
in H®-(V, V - N), ¢ in H,,(V, V - {p}), with u N g in H,(V, V - Q) (because
V - {p} =(V -N) U(V - Q). By excision of V - T, the last two groups are equal
to H (R™, R™ - {0}) and H (R™, R™ - R™"™)., We then apply the permanence
relation for g: T C V in the form g, (g¥uN pg)=u Ng, py, with g*u=uy. Thus
i, v ]=g*u0 =g lugNpg=ung,uog=unp=t-i, v (in H(V, V - Q), and so
t=1].

For the general case we go to P = M X D™. We have the relations fip= [ X 6, ,
w'=uxd®, d"Ns =g, and

uvnﬁp =wNp)x@*Ns,)=@uNpE)Xe;
and it follows that u N o = i, v. (The fact that P has a boundary introduces no
complications, since u' exists on P.)
5. INTERSECTION NUMBER
Let A and B be two submanifolds (compact, connected, oriented) of M, of dual

dimensions n and m - n = q, with fundamental cycles @ and B. The intersection
number A oB is defined as
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(b—l i*a U .b-l j*Bx p’) ’

here i, j are the respective inclusions of A, B in M. Suppose now the inter-
section A N B is finite. With each p of A N B one associates an index or a
local intersection number j, as follows: Let V be a small neighborhood of

p, homeomorphic to R™, and let A be the component of V N A containing

p. Then Hg _1(V - Ap) is infinite cyclic (by Alexander duality), with a preferred
generator o determined by the orientations of A (from that of A) and of V (from
that of M). (We could again use the device of making A locally flat, by multiplying
with D; the structure of Hy_;(V - Ag) follows then from the Kiinneth theorem.) A
small (q - 1)-sphere around p in B, with orientation induced from B, yields the
element j,0 of Hq_1(V - Ag). Eis clea.r that j, is independent of the choices
made.

THEOREM C. AoB= 2) jy; thatis, the (global) intersection number is the
PEANB
sum of the local intersection numbers.

Proof. We write u and v for the Thom classes of A and B, and u , v for the
corresponding absolute elements, so that

AoB = <ﬁ'u%}’,u> = <H,x7ﬂu> = (H,i*B>,

by Theorem B; writing B' for the element of Hy(M, M - A) determined by i, B8, we
have thus the relation AoB = ( u, B' > We assume now first that A is locally flat,
and take a small neighborhood V of A in M such that near each p € A N B the pair
(V, A) looks like (R™, R™). Clearly, the relative cycle of R™ mod R™ - R™ deter-
mined by B', via excision, is j,7p, where yp corresponds to the generator of
q(Rm"n R™-? _ {0}). Thus the element of Hq(V, V - A) determined by ' is

2 ] Yp- The Thom class u is represented by a class u € Hq(V V - A) with
<4, 'yp> =1 for all p € AN B. Thus

AoB = (u, ') = (4, Ziprp) = Lip.

For the general case we use again P = M X D®, in which A = A X 0 is locally
flat, and replace B by B X D™ (fundamental cycle B8 X 6,). Then

AoB ={T UV, p) = (IX1UTXd®, px8,) = (l,axe)o(i,BXx5,),

and it is clear from the special case that this equals Z)] p, since the intersections
of A and B on the one hand and A X 0 and B X D™ on the other hand correspond and
have the same indices ip (The fact that P and B X D™ have a boundary makes no
difference, that is, in the special case we could have allowed M and B to have a
boundary, with 9B C 9M.)

6. REMARK

All the results are easily generalized to the case where N, M (and A, B) have
boundaries, with 9N Cc 9M and 0A, 9B C aM, but AN BC M - dM. To construct
the Thom class of N we double M, that is, identify M with another copy of M along
oM, automatically doubling N; we then restrict the Thom class from the doubled
manifolds to M (i.e., to (M, M - N)). It is easy to carry out all the necessary steps
in this generalized setting; we may assume (a) that aN is locally flat in aM (if
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necessary, multiply by D“‘l) and (b) that N and @M are simultaneously locally flat
(in the obvious sense) at each point of 9N (“expand” M by attaching IX 9M to it; in
other words, identify oM with 0 X 9M; this “expands” N at the same time, and makes
the configuration of N and oM reasonable at the points of 9N; the homology, absolute
and relative, does not change).

For theorem A we have a commutative diagram

Xk
ces — HY(M, M - N) — H*(dM, oM - aN) & H*(M, (M - N) U aM) — --
Tu Tu Tu
e = HY(N) - H*(3N) — H*(N, aN) — e

where d* is the usual map
H*(dM, aM - aN) ~ H*((M - N) U 9M, M - N) — H*((M - N) U M)
— HY(M, (M - N) U oM);

the last vertical map is a “relative” Thom isomorphism.
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