THE DEGREE OF APPROXIMATION BY POSITIVE CONVOLUTION OPERATORS

Philip C. Curtis, Jr.

1. Introduction. Let C(T) denote the space of continuous functions defined on the unit circle T. If $p_n(t)$ is a trigonometric polynomial of degree at most n and f is a nonconstant function in C(T), it is clear that as $n \to \infty$,

$$(L_n f)(x) = (f * p_n)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) p_n(x - t) dt$$

cannot converge faster to f(x) in the sup norm than the Fourier coefficients of p_n approach 1. Thus it follows that if $L_n f$ is the arithmetic mean $\sigma_n f$ of the partial sums of the Fourier series for f, and if $||f - \sigma_n f|| = o(1/n)$, then f must be identically constant, a fact first observed by Hille [3].

It is the purpose of this paper to show that if for each n, $p_n(t)$ is a nonnegative trigonometric polynomial of degree at most n and $L_n f = f * p_n$, then

$$\|L_n f - f\| = o\left(\frac{1}{n^2}\right)$$

implies that f is identically constant, provided

$$\hat{p}_{n}(0) - 1 = o\left(\frac{1}{n^{2}}\right)$$
, where $\hat{p}_{n}(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} p_{n}(t) e^{-kit} dt$.

There exist well-known examples of positive convolution operators of this type, with the property that for certain nonconstant functions the convergence is $O(n^{-2})$. Our theorem extends an earlier result of Korovkin [5], who showed that in general one can not achieve the best polynomial approximation to f(t) by a sequence of positive operators, if that approximation is $o(n^{-2})$.

Theorems of this type are known for certain choices of the operators L_n (see for example Butzer [2]). A somewhat similar result for approximation in the sup norm to continuous functions on the unit interval by Bernstein polynomials has been proved by de Leeuw [4]. He showed that $\|B_n f - f\| = o(1/n)$ implies that f is linear.

Since the main results are valid also in the spaces $L_p(T)$ $(1 \le p < \infty)$, we adopt the following terminology. We denote by E any one of the Banach spaces C(T) and $L_p(T)$ $(1 \le p < \infty)$. For $f \in E$, and a nonnegative trigonometric polynomial p_n , the formula

Received August 14, 1964.

This research was supported by the National Science Foundation and by TRW Space Technology Laboratories.

$$(L_n f)(x) = (f * p_n)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) p_n(x - t) dt$$

defines a bounded linear operator in E that commutes with translation by points in T. Translation by $x \in T$ will be written U_x , so that $(U_x f)(t) = f(x + t)$. The symbol L_n will always indicate an operator of the above type.

In Section 3 we prove that if $f \in E$ and $\|L_n f - f\| = o(n^{-2})$, then f is constant provided that $\hat{p}_n(0) - 1 = o(n^{-2})$. We also give a generalization, in the case that E = C(T), to operators that do not commute with translation. In Section 2 we discuss results of Korovkin that give conditions on a sequence of positive linear operators T_n in C(T) guaranteeing that

$$\|T_n f - f\| \rightarrow 0$$
 for each f in C(T).

These results extend to the spaces $L_p,$ with little or no change in proof. Specifically, if $\left\{T_n\right\}$ is a sequence of positive linear operators in E (f ≥ 0 almost everywhere implies $T_n f \geq 0$ almost everywhere), then $\|T_n f - f\| \to 0$ for each f, if

$$\sup_{n} \|T_{n}\| < \infty \quad \text{ and } \quad \|T_{n}e_{k} - e_{k}\| \rightarrow 0 \quad \text{for } k = 0, 1,$$

where $e_k(x) = e^{kix}$. This should be contrasted with standard results on uniform boundedness requiring that $\|T_n e_k - e_k\| \to 0$ for all k.

- 2. We now prove the theorem of Korovkin for the space E.
- 2.1 THEOREM. Let T_n be a uniformly bounded sequence of positive linear operators in E. Then $\lim_{n\to\infty} T_n f = f$ for each $f \in E$ provided that $\lim_{n\to\infty} T_n e_k = e_k$ for k=0,1.

Proof. Since the continuous functions are dense in E, $T_n f \to f$ for each $f \in E$ provided this is true for each continuous f. Positivity of the operator T_n implies that for f real and continuous, $T_n f$ is real. Moreover, positivity coupled with the assumption that $T_n e_k \to e_k$ for k = 0, 1 implies that $T_n e_{-1} \to e_{-1}$.

So we assume that f is real and continuous, and we let $\psi(t) = \sin^2 t/2$. For $\epsilon > 0$, pick δ such that $|t - x| < \delta$ implies $|f(t) - f(x)| < \epsilon$. Then, if $M = ||f||_{\infty}$, it follows that for all t and $x \in T$

$$|f(t) - f(x)| \le \varepsilon + \frac{2M}{\sin^2 \delta/2} \psi(t - x).$$

For $|t-x|<\delta$ this is clear; and if $|t-x|\geq\delta$, then $\psi(t-x)/(\sin^2\delta/2)\geq 1$. Applying the positivity of T_n , we have for each $x\in T$ and all $t\notin F_x$ (F_x a null set of T depending on x) the inequality

$$|(T_n f)(t) - f(x)(T_n e_0)(t)| \le \varepsilon (T_n e_0)(t) + \frac{2M}{\sin^2 \delta/2} (T_n U_{-x} \psi)(t).$$

From this it follows that for almost all x

$$|(T_n f)(x) - f(x)(T_n e_0)(x)| \le \varepsilon (T_n e_0)(x) + \frac{2M}{\sin^2 \delta/2} (T_n U_{-x} \psi)(x).$$

Here we use the fact that if the g_i are measurable on T, the h_i are continuous, and $\sum_{i=1}^{n} g_i(t) h_i(x) \geq 0$ for each x and all $t \notin F_x$ (F_x a null set depending on x), then

$$\left\{ (t, x): \sum_{i=1}^{n} g_{i}(t) h_{i}(x) < 0 \right\}$$

has zero product measure. From this it follows that $\Sigma_{i=1}^n g_i(x) h_i(x) \geq 0$ almost everywhere. For if $\Sigma_{i=1}^n g_i(x) h_i(x) < 0$ on a set E of positive measure, then by the continuity of h_i , for each $x_0 \in E$ there exists an open set U such that $x_0 \in U$ and

$$\sum_{i=1}^{n} g_{i}(x_{0}) h_{i}(x) < 0 \quad (x \in U).$$

This implies $\{(t, x): \sum_{i=1}^n g_i(t) h_i(x) < 0\}$ has positive measure, which is a contradiction. Therefore, letting $\phi_n(x) = (T_n U_{-x} \psi)(x)$, we have the inequality

$$\|T_n f - f\| \le \varepsilon \|T_n e_0\| + \frac{2M}{\sin^2 \delta/2} \|\phi_n\| + \|f\|_{\infty} \|1 - T_n e_0\|.$$

To complete the proof, we need only show that $\|\phi_n\| \to 0$. Since

$$\phi_{n}(x) = \frac{(T_{n}e_{0})(x)}{2} - \frac{1}{4} \left[\frac{(T_{n}e_{1})(x)}{e_{1}(x)} + \frac{(T_{n}e_{-1})(x)}{e_{-1}(x)} \right],$$

this is clear.

2.2 COROLLARY. Let M(T) denote the space of regular Borel measures on T. Let $\{\mu_n\} \subset M(T)$, and assume $\mu_n \geq 0$ for each n. Then $\lim_{n \to \infty} \mu_n^* f = f$ for each $f \in E$ provided that $\lim_{n \to \infty} \hat{\mu}_n(k) = 1$ for k = 0, 1.

Proof. $\|\mu_n^* f\| \leq \|f\| \int_{-\pi}^{\pi} d\mu_n(t) = 2\pi \left|\hat{\mu}_n(0)\right| \|f\|$. Therefore the operators T_n defined by $T_n f = \mu_n^* f$ are uniformly bounded in norm. Since, for each n, T_n commutes with translation, the requirement that $\lim_{n \to \infty} T_n e_k = e_k$ for k = 0, 1 reduces to the statement that

$$\lim_{n\to\infty} \hat{\mu}_n(k) = 1 \quad \text{for } k = 0, 1.$$

- 3. We now discuss the degree of approximation afforded by positive operators in E that are convolutions by nonnegative trigonometric polynomials.
- 3.1 THEOREM. Let $L_n f = f^* p_n$, where p_n is a nonnegative trigonometric polynomial of degree at most n. Assume $1 \hat{p}_n(0) = o(n^{-2})$. Then if $f \in E$ and $\|L_n f f\| = o(n^{-2})$, it follows that f is identically constant.

The proof proceeds by a number of lemmas. First we need an extension of a well-known result concerning the degree of approximation in the sup norm to $|\sin x|$ by trigonometric polynomials of degree $\leq n$. Denoting this class of polynomials by π_n , we define for $f \in C(T)$

$$E_n(f) = \inf_{g \in \pi_n} \|f - g\|_{\infty}.$$

3.2 LEMMA. For each positive integer k, $\limsup_{n\to\infty} E_n(|\sin kx|) \ge k/4\pi$

Proof. Let $\delta_n = E_n(|\sin x|)$. As is well known [5, p. 165], $\delta_n \geq 1/4\pi n$. Let q_n be the unique trigonometric polynomial in π_n that approximates $|\sin x|$ best in the sup norm. The uniqueness of q_n guarantees that q_n is even and $q_n(0) = q_n(\pi)$. By the fundamental theorem of de La Vallée Poussin and Bernstein concerning best approximation by Tchebycheff families [1, p. 57], q_n is uniquely characterized by the existence of at least 2n+2 distinct points $x_i \in T$ such that if $x_1 < x_2 < \cdots < x_{2n+2}$, then either

$$\left|\sin x_{i}\right| - q_{n}(x_{i}) = (-1)^{i} \left\| \left|\sin (\cdot)\right| - q_{n}\right\|_{\infty}$$

or

$$|\sin x_i| - q_n(x_i) = (-1)^{i+1} \| |\sin (\cdot)| - q_n \|_{\infty}.$$

Therefore, if m = kn, $|\sin kx| - q_n(kx)$ alternates with equal magnitude at at least $k(2n+2) \ge 2kn + 2$ points $x_i \in T$. Since $q_n(kx) \in \pi_n$, we see that $q_n(kx) = q_m(x)$. Consequently

$$E_{\rm m}(|\sin kx|) = E_{\rm n}(|\sin x|) \ge \frac{1}{4\pi n} = \frac{k}{4\pi m}$$

which proves the lemma.

Next we need an extension of a result of Korovkin [5, p. 128]. His result is the case k = 1. The proof proceeds similarly.

3.3 LEMMA. For each positive integer n, let T_n be a positive linear operator mapping C(T) into π_n , and suppose that $\|T_n e_0 - e_0\|_{\infty} = o(n^{-1})$. Also, let

$$f_k(t) = \left| \sin \frac{kt}{2} \right|$$
 and $g_{n,k}(x) = (T_n U_{-x} f_k^2)(x)$.

Then for each integer $k \neq 0$, $\|g_{n,k}\|_{\infty} \neq o(n^{-2})$.

Proof. The identity $\sin a - \sin b = 2\cos \frac{a+b}{2}\sin \frac{a-b}{2}$ shows that for all t, $x \in T$,

$$\begin{split} \Big| \left| \sin kt \right| - \left| \sin kx \right| \Big| &\leq \left| \sin kt - \sin kx \right| \\ &= 2 \left| \cos \frac{k}{2} (t+x) \sin \frac{k}{2} (t-x) \right| \leq 2 \left| \sin \frac{k}{2} (t-x) \right| = 2 (U_{-x} f_k)(t). \end{split}$$

Therefore, letting $h_k(t) = |\sin kt|$ and using the positivity of T_n , we have the inequality

$$|(T_n h_k)(t) - |\sin kx|(T_n e_0)(t)| \le 2(T_n U_{-x} f_k)(t),$$

and for t = x,

$$\begin{split} \left| (T_n h_k)(x) - \left| \sin kx \right| \right| &\leq \left| \sin kx \right| \left| 1 - (T_n e_0)(x) \right| + 2(T_n U_{-x} f_k)(x) \\ &\leq \left| \sin kx \right| \left| 1 - (T_n e_0)(x) \right| + 2[(T_n U_{-x} f_k^2)(x) (T_n e_0)(x)]^{1/2}. \end{split}$$

The last inequality follows from the Cauchy-Schwartz inequality, valid for positive functionals on C(T). Using the fact that $T_n h_k \in \pi_n$, we see that

$$E_n(|\sin kx|) \le \|T_n h_k - |\sin k(\cdot)| \|_{\infty} \le \|e_0 - T_n e_0\|_{\infty} + \text{const.} \|g_{n,k}\|_{\infty}^{1/2}.$$

By Lemma 3.2 it is impossible that $\|g_{n,k}\|_{\infty} = o(n^{-2})$.

3.4 LEMMA. Let $p_n \in \pi_n$ and assume $p_n \ge 0$. If $1 - \hat{p}_n(0) = o(n^{-1})$, then for each positive integer k

$$\hat{p}_n(0) - \frac{\hat{p}_n(k) + \hat{p}_n(-k)}{2} \neq o(n^{-2}).$$

Proof. Define $L_n f = f * p_n$. Then

$$(L_n U_{-x} f_k^2)(x) = (L_n f_k^2)(0) = \frac{1}{2} \hat{p}_n(0) - \frac{1}{4} [\hat{p}_n(k) + \hat{p}_n(-k)],$$

and the result follows from Lemma 3.3.

We now prove Theorem 3.1. Suppose for some $f \in E$, $\|L_n f - f\| = o(n^{-2})$. We assert that f(k) = 0 for $k \neq 0$. If $f(k) \neq 0$ for some $k \neq 0$, then

$$|(\hat{p}_{n}(k) - 1)\hat{f}(k)| \leq ||L_{n}f - f||.$$

Hence $(\hat{p}_n(k) - 1) = o(n^{-2})$, and by taking real and imaginary parts we see that $\hat{p}_n(-k) - 1 = o(n^{-2})$. Therefore

$$1 - \frac{\hat{p}_n(k) + \hat{p}_n(-k)}{2} = o(n^{-2}),$$

and since $1 - \hat{p}_n(0) = o(n^{-2})$, we have a contradiction of Lemma 3.4.

3.5 COROLLARY. The conclusions of Theorem 3.1 hold if in place of the assumption that $1 - \hat{p}_n(0) = o(n^{-2})$ we assume $\hat{p}_n(0) < 1$.

Proof. $\hat{p}_n(0) \ge |\hat{p}_n(k)|$. Therefore $1 - \hat{p}_n(k) = o(n^{-2})$ for some $k \ne 0$ implies $1 - \hat{p}_n(0) = o(n^{-2})$.

For general positive operators mapping E into π_n , the problem of the rate of convergence seems to be much more complicated. For E = C(T), we can give an estimate on the best rate of convergence for a certain class of smoothed interpolation operators. Specifically, we consider operators of the following type. Suppose $p_n \in \pi_n$ and $p_n \geq 0$. Define

$$(P_n f)(x) = \frac{1}{2\pi m_n} \sum_{k=0}^{m_n-1} f(-\pi + \frac{2k\pi}{m_n}) p_n(x + \pi - \frac{2k\pi}{m_n}),$$

which we write $\int_{-\pi}^{\pi} f(t) p_n(x-t) d\mu_n(t)$. μ_n is a discrete measure, with total mass 2π , and with equal point masses at intervals of length $2\pi/m_n$.

3.6 THEOREM. If $1/m_n = o(n^{-1})$, $\hat{p}_n(0) - 1 = o(n^{-2})$, and $\|f - P_n f\|_{\infty} = o(n^{-2-\alpha})$ for some $\alpha > 0$, then f is constant.

Proof. By the familiar theorem of Bernstein [5, p. 95], the hypothesis implies that $f^{(2)}$ is continuous. For any such function,

(*)
$$\left| \int_{-\pi}^{\pi} f(x) dx - \int_{-\pi}^{\pi} f(x) d\mu_{n}(x) \right| = o(m_{n}^{-2}),$$

by the error estimate for the trapezoidal formula. Therefore, letting

$$f_n(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-kit} d\mu_n(t),$$

we have the relations

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-kit} \left[f - P_n f \right](t) dt = \hat{f}(k) - \hat{p}_n(k) \tilde{f}_n(k)$$

=
$$\hat{f}(k) [1 \hat{p}_n(k)] + \hat{p}_n(k) [\hat{f}(k) - \hat{f}_n(k)]$$
.

By (*), $\hat{f}(k) - \tilde{f}_n(k) = o(m_n^{-2})$. Therefore $||f - P_n f|| = o(n^{-2})$ implies

1 -
$$\hat{p}_n(k) = o(n^{-2}),$$

which is a contradiction unless $\hat{f}(k) = 0$.

It seems doubtful that this estimate is best possible.

REFERENCES

- 1. N. I. Achieser, Theory of approximation, Ungar Publ. Comp., New York, 1956.
- 2. P. L. Butzer, Zur Frage der Saturationsklassen singulärer Integraloperatoren, Math. Z. 70 (1958/59), 93-112.
- 3. E. Hille, On the analytical theory of semi-groups, Proc. Nat. Acad. U.S.A. 28 (1942), 421-24.
- 4. K. de Leeuw, On the degree of approximation by Bernstein polynomials, J. Analyse Math. 7 (1959/60), 89-104.
- 5. P. P. Korovkin, Linear operators and approximation theory, Gordon and Breach, New York, 1960.
- 6. I. P. Natanson, Konstruktive Funktionentheorie, Akademie-Verlag, Berlin, 1955.
- 7. A. Zygmund, *Trigonometric series*, Second Edition, Cambridge University Press, Cambridge, 1959.

University of California, Los Angeles