CHARACTERISTIC NUMBERS AND HOMOTOPY TYPE

P. J. Kahn

1. INTRODUCTION AND STATEMENT OF RESULTS

Let © denote the oriented cobordism ring (see [10] ), and [M] the oriented co-
bordism class of the C*-manifold M, which we assume to be closed, compact, and
oriented, but not necessarily connected. £ is graded by manifold dimension. In
Q,, let I, denote the set of all classes of the form [M] - [M'], where M and M' are
n-manifolds of the same oriented homotopy type. It is clear that I, is a subgroup of
Q, and that the graded group I= (I, I;, I,, --+) is an ideal in Q.

The following result follows easily from the definitions and from certain elemen-
tary facts about Pontrjagin and Stiefel-Whitney numbers.

THEOREM 1. I, is a free abelian group. If n # 0 (mod 4), then I, = 0. If
n = 0 (mod 4), then co-rank I, > 1, where co-rank I, = rank (2,/I,).

Note that since Q4 ~ Z (this is well-known), Theorem 1 implies that I4~ 0.

Atiyah and Hirzebruch prove, in [1], that Pontrjagin classes are homotopy invar-
iants (mod 8). We use this to prove the following assertion.

THEOREM 2. The members of 1, aredivisible by 8.

The results of [5]—see the proof of Theorem 3 in Section 3, below—imply the
following.

THEOREM 3. € ®Q ~ Q[Y4] D (I1® Q).

(Explanation of notation: Q denotes the field of rational numbers, Q[Y4] denotes
the polynomial ring over Q generated by some Y4 € Q4 ® Q, and the symbol @ de-
notes vector-space direct sum.)

COROLLARY 3.1. I® Q is a prime ideal in Q @ Q.
COROLLARY 3.2. co-rank I, = 1.

COROLLARY 3.2.1. Theve is, up to a rational multiple, only one homotopy-
invariant rational linear combination of Pontvjagin numbers (the L, -genus (see [4,
p. 13]), being such a combination).

In [9], Tamura constructs certain 8-manifolds representing nontrivial elements
of Ig; in [5], we extend his results to dimension 12. This enables us to obtain par-
tial information about generators for Ig and I;,.

THEOREM 4. Let X; denote the class in Qg4; of complex projective 2i-space
(i=1,2, 3),andlet A=X,- X% B=Xs3-X,X,. Then
(i) Ig is generated by 2" - 48A, for some integer n (0 < n < 3), and

(ii) I, has rank 2 and contains 384X, A and 576B; all elements of 1, are of
the form rX; A + sB, wheve r =0 (mod 24) and s =0 (mod 72).
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In Section 3 we prove Theorems 1, 2, and 4 and derive all the corollaries. We
also derive Theorem 3 from the results of [5].

The main results of this paper that do not depend on [5] are proved in Section 4.
To state them, we need some notation.

Let TI(k) denote the set of all partitions of the integer k. For any odd prime p,
let TI(p, k) be the subset of TI(k) consisting of all partitions that contain no integers
of the form (p} - 1)/2. Finally, for any pair (p, k) satisfying

(i) p is an odd prime, and
(ii) 2k = 0 (mod p - 1),

let II'(p, k) C T(p, k) consist of all partitions containing only multiples of (p - 1) /2.
Let w(k) (respectively, n(p, k) aid n'(p, k)) denote the cardinality of Ti(k) (respec-
tively, of II(p, k) and II'(p, k)).

THEOREM 5. If 2k =0 (mod p - 1), then co—dimZp(I4k ® Zp) > 7'(p, k).

For (p, k) defined as above, let myp . denote the maximum number of linearly
independent, homotopy-invariant, (mod p)-characteristic numbers. Then the proof
of Theorem 5 establishes a further result:

THEOREM 6. my i > 7(k) + 7'(p, k) - 7(p, k).
CONJECTURE. Equality holds in Theorems 5 and®6.

This conjecture, if it is true, implies that certain (mod p)-characteristic classes
defined in [6, p. 120] (first considered by Wu in [12]), together with the relations
among (mod p)-characteristic classes, computed in [3] and partially computed in [2],
generate all the homotopy-invariant (mod p)-characteristic numbers.

The following problems, still unsolved, are listed in what I think is increasing
order of difficulty.

(1) What is the p-primary component of Q,4,/I4 (p > 2)? Theorem 5 gives only
a partial answer to this question.

(2) What is the 2-primary component of €4;/I4,? By Theorem 2 we know that
Q4 /14 contains elements of order 8.

(3) What is the ring structure of Q/I?

(4) Construct generators for I.

2. SOME KNOWN RESULTS AND DEFINITIONS

The reader who is familiar with the results and notation of [2] and of [6] or [10]
may, after a quick glance at the notational conventions, skip to Sections 3 and 4.

Let BSO denote the classifying space for the stable group SO. It is well known
that H*(BSO; Q) is a polynomial ring over Q generated by the universal Pontrjagin
classes, p; € H4i(BSO; Q). In another well-known characterization, certain classes
s(w) € H4(BSO; Q)—with w ranging over II(i) for all i—are shown to form a vector-
space basis over Q of H*(BSO; Q). We may describe the classes s(w) as follows:
suppose w € II(i); let 0, -+, 0; denote the elementary symmetric polynomials in
indeterminates t;, +--, t;; if w = (i, -, i) (r < i), let S,(o, -+, 0;) be the

polynomial in ¢,, <+, 0, expressing the symmetric polynomial with fewest
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monomials containing the term till ti}‘; let s(w) € H4(BSO; Q) denote the poly-
nomial Sy,(p;, -+, py); it is easy to show that s(w) is an integral linear combination
of monomials Pj, = Pj (1 <ju L), where (jy, ===, jg) € IL(i).

We now relate H¥(BSO; Q) to ©. Let M be any closed, compact, oriented, con-
nected C~ -manifold, and let tp;: M — BSO be the classifying map for the stable tan-
gent bundle. Then we denote by Pj, " Pj (M) the class t*M(le " Pj ) in HY(M; Q),

S S

where (j; --- j¢) € II(i). I dimension M = 4k and (j;, ---, j;) € H(k), we let
Pj, *** P [M] € Q denote the evaluation of p PREELS . (M) on the orientation class of
S 1 )

M. The numbers p T p; [M] are actually integers. As is shown by Pontrjagin,
S

they are invariants of cobordism class. Hence, there is defined a graded vector

space “evaluation” homomorphism

en: H¥(BSO; Q) — Hom, (2 ® Q, Q).

One of the chief results of [10] is that en is an isomorphism. This implies that
Q 41 is an abelian group of rank II(k) and that ©, is a torsion group, for
n # 0 (mod 4).

We can describe the result more fully by stating some of the properties of the
numbers s(w)[M], where
dimension M = 4k and w € II(k).
Clearly, the numbers s(w)[M], being integral linear combinations of the numbers
P, P [M], are integers. Given w € II(k) and w' € Ii(k'), we define their product
S

by juxtaposition. That is, if w = (i, -+, i,) and o' = (i}, -+, i.), then
ww' = w'w = (i, -, 1,1}, -, i),

We shall say that a partition w is a refinement of a partition w' = (i!, ---, i}),
written w > w', if w =w; -+ W, Wwhere w, € H(i}) (=1, -« s).

PROPOSITION 2.1 (Thom [10]).

s(w)[Mlx xMr] = 2 s(wl)[Ml] s(wr)[Mr].
W) e W=

This proposition has two important corollaries, also due to Thom, the proofs of
which can be found in [6] and in [10]:

COROLLARY 2.1.1. Let dim M, = 4iy for a =1, -, r. Then
0 ifwp iy, -, i),
s(w) [M; x .- xM_] =
s(ip)[M] - sGIIM] fw=(@G, =, i)

COROLLARY 2.1.2. Let {Ml} be a sequence of manifolds such that
dim M; = 4i. Let T be the subring of @ @ Q genevated by the [M;]l. Then the
[M;] ave independent ving genevators of T if and only if s(i) [M;]#0 (i=1, 2, --).
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Since such a sequence clearly exists (for example, let M; be complex projective
2i-space), @ & Q contains a graded polynomial ring I" with one generator of each
degree 4i (i=1, 2, ---),

Since eq: H*(BSO; Q) — € ® Q is a graded vector space isomorphism and I" and
H*(BSO; Q) are isomorphic as Q-algebras, it is easy to see that Q ® Q = I.

Milnor [8] computes the odd torsion of . To describe a key step in his compu-
tation, we introduce the following notation.

Let .« denote the (mod p)-Steenrod algebra, p being an odd prime. Let 8 €
denote the Bockstein coboundary operator, and (8) the two-sided ideal generated by
B. Milnor constructs the stable object MSO, a stable counterpart to the Thom space
MSO,, of the universal bundle over BSO, . Moreover, the Thom isomorphisms

¢n: H¥(BSOy,; Z,) — H¥(MSO,; Zp)
induce an isomorphism
¢: H*(BSO; Zp) — H*(MSO; Zy).

We can now state Milnor’s result as follows.

PROPOSITION 2.2, H*(MSO; Zyp) is a free A /(B)-module on genevators ¢s(:),
wheve N vanges over Il(p, k) for all k.

From this proposition, Milnor deduces the following result.
COROLLARY 2.2.1. Q has no odd torsion.

Milnor also characterizes the ring structure of © modulo 2-torsion (see [7]),
as follows:

PROPOSITION 2.3. @ modulo 2-torsion is a polynomial ring on genevators
Yk € Qux. The Yy are deleymined by the following necessary and sufficient con-
dition:

+p if2k+1=pl,
s(k)(Yy) =
+1 otherwise.

Finally, Wall [11] proves that the torsion elements of Q are determined by their
Stiefel-Whitney numbers. It follows that @, is the direct sum of certain numbers of
copies of the group Z and 7%, .

For any odd prime p, we can define the graded vector space homomorphism

*
ep: H (BSO; Z,) — HomzP Q@ ® Z,, Zp),

the definition being completely analogous to that of eqp. The structure of

H*(BSO; Zp) is similar to that of H*(BSO; Q), the only difference being the coef-
ficient field. Hence, H*(BSO; Z;) is a polynomial ring on the universal (mod p)-
Pontrjagin classes, still denoted by p;, p,, *--. Classes s(w) € H4*(BSO; Zp) are
defined as before and form a vector-space basis of H*(BSO; Zp). Hence,

H*(BSO; ZP) and HomZp (@ ® Zp, Zp) are vector-space-isomorphic. However,
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the homomorphism ep is not an isomorphism. The kernel of eg has been computed
in [2] and in [3]. We use the terminology of [2] to describe the result.

For any topological space X, let H**(X; Z) be the direct product of the singular
cohomology groups H(X; Zp) (1 0, 1, 2, ---). We can think of the direct sum
H*(X; Zp) as being included in H**(X' Zp) The cup-product operation gives both
H** and H* a skew-commutative ring structure. If x e H¥**(X; Z ) let (x); denote
its component in Hl(X Zp). It is easy to show (by inductive def1n1t1on for example),
that if (x), # 0, then x is 1nvert1b1e in H**,

Letting Pl(i= 0, 1, 2, ---) denote the Steenrod reduced powers with respect to
the prime p, we can regard P = PO + Pl 4+ P2 4 ... as an automorphism of rings
H*(X; Zp) — H¥(X; Zp). Clearly, P(H*(X; Zp)) = H¥(X; Zp).

We define
Wu(P) = P~1 ¢-1 Pg(1) € H**(BSO; Zp),

where ¢ is the extension to H**(BSO; Zy) of the Thom isomorphism described
above.

PROPOSITION 2.4. (ker ep)ax = {(Py - yWu(P)y| y € H¥*(BSO; Z,)}.

We express this result in a more convenient form. To do so, we still follow [2]
and define an automorphism D of H**(BSO; Zp) such that D% = 1 The class
1+ p; +p, + -« =p is invertible. Let D(p;) = (p'l)l, and extend D to the entire
ring by requiring that it be a ring homomorphism. Note that D preserves degree.
It is proved in [2] that if {K;} is any multiplicative sequence (see [4]) and
K =1+K; +K; + -+ € H*¥(BSO; Z), then D(K) = K-1.

PROPOSITION 2.4.1. ¢D(ker ep)a = {(Pé(y))ax| v € > 5*eso; Zp)}.

This result is proved in [2].
We remind the reader of one more result. If we replace P by Sq, we can define
classes
Wu(Sq) = Sqa~ e lsqeé(1) € H¥ (BO; 7,).
The class SqWu(Sq) € H¥**(BO; Z;) is the direct product of the universal Stiefel-
Whitney classes wi. Let q; = (PWu(P));.

PROPOSITION 2.5. (Wu [12]). (i) The classes w; ave homolopy invariants.
(ii) The classes q; arve oriented homotopy invaviants.

(This is the only time that we distinguish between homotopy and orientation-
preserving homotopy, the latter being understood elsewhere.)

It is now clear that all characteristic numbers obtained from the w; or from the
q; are homotopy invariants.

3. PROOFS OF THEOREMS 1 TO 4 AND
COROLLARIES 3.1, 3.2, AND 3.2.1

Proof of Theorem 1. Each torsion element of 2, (hence each torsion element
of I,) is determined by its Stiefel-Whitney numbers. Since, according to Proposition
2.5, these are homotopy invariants, they vanish on I,. Hence, I, has no torsion and
is free.
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If n #0 (mod 4), then rank Q, = 0 according to Corollary 2.1.2, so that I, = 0.

If n = 4k, then it suffices to show that the vector space 2, Q/I, ® Q is non-
trivial. Now ©, ® Q/I, ® Q is isomorphic to the subspace of Homn (Q,&® Q, Q)

that annihilates I, ® Q. But eél (annihilator (I, @ Q)) can be described as the sub-

space of all homotopy-invariant rational linear combinations of Pontrjagin numbers,
and, according to Hirzebruch, this latter subspace is not empty (it contains the Ly~
genus). Q. E.D.

Proof of Theovem 2. Since I, is free, we may suppose that I C © modulo 2-
torsion. Let {Y;} be a sequence of generators for £ modulo 2-torsion. If w de-
notes any partition (i, ---, i), let Y, = Y;, +++ Y;_. Recall that s(w ) (Yy) =0

r
unless w' > w. Moreover, s(w)(Y,,) = s(il)(Yil) s(ir)(Yir), which, according to
Proposition 2.3, is always odd.

We make use of the result of [1] that Pontrjagin classes—and, hence, the numbers
s(w)—are homotopy invariants (mod 8).

Fix k, and choose any ¢ € I4.. According to the above conventions, we may
write

o = E ay Y, .

well(k) *

We prove that ay, =0 (mod 8) for all w € Ii(k). We proceed by induction, using
the refinement-ordering < defined in Section 2. Note that s(w)(c) =0 (mod 8), for
all w € II(k).

Applying s(k) to both sides of the above equation, we obtain the relation

s )o) = 27 aysk)(Y,).
w€TI(k)

Since (k) 2 w for all w # (k), s(k)(Y,) = 0 for these w. Hence,
s(k)(0) = ay s(k)(Yy).

Since s(k)(Y,) is odd and s(k)(o) = 0 (mod 8), we obtain a, =0 (mod 8). This com-
pletes the first step of the induction.

Choose any w, € II(k) and assume that a, =0 (mod 8) for all w < wg. Then,
write

o - 27 ay Yy = 27 ay Yo + 2y Yo, -
weT(k) well(k)
w<wg wo 2w

Now apply s(wo) to both sides. Since the left side of the resulting equation is
congruent to 0 (mod 8), we see that

3w, s(wo)(on) + 2 ay, Swo)(Yy) = 0 (mod 8).
well(k)
Wo 2(.0
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Since s(wg)(Y,) =0 when wy 2 w, we get the relation awos(wo )(on) = 0 (mod 8),
so that, since s(wy)(Y, 0) is odd, ay, =0 (mod 8). Q.E.D.

Proof of Theorem 3. In [5], we construct elements Zy € I4 such that
s(k)(Zy) # 0 (k> 1). Choosing any Y; € Q4 that satisfies s(1)(Y;) # 0, and using
Corollary 2.1.2, we obtain the isomorphism

QR Q= Q[Y]_’ ZZ’ Z3’ "'] .

It now suffices to show that the ideal (Z,, Z,, ---) is identical with I & Q.
Clearly, (Z,, ---) € I® Q. Moreover,

co-dim (Z, =*)g <1 < co-dim 14X Q,

by Theorem 1. Hence, we have equality. Q.E.D.

Proof of Covollary 3.1. Theorem 3 implies that & ® Q/I® Q ~ Q[Y4]. Since
Q[Y4] is an integral domain, the result follows.

Proof of Corollary 3.2.
co-rank I, = dimg 4 ® Q/Iy ® Q = dimg (Q[Y,])y = 1. Q.E.D.
Proof of Corollary 3.2.1.
dimg, (annihilator of I, &® Q) = co-rank I;;, = 1. Q.E.D.

Proof of Theorem 4. We divide the proof into several steps.

(i) A tedious but elementary computation of Pontrjagin numbers shows that the
elements Z; € I; (i= 2, 3) constructed in [9] and [5], respectively, and used in the
proof of Theorem 3, are, respectively, 384A = 23 -.48A and 576B + 384kX; A, for
some large integer k. (Actually, the smallest such k is 293 423 189 379.) Since I
is an ideal, 384X; A € I ,, so that 576B € I;,.

(ii) According to Theorem 3, A generates Ig® Q, and X; A and B generate
I, Q. It follows easily from the known structure of Q g and £;, that some
integral multiple of A (respectively, some integral linear combinations of X; A and
B) generates Ig (generate I;,). Step (i) provides “upper bounds” for possible gen-
erators. In the next two lemmas we establish lower bounds. This will complete the
proof of Theorem 4.

LEMMA 3.1. The elements of Ig ave divisible by 48.

Proof. According to [1], Pontrjagin classes are homotopy invariants (mod 24).
Hence, the number pj is a homotopy invariant (mod 48). Elementary calculation
shows that s(2) = pi‘ - 2p, , so that s(2) numbers are homotopy invariants (mod 48).

Suppose that kA € Ig. It is well known that s(2)(A) = 5. Hence, 5k = 0 (mod 48),
whence k = 0 (mod 48). Q.E.D.

LEMMA 3.2. If r(X1A)+sB € I, then r =0 (mod 24) and s =0 (mod 72).

Proof., We tabulate some well-known characteristic numbers.
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XA B
s(3) 0 7
pi’ 63 118
P, P, 26 42

By a method similar to that in the previous lemma, and using the fact that the p;
are homotopy invariants (mod 24), we can show that

s3(c) = 0 (mod 23.32.7) for o € I,.
Moreover, we can obtain the relations
p‘;’(o) = 0 (mod 23 -32) and P, pz((r) = 0 (mod 23 - 3) for o0 € I,,.

~Now let 0 =rX; A+sB € I;,. Then, using the above table and congruences, we
deduce that

7s = 0 (mod 23 -3%.7),

63r + 118s = 0 (mod 2> - 3%),

il

261 + 425 = 0 (mod 2° - 3).

The desired congruences follow from these.

4. PROOFS OF THEOREMS 5 AND 6

We shall prove Theorems 5 and 6 by defining a subring V** c H**(BSO; 2;)
such that

4k A
ep(V ) C annihilator (I & Zp),

and by using the following proposition, which we shall establish below.
PROPOSITION 4.1. If 2k = 0 (mod p - 1), then dim, eP(V4k) = 7'(p, k).
P

Theorem 5 follows immediately from Proposition 4.1. To obtain Theorem 6, let
Mp’k C H4k(BSO; ZP) denote the subspace of all homotopy invariant characteristic
numbers. That is, let Mp,k = eI')1 (annihilator (I &® ZP)). Recall that we defined
mp i as the dimension of M, \ . Clearly, V4K + (ker ep)4k C M, - Results of
Milnor [8] imply that dimzP (ker eplax = (k) - 7(p, k). These comments, together

with Proposition 4.1, yield Theorem 6. It remains to define V** and to compute
dim, ep(V4k) for 2k =0 (mod p - 1).
P

Definition of V**. Let q; = (PWu(P));, as in Section 2; let V* be the subring of
H*(BSO; Zp) generated by the q;, and let V** De the direct product of the V*., Ac-
cording toTZ, p. 170],
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q, = s((p - 1)/2, -, (p - 1)/2).

1
———T T ——

i tuple
That is, q; may be considered as the ith elementary symmetric polynomial in inde-
terminates t(lp‘l)/z, .... Hence, V* c H¥*(BSO; Zp) is the vector subspace (over

Zp) spanned by those s(w) for which w consists only of multiples of (p - 1)/2.

LEMMA 4.2. ep(V*X) C annihilator (Isx ® Zp) and P¢(V**) C ¢(V**), where P
is the Steenvod powevr automovphism and ¢ is the Thom isomorphism, both de-
scribed in Section 2.

Proof. The first statement follows immediately from Proposition 2.5.

To prove the second statement, we fix a positive integer k and consider
H*(BSO,,41 3 Zp) and H*(MSOZn+1 ; Zp), for n large relative to 4k. It will be con-

venient (and correct) to thmk of the former as the ring of all symmetric polynomials
in indeterminates s% , oo (see [6]). The subring W* of all symmetric poly-
nomials in sll"1 JEETEI sn" 1s precisely the ring for which V* is the limiting case.

It will suffice to show that P¢,, 41 (WHK) C o1 (WH).

The action of ¢2,+1 can be described by the equation ¢,,+3(a) =81 -+ s, a (see
[8, p. 517]). Now let x € ¢2n+1(W4k). Then x is a linear combination of monomials
of the form

ij(p-1)+1 i(p-1)+1
Girlp-1+1 - ix(p-1)+1

1 r r+1 T Sh e
It is well known that P(s;) = s; + s¥. Hence,
ij(p-1)11 sl (p-1)+1 .
P( S;: Sr+1 Sn)
a -1 - -
=8, «- 8 Sll r(1+s )B1 (1+s£ )Br(1+s£’+i) - (1+sP 1y,

where ag=ig(p -1), Bp=ip(p-1)+1 (¢=1, ---, r). Clearly, the right side of
this equation is the sum of monomials of the same form as

i -1)+1 i (p-1)+1
1P cee g VP .
S1 Sr sr+1 n’

It follows that P(x) € ¢, . ,(W*). Q.E.D.

LEMMA 4.3. ¢(V*) is a free /(B)-module on genevators ¢s(\), where X
ranges over I1'(p, k) for all k satisfying the condition 2k =0 (mod p - 1).

Proof. 1In [8], Milnor describes a Zp-basis {P R} for ./(B), where R ranges
over all finite sequences of nonnegative integers (two sequences being considered
equal if they are equal up to their last positive term), and where PR is a certain
polynomial in the P!, By the second part of Lemma 4.2, therefore, ¢ (V*) is an
Z/(B)-module. Moreover, it follows from Proposition 2.2, that the elements ¢s())
(x € I1'(p, k)) are free over /(8). It remains to show that they generate ¢(V*)
over £/(B).

Milnor shows that corresponding to each partition w, there exists a unique
A € I(p, k), for some k, and a unique P such that
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PR(gs(V) = ¢s()+ 27 ay ¢s(w'),

w! <w

where < is a certain complicated ordering. Moreover, A is obtained from w by
deletion of all the integers (p’ - 1)/2 (j > 0).

Suppose w consists only of multiples of (p - 1)/2. Then the same is true of the
corresponding A. Hence, since ¢(V*) is an «#/(8)-module, PR(¢s(1)) € ¢(V*).
Therefore the sum

27 agidsw') = PR(gs() - ¢s(w)
w'<w

belongs to ¢(V*). Now, ¢(V*) has as a Z,-basis all ¢s(w) for which w consists only
of multiples of (p - 1)/2. Since the entire collection of ¢s(w) (w arbitrary) is
linearly independent over Zp, we deduce that each of the w' appearing in the sum
above contains only multiples of (p - 1)/2. Therefore, using the equation in the pre-
ceding paragraph, and the ordering <, we can prove inductively that for every parti-
tion w consisting only of multiples of (p - 1)/2,

QbS((D) = Ea» PR' ¢S()L'),

where A' ranges over II'(p, k) for all k satisfying the relation 2k = 0 (mod p - 1).
Clearly, almost all of the a),: are equal to zero. Since these ¢s(w) generate ¢(V*)
over Z,, the ¢s(1') generate ¢(V*) over #/(8). Q.E.D.

Recall that D: H**(BSO; Zp) — H**(BSO; ZP) is a certain automorphism of
period 2 (see Section 2).

LEMMA 4.4, D(V*¥) = v**,

Proof. According to Wu [12] the sequence {qi} is the multiplicative sequence
corresponding to the power series 1+t p-1 . Hence, if q=1+qy + -+, then
D(q) = q-! (see Section 2). It is easy to see that

i-1
S1y -1
(q )1 - _qi - Jzzl (q )_] qj__,j'

Hence, by induction, (q"l)i e v2i(p-1) , that is, D(q;) € V*. Therefore, D(V¥**)  v**,
and since D? = 1, V¥* < D(V**), Q.E.D.

Proof of Proposition 4.1. Consider the exact sequence

e
4k P
0 — (ker eI;)4k nwv — V‘?Lk — eP(V4k) — 0.
Applying the isomorphism ¢D to the second and third terms of the sequence, we ob-

tain an exact sequence

0 — ¢D(ker e,)g N H(VEE) - (vEK) bas 0,

where A = co-ker (¢D{ker ep) N ¢(V4k) — ¢(V4k)), p is the natural projection map,
and ¢D(VK) = ¢(V4k), by the previous lemma. Clearly, it suffices to compute
dimz A. ’
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LEMMA 4.5. The classes p¢s(A) (A € I(p, k) form a Z,-basis of A.

Proof. Suppose there exists a relation

27 aypgs(h) = 0;
rell' (p,k)

then
Z)a)\ ¢s(A) € ker p = ¢D(ker ep)4k N ¢(vik),

Hence, by Proposition 2.4.1, Z)a;t ¢s(A) is of the form (P¢(y)) 4, for

k-1

v e 2 HY¥(Bso; Zp).
1i=0

But, according to Lemma 4.3, the ¢s(A) are free over /(8), so that the a, must
be zero. Hence, the p¢s(r) are free over Z;.

Choose any w € II(k) consisting entirely of multiples of (p - 1)/2. Then, ac-
cording to Lemma 4.3,

1
qus(w) = EaR,,h,PR'qus(K') = Z)a'Rl’)\.lp(PR ¢S(}"))-
If R' is the zero sequence, then PR'=1. Otherwise,
PR'qbs(A') € ¢D(ker ep)4k N ¢(V4k) = ker p,

by Proposition 2.4.1. Hence,

pgs(w) = 2ibyipgs(rt),

where MA' ranges over II'(p, k). Therefore, the p(¢s(1')) generate A over Zp.
Q.E.D. '

Theorem 5 now follows from the observation that

dim., A = cardinality II1'(p, k) = 7'(p, k).
Zp

Remarks. a) Clearly, it would have been sufficient to show that

dimZPA > 7'(p, k),

and for this we need only have shown that the p¢s(r’) are linearly independent over
VA
P .

b) It follows easily from Lemma 4.5 that

(ker (epl VN = {(Py - yWuP), | vy € V¥}.
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