A REFINEMENT OF TWO THEOREMS OF KRONECKER
A. Schinzel and H. Zassenhaus

Kronecker [1] proved in 1857 that if an algebraic integer « different from zero
is not a root of unity, then at least one of its conjugates has absolute value greater
than 1. He proved also that if a is a totally real algebraic integer and a # 2cos p7w
(p rational), then at least one of its conjugates has absolute value greater than 2.
The aim of this paper is to refine the above statements as follows.

THEOREM 1. If an algebraic integer o # 0 is not a voot of unity, and if 2s
among its conjugates a; (i=1, **-, n) are complex, then

(1) max Jo;} >1+475°2,
1<i<n

THEOREM 2. If a totally real algebraic integey B is differvent from 2cos pmw
(o vational),and {B;} (i=1, ---, n) is the set of its conjugates, then

(2) max ‘Bi] > 24 4-2n-3
1<i<n

It would be possible to improve 4-5-2 and 4-2"-3 on the right-hand side of
inequalities (1) and (2) by constant factors. This, however, seems of no interest,
since probably the order of magnitude of

max |o;| -1 and max |B;] -2
1<i<n 1<i<n

is much greater than that given by (1) and (2), respectively. In fact, for o satisfy-
ing the assumptions of Theorem 1, we cannot disprove the inequality

(3) max Iai|>1+3,
1Lin n

where ¢ > 0 is an absolute constant.

Such a disproof would give an affirmative answer to a question of D. H. Lehmer
[2, p. 476], open since 1933, namely, whether to every & > 0 there corresponds an
algebraic integer @ such that

n

1 < I max(1, |og]) < 1+¢.

i=1

Inequality (3), if true, is the best possible, as the example « = 2 1/n shows. Con-
cerning inequality (2), we observe that there exist totally real algebraic integers, not
of the form 2cos p7 (p rational), for which
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max {[g;] - 2}
1<i<n

is arbitrarily small, This follows from a theorem of R. M. Robinson [3], according
to which there are infinitely many systems of conjugate totally real algebraic inte-
gers in every interval of length greater than 4, in particular, in [-2 + €, 2+ 2¢e], for
every € > 0.

In the subsequent proof of Theorem 1 we make frequent use of the following in-
equalities, valid for all positive integers m:

m 1 ( 1
(4) (1+x) <T_-—_m—x 0<X<—n—1—),
(5) (1 1)l/m>1 ! 0<y)
+_ .
y +m(y+ 1) y
Proof of Theorem 1. Let o; be real for i=1, +--, r and complex for
i=r+1, -, r+2s=n with o; =a;,, (i=r+1, -, r+s). Let
lay| = max  |a;| >1.
1<i<n

Suppose first that p <r. I |aZ - 1] > 1 for some i <r, then a? > 2, hence
lapl > log| > V2> 1447272

If |a§‘ - 1] < 1, then, noting that laﬁ - 1[ = [aulz -1 and [aiz - 1] < lozulz +1
(r <i<r+ 2s), we deduce from (4) that either

n

I |of - 1] < (layf - D(lay P + 12

i=1
2 2s lau|2 -1\*°
< (lay P -n2*® (1+ 122 77
2
< 225 |a“'| " 1
— 1-s(lay,* -1)
or
s(ley, P -1) > 1.
In the second case, (5) implies that
s-2

1\1/2 1 -
|a“|Z(1+§) > 1t gy > 1+4

Since no ¢; is a root of unity, Hrl1 laiz -1 I is a positive integer. Thus in the first
case s(|ay [ -1)< 1, and so

1-s(layl?-1) <225 (la, P -1).
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But then by (5)
1/2 1

> 144-5-2,
2(s + 225 + 1)

1
o] > (14 5

Next, suppose r < p <r+s. Let o, = loz'ul e2mi0 . By Dirichlet’s approxima-
tion theorem, there exist integers p and q such that
1 s-1
(6) |26q - p| <gps1 ad 1<q<L9-277
Hence
2m -s+l/2
4907 - 2mp| < —Tp < 2°° /
and
cos 4q07 > cos 2'S+1/2 > 1 - % (2'S+1/2)2 =1 - 2'25.
This gives the estimate
2 2 4 2 —2
I(auq - 1)(cep‘c_1ks -1)| = Iaul % - (o] +a“q) + 1
(7) = |au|4q—2|a“|zqcos4q97r+1
< ley|*9 -2le, %91 - 272%) + 1.
2q . 2q 2q
It |ef? - 1| > 1, for some i <r, then |, [*3 > |@;|°? > 2. Hence, by (5) and
(6),
.55
la,| > al/2a5 99727 5 yglesl 5 14 g82,
If |ozizq - 1| < 1, for all i <r, we use (4) and (7) and obtain the inequality
n
2 4 2 -2 2 2s-
I [af? - 1] < {]ap]* -2]ay|*@ - 27%%) + 1} (Jo, P9 + 1)75-2
i=1 2s-2
4q -2s 2q 277"
< {le -2(1 - 2%« +1}
= l ,U-I | U.l 1_(8_1)(Iau|2q _1);
or

2q
(s - D(lay [ -1)> 1.
In the second case, using (5) and (6), we obtain the estimate

1 1 -s-2
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If the second case does not occur, then 1 - (s - 1)(|a I?‘q -1)> 0. Sinceno a;
is a root of unity, I 1|a2q - 1| is a positive integer. Thus

2252 {]a, |* - 21 - 2729 e, |22 +1} > 1 - (s - 1) (e, ]?2 - 1),

hence

Iaiqlz _ 2q (2_ 28—1)+(1_ S_ ) > 0.

|all'| 225—1

Since ]aﬁq| >1 and

2s-1 S _ -2s+1
1—(2—W)+(1—§2—S_—2-)—-2 <0,

it follows that

loy |29 > 1 - (2s - 12725+ V{1 - (25 - 1)2725}% - (1 - 5-2°25¥2)

1+ 1
B 1 2s-1 1\2 °
S—-2-+v2 +(S'——2—)

Now (6) implies that

- z
2q (s+—é—+\/225‘1 + (s -%)2») <9-2° (s+%+\/225 Ty (s --;-) ) < 4572,

It follows from (5) and the last two inequalities that

|°l I 1 -s-2
pl = 7 2 )
2q (s+—%+\/225’1 + (s --;—) )

This completes-the proof of Theorem 1.

Proof of Theorem 2, Let  be a totally real algebraic integer satisfying the
assumptions of the theorem, and put

= p/2+Y(B/2)% - 1.

Then « is an algebraic integer and a? - Ba+1=0. All the conjugates of o are
zeros of polynomials g;(x) = x%-gjx+1 (i=1, 2, -*, n). At most 2n - 2 of them
are complex, since otherwise Iﬁi < 2, contrary to the original theorem of
Kronecker. Thus a is not a root of unity, and by Theorem 1,

max o] > 14401,
1< <2n

The complex conjugates of o have absolute value 1. It follows that for some i <n,

|B; |/2+V|8/2|% -1 > 1+4™1 > |g; |/2 -V |B/2F -1,
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hence g;(sgn B; (1 + 4-7-1)) < 0. But then

—lrﬁ > 1+4 1y g0l g2me3 o g g-2n3)

> @a+am )+
8l > ( e

This completes the proof.
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