A CLASS OF RELATION TYPES ISOMORPHIC
TO THE ORDINALS

Anne C. Morel

In this paper, we prove that an ordering relation is scattered and homogeneous if
and only if for some ordinal ¢ it is isomorphic to the antilexicographically ordered
set of all ¢-termed sequences of integers that are almost always zero. The algebra
of all homogeneous scattered types, under ordinal multiplication, turns out to be iso-
morphic to the ordinals under ordinal addition.

We shall use the notation of [3] with one exception. For the ovdeved sum of the

rvelations G(x) over R, we write G(x) rather than 20 G(x); analogously, for the
x,R R
ovdinal sum of the types y(x) over R, we write 27 y(x) rather than Z)-y(x).
x,R R

ordering relation R is (one point) komogeneous, if for any x, y € F(R) there exists
an automorphism f of R with f(x) = y. Analogously, an order type « is homogene-
ousif e =B+1+y=p"+1++" implies 8 =8"'" and y =y'. We identify the ordinal
¢ with the set of all ordinals less than ¢. If ¢ has a predecessor, we call the pre-~
decessor ¢ - 1. The symbol 8¢ stands for the set of all functions on ¢ to the set of
integers. If ¢ <p, M € 8% N € 8P, and M, =N, for every t < ¢, then we shall
refer to N as an extension of M. Let ¢ be an ordmal and let N € 89%; then Z%
will denote the relation whose field consists of all elements M € 8% such that
M, =N, for almost all (all but finitely many) ¢ < ¢; the elements of F(Z¢') are
ordered antilexicographically. The order type of Zﬁ is obviously the same for any

choice of the sequence N. If for N we choose the function on ¢ with range {0}, we
write Zg’. Hence, if we use the notation of [2, Chapter VI, Section 3], then

DY = (w* ¢
T(Z3) = (@*+ 1+ w)g -
Note that if ¢ is finite, then
(W*+ 1+ )¢ = (*+w)?,
and that
* 0 _

(W¥+1+w)y =1

Moreover, for any ordinals ¢ and 9,
(w*+1+w)g-(w*+1+w)0 (w*+1+w)¢+g

(see [2, p. 160, (5)]). If there exists a function mapping the ordering relation R iso-

morphically onto a subrelation of the ordermg relation S, we write RZS; if there is
no such isomorphism, we write RZS. If a = 7(R) and B = 7(8), we wr1te a¥?B or
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aZB. For any ordinal ¢, we define R¢ as the relation with F(R¢) = ¢ and the ex-
pected ordering, that is, LR¢9 if and only 1f Lt <6< ¢, Put

¢(*) = {¢|¢ = v* for some t < ¢}.

We define R ¢(* ) as the relation with the properties
F(R<;’>(*)) = ¢(*), and §R¢(*)x if and only if x* < §* < ¢.
LEMMA 1. For every ovdinal ¢, (w* + 1+ w)‘g is homogeneous and scattered.

Proof. The relation Z‘g is obviously homogeneous, for, given the points

N = (NO? ooo, NL’ ...)L<¢

and

Nl

(NE)’ eee N'L’ ".)L<¢’

we can map Zg isomorphically onto itself by the function f defined on F( Z‘g) by

#((Mg, ==+, My, =) ) = (M + (N - Np), ===, M, + (N, -N,), =)

L<¢ 1t<¢"

(For an alternate proof, see Lemma 2(i), (ii) below.)

I (w* +1+ w)g is scattered, then
(* + 1+ )8! = (*+1+w)f - (w*+w)

is also scattered, since, as is well known, scattered types are closed under ordmal
multiplication. Now assume that ¢ is a limit ordinal and that (w* + 1 + w)

scattered for every ¢ < ¢. If (w*+ 1+ w)‘g were not scattered, there Would ex1st
points N and N' in F(Z‘g) with the property that Z‘g {[N, N']> contains a dense sub-
relation. Let 6 be the largest ordinal such that Ns # 0 or N'5 # 0. Then the rela-

tion Z‘I’ {[N, N']> is isomorphic to a subinterval of Z6+1 , which by hypothesis is
scattered Hence (w* + 1 +w)¢ is scattered.

LEMMA 2.
() If =1+ a' and aF(w* + 1 +w)¢ then

ot = 2J [(w*+1+wg - w].
L,R¢,

(i) If a=a'+1 and aF(w* + 1 +w)®, then
0

a' = 23 Rw*4—1+a08*-w*L
Ly Ry(*)
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(iii) Let M € 8‘35, let NZI‘(’/I N', and let & be the lavgest ovdinal such that
Ng # Nj . Then for some finite type q,

728 KN, N9D) = T [wr+ 1+w)) - o]
L, Ry

%k
+(w*+1+w)g-q+ 27 [(w*+1+w)(L) - w*].
FoR )

Proof. For (i) and (ii), see [7, p. 16, Corollary 1, and p. 17, Corollary 2]; note
that

( 27 [(w*+1+w)8-w]>*= 2 [(w*+1+w)s*-w*].
L’R6 L’Rﬁ(*)

In (iii), we may assume without loss of generality that N, = M, = 0 for all ¢ < ¢.

Then 6 is the largest ordinal such that N:S # 0. The interval (N, N') consists of

(a) all sequences X € F(Zg’) such that X # N, such that X, =0 for 6 <t < ¢,
and such that NZ&x,

(b) all sequences X € F(Z(g) such that X(3 =m, where 0 <m <Nj, and X, =0
for 6 <t < ¢,

(c) all sequences X € F(Zg) with X #N', X5 =Ny, X, =0 for 6 <t < ¢, and
xzdN.
Thus we can write

@M, NYD) = e+ By,

where «, 8, and v are the types determined by the intervals described in (a), (b),
and (c), respectively. From (a) and (i) we get

@ = 27 [(co*+1+w)é - w];
LRy

from (b) we obtain
B=(w*+1+w)g—q, Whereq=N:3-1;

from (c) and (ii) we get

Yy = 27 [(w*+1+w)8*-w*].
LR

Thus (iii) holds.

We need the following result:
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LEMMA 3. If o is a scatteved orvder type, then (o + a)Za.
Proof. See[1, p. 519, Lemma 1.4].

LEMMA 4. If v - 6 is homogeneous and scatteved and 6 + 1, then
6 = (w* +w)-6; for some &, .

Proof. By [3, p. 52, Corollary 3.2], there exists a relation T such that

5= ¢,
i, T
(1)
where each {; is an elementary type, and if i, i' € F(T) and i immediately
precedes i' with respect to T, then §; + Ci' is not an elementary type.

If {; =w*+w for every i € F(T), then 6 = (w* +w)-p, where p = 7(T), and the
Lemma holds. We shall assume that

(2) ¢ #w*+w  for some i € F(T),

and show that (2) leads to a contradiction.
First, consider the case where T is a one-element relation. Then
6 =n>1, or 6§ = w, or 6 = w*,

We show that the first case is impossible; a quite similar argument holds for the
other two. I v is finite, then -6 is finite and hence not homogeneous. Hence y
is infinite, and so

(3) y =vy,+1+y, for some ylaéOand'qu&O.
Further,
(4) y-0 =y, +1+y,+y, +1+y,+y-m for some finite type m .

Since y -6 is homogeneous, it follows from (4) that
Y1 =7, + 1+72+717
and hence

(5) (vi+v)Zv,-
By (5) and Lemma 3, v; is not scattered; hence y -5 is not scattered. Thus (2)
leads to a contradiction.

Now assume that F(T) contains more than one element. We need to consider two
cases:

() &

(b) ¢, =w or ¢ = w* for some i € F(T).

n for some i € F(T);

1l

Case (a) must be divided into two subcases:

(a,) either iTi' for every i' € F(T) or i'Ti for every i' € F(T);



RELATION TYPES ISOMORPHIC TO THE ORDINALS 207

(a,) for some i;, i, € F(T), i; Ti and iTi,.
Assume first that (a,) holds and that iTi' for every i' € F(T). Then

6 =n+yp, for some p #0.

If i has a successor, say i;, with respect to T, then 17§i1 , for if we had 14§, ,

then Ci + §i would be an elementary type, in contradiction to (1). Hence
1

(6) & =n+ g, where 14y and  #0.
If y were finite, we would have the relation
yed =mtyepu, where m is finite and m # 0,

but in this case -8 could not be homogeneous. Hence y is infinite, and so (3)
holds. From (6) and (3) one obtains

Y6 =y +1l+y,+y-n-1)+y-(u,+1+p,), with p; +1+p, = .
From the above equation and the hypothesis we deduce that
71 =7"n+7°“1+')’19

and hence (5).

Now assume (a,). By arguing as we did to obtain (6), we see that
(1) & = w+n+ v, where |, v are nonzero types and 1Fu and 17 v.
Since v is scattered and infinite, (7) implies that
6 = p+n+v;+2+v,, where v;#0 and 1J5v,.
Hence
(8) y*8 =vy-ptynty-yt+y+tyt+y-v,.
Now vy is infinite, for if y were finite we could obtain
Yo =vy-(L+ntv)+y

from (8). Since 1%, the above identity is absurd. Now, using (8), (3), and the
hypothesis, we obtain

(9) yu+y, =y wH+n+v)++y).
For convenience put
(10) p=un+n+tuy;.

From (9), (10), and [3, p. 53, Lemma 3.4], we get either
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(11) y'u=vy-p+t¢ and y+vy, = ¢+vy, for some ¢,
or
(12) vy'p=yh+¢ and y; = d¢t+y+y, for some ¢.

If (11) holds and ¢ = 0, we obtain (5) from the second identity of (11). In the case
¢ + 0, we apply [3, p. 53, Lemma 3.5] to the first identity of (11) and obtain either

(13) y*p=vy 4y and ¢ =y u,, where p;+py, =4y,
or
YP = Yol +'y(1) and ¢ = 7(2)+7'u2,
(14)
for some types (1), 'y(z),_p.l By, with o +1+p, = p.

From both (13) and (14) we get

Y 2 £é,
while from the second identity of (11) we obtain-

PL(y +vy);
therefore

Yo Zly +vy).
Now, using (7), we find that p., must be infinite in (13) and in (14). Hence
(v +v1): 22 +vy),

and (y +v,) is not scattered, nor is y. If (12) holds, then from the second identity
of (12) we obtain (5).

We have arrived at (b). It suffices to assume that {, = w for some i € F(T).
Again we need to consider two cases:

(b,) ¢; =w and iTi' for every i' € F(T);
(b,) ¢; =w and i'Ti for some i' € F(T).

In the case (b,), we have

(15) S =w+v for some v.

From (15), we readily obtain (3) and then (5). In the case (b,), we get
(16) & = +w+ v, for some types u, v, with g #0 and 1F 4,
and hence

(17) Y0 =y-pt+tywty-v.
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If v is finite, then from (17) and the hypothesis we get

(18) YU =yl ty.

From (18) and the fact that every scattered type is a left cancelling type (see [3, P.
59, Theorem 3.13]), we obtain

po=p+1,

in contradiction to (16). Thus (3) holds. From (3) and (16) it follows that

(19) Yy h+y =v-u+i+y) for some y; #0.

Now by applying [3, p. 53, Lemmas 3.4 and 3.5] to (19), we obtain a contradiction.

LEMMA 5. Let a be an ovdey type and let p be a limit ovdinal. If for each
t < p there exists a type v, such that a = (w*+1 +w)(')' *Y ., then

. Proof. Let R be a relation of type a, and let ¢t < p. By hypothesis there exist
a function f,, a relation S, and for each s € F(S,) a relation ZX( ) s where

x(s) € 8%, such that

(1) | R Y, zt

fL S’SL

X(s)®

Corresponding to each ordmal t there may obviously exist various choices of f,
S, , and the relations ZX( s) - We define a partial ordering relation < on all 1so—

morphism functions satisfying (1) for some t < p as follows:

f¢ -<g“ provided either ¢ = p and fo= gy or else ¢< uw <p, and for every
(2) reF(R)1ff(r) (M, sg) and g, (r) = (M', s},), with M ¢ 8% ana
¢ 13 N-
M e gh then M' is an extension of M.

Using a familiar form of the axiom of choice, we construct a maximal simply
ordered subrelation of<. Denote by & the field of this relation. For each ¢t <p
there obviously exists at most one function in & satisfying (1). If such a function
exists, we denote it by f;,. We now show that
(3) if ¢<pu <p and f;, € @, then there exists an fy € .

Assume that (3) is false; we can then define an appropriate function f¢ . Let
r € F(R), and suppose that

f“(r) = (N,-s), where N € gH |
Define

f¢(r) = ((No, cey, NL’ "',)L<¢7 sq_’))!
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where

S¢ = ((N(b’ e, NL’ ...)¢SL<M’ SIJ,) .

We define a relation S; whose field is the set of all second terms of the ordered
pairs fqb(r), where r € F(R). Suppose r' € F(R) and

fu(r') ((N(;, T, N'L, "')L<u_’ S:u') ’

and hence

£5(r') = ((N§, =+, NI, ), < g» Sh)

where
S:,b = ((N(;), e, N ...)¢£L<“, sp) -
I s, #s; and s, Sy sy in (1), we put
(4) 8$SpSg-
If s¢ = sg, then the sequences
(5) (N¢, ee NL’ "-)¢SL<U' and (Nq'b’ oee Ni, ...)¢§L<“

can differ at only a finite number of places. In this case, (4) holds if and only if the
first sequence of (5) precedes the second with respect to antilexicographic ordering.

Now suppose that the sequence
M = (MO’ e ML’ ".)L<¢

differs from the first sequence of (5) at only a finite number of places. Since there
exists an r* € F(R) with

fu(r*) = ((Mg, -+, M, '")L<u’ sy
where
M, = N, for <t <y,
it follows that
fo(r*) = ((Mp, ===, M, ) < s S¢) -

One easily concludes that f¢< f,, and that (3) holds.

We now show that

(6) if p <p and f;; € &, then f,;; € .

By (6),
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where x(s) € 8u for every s € F(SLL)’

and hence
a = (w*+1+w)g' - 6, where 7(6) = Sy, -

L1

By the hypothesis of the lemma,
= (* + 1+ w), "Vl

- B,
o = (w* + 1+w)0 Yy
Using the fact that (w* + 1 + w)g is a left cancelling type, we find that

for some function g and some relation T.

~ 5l
S, =27
Bg O
Now suppose that r € F(R), that
- u
fu(r) = (N, SH)’ where N € 8" and s, € F(Su),
and that
g(sy) = (m, t).
We put
where N* € 3“‘“ ,

fu_-}-l(r) = (N*’ t) ’

N’i=NL for 0< ¢t < and N*(u) = m.

Thus (6) holds.

Now we need the following:
I p is a limit ordinal and if £, € & for each ¢ < pu, then there exists an

(1)
fu € ®.
Assume that (7) fails. Then by (3) and (7),

® = {f,| t <k} for some limit ordinal « .

With each r € F(R) we correlate two elements of 8’{, namely N(r) and S(r); N(r)
is the (unique) extension of all first terms of the ordered pairs f JL(r) for ¢ < k;
and, for each ¢ < «, S(Lr) is the second term of the ordered pair f,(r).

Suppose that
(8) rRr', o< u<k, and Sgbr) = S((I)r').

Let 6 be the largest ordinal such that

5 <¢ and Ngr) ;eNgr ).

Using (8), we obtain
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rRL(r, 1))) 2* +1+w)0TT,
and hence
(9) TRL(r, ) D) Z* + 1+ w)?.
Assume that
Sy, ¢sl'L .

Then from Lemma 2(i), (ii) it follows that

E '[(w*+1+w)g*-w*]+ 20 [(w*+1+w)f)-w]
(10) L,R“(*) L,R“

TR {(r, r))).
Using (8), (9), and (10), we get
(*+1+w)l 2@+ 1+0)?,
which is obviously false. Now we conclude that
if r, r' € F(R) and S((I)r) = S((;') for some ¢ < k,
(11) ,
then s‘(ﬁ = sff) for all p such that ¢ < p < k.

By an argument that is quite similar to the derivation of (11), but in which one
uses (11) and Lemma 2(iii) rather than Lemma 2(i), (ii), one obtains the following:

If r, r' € F(R) and if 8§ = 8{¥'") for some ¢ < «,

(12) () _ ()
then Np‘r = N’ for all pu suchthat ¢ <p < k.
Now put
(13) r~r' if r, r'e F(R) and Sir) = Sgrl) for some t < k.

It follows from (11) that ~ is an equivalence relation over F(R). Note that each
equivalence class r/~ is an interval of R. Let S x be a relation with

F(S ) = {r/~[ r e FR)},
and let
(r/~, r'/~) € SK if r/~ = r'/~ or if r/~ precedes r'/~ in R.
We can now define a function f, on F(R) as follows:

(14) £ .0) = W) r/e).
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If r ~ r', then from (13) and (12) we find that N{*) = N{*'") for almost a1l 1. On the
other hand, suppose that

re FR), Ne 8¢ N = N(r), and N, = Nér) for almost all ¢.
Let 6 be the largest ordinal such that Ng # N%r), and suppose that

f6+]_(r) = ((N(gr)’ °tt, Ngr), .“)L< 5+1° SG)‘

By (1), there exists an r* € F(R) such that

f541(0*) = ((Ng, ===, Ny, =+2) | 6,15 88)-

It follows from (13) and (11) that
f,(r*) = (N, r/~).

For each s € F(S K) choose an appropriate sequence X(s) € 8%. Using (14), we
obtain

K

R x(s)’

= 2z
fK S’SK
from the isomorphism above we conclude (7). The lemma follows from (6) and (7).

THEOREM. Le! « be any ovder type. Then o is homogeneous and scatteved if
and only if

o = (w*+1+ w)g Jor some ordinal p.

For each such o theve is only one p.

Proof. Suppose « is homogeneous and scattered. Let y be the smallest ordinal
with the property

(1) a # (w*+1 +w)g' -0 for every type 6.
Obviously p # 0; by Lemma 5,
(2) a = (co*+1+w)é‘t'1 -¢ for some ¢.

If ¢ =1, our conclusion is at hand. Assume that ¢ # 1; then from (2) and Lemma 4
we obtain

¢ = (W*+w)- ¢ for some ¢',
and hence
— % -1 . % e Al — * LY
a = (w +1+cu)0 (w*+w) - ¢' = (w +1—!—w)0 ¢,

in contradiction to (1). The uniqueness of the exponent is obvious. Reference to
Lemma 1 completes the proof.
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The theorem above was stated in the abstract [4]. A related result was proved in
[7]; translated into the terminology of order types, the latter result is the following:
an order type « # 0 is pevrfectly symmetric if whenever a =8+, 8 #0, and y # 0,
then B* =+, It is shown that a type « is perfectly symmetric if and only if
o=(w*+1+ w)g for some ordinal p. (There is a slight flaw in this formulation,
since the type 2 is an exception.) One might suppose that one could prove the follow-

ing equivalence without using either the result of ['7] or the theorem above:
o is homogeneous and scattered if and only if

a # 2 and o is perfectly symmetric,

However, neither the author nor the referee was able to do so.
Let HS denote the class of homogeneous scattered types.
COROLLARY 1. Tkhe algebras (Ordinals, +) and (HS, : ) are isomovphic.

Proof. From the theorem.
Now let

GS = {al for some group @&, there exists a scattered

linear ordering R of ® and 7(R) =« }.

COROLLARY 2. GS = HS.

Proof. Trivially, (w* + 1+ w)g is the ordering of the one-element group, while
if p> 0, then (w*+ 1+ w)g is the type of an ordering of the free Abelian group with

m generators, where m is the cardinality of p. Hence HS C GS. Since every
linear ordering of a group must be homogeneous, GS C HS.

Our final corollary is a metamathematical remark. The reader is referred to the
Introduction of [6] and to [5] for the relevant definitions.

COROLLARY 3. (i) Let R and S be homogeneous scatteved velations with
T(R) #1 and 7(S) # 1. Then R and S ave elementarily equivalent in the avithmeli-
cal theory of one binary velation.

(ii) The class of homogeneous scatteved velations is not elementarily closed in
the arithmetical theory of one binary velation.

Proof. The statement (i) is an almost immediate consequence of [5, p. 228,
Theorem 2.12]. Now suppose that 7(R) = w* + w and that 7(T) = (w* + w)-2. It fol-
lows from the theorem just quoted that R and T are elementarily equivalent; on the
other hand, T is not homogeneous.
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