A REMARK ON MAXIMAL SUBRINGS

Otto H. Kegel

A well-known theorem in group theory asserts that a finite group is solvable if it
contains a maximal subgroup which is nilpotent and the Sylow 2-subgroup of which is
sufficiently restricted (see [2], [5], [1], [3]). A similar “commutativity theorem?”
(without any finiteness conditions) holds for rings. It is the purpose of this note to
prove the following proposition.

THEOREM. If the maximal subving M of the ring R is solvable, then M is an
ideal (containing all the additive commutators ab - ba of R). The set of all nilpotent
elements of R is a solvable ideal; it is weakly nilpotent if M is weakly nilpotent.

As in [4], we call an ideal I of the ring R solvably (nilpotently) embedded in R
if for every homomorphism o of R such that I9 # 0 there is an ideal J # 0 of RY
contained in I° such that J% = 0 (R J = JRY = 0). The ring R is called solvable
(weakly nilpotent) if it is a solvably (nilpotently) embedded ideal of itself,

Before proving the theorem we shall present our tools in a slightly more general
form than is actually necessary. We shall make free use of propositions (S) and (N)
of [4].

LEMMA 1. Each solvable ideal S of the ving R is solvably embedded in R.

Proof. By the general properties of the sum S(R) of all solvably embedded
ideals of R (see Proposition (S) of [4]), we may assume that S(R) = 0. We shall now
assume that the statement of the lemma is false, in other words, that S # 0, and then
exhibit an ideal I of S with I# I®> = 0. This contradiction yields the desired result.
So let A # 0 be an ideal of S with A2 = 0. Then clearly (SA)2 = 0, and SA is a left
ideal of R. Thus also the two-sided ideal SAR of R satisfies the equation
(SAR)% = 0. Hence, if SAR # 0 we have arrived at the desired contradiction. If
SA # 0 but SAR = 0, then SA is an ideal of R, and again we have a contradiction.
But if SA = 0, then A is a left ideal of R, and hence (AR)% = 0. Thus either AR+ 0
or A is an ideal of R; both cases yield the desired contradiction.

LEMMA 2. If N is a weakly nilpotent ideal of the ving R such that R> C N, then
the ving R is weakly nilpotent.

Proof. By the general properties of the sum N(R) of all nilpotently embedded
ideals of R (see Proposition (N) of [4]), we may assume that N(R) = 0, in other
words, that no nonzero ideal in R annihilates R from both sides. We shall now as-
sume that the statement of the lemma is false (that is, R # 0) and then exhibit an
ideal of R that annihilates R from both sides. This contradiction yields the result.
Since N(R) = 0, we see that R%# 0, hence N# 0. Let Z be the ideal of N consist-
ing of all the elements of N that annihilate N from both sides; clearly Z is an ideal
of R. If Z does not annihilate R from both sides, then RZ # 0, say, and

R(RZ) = (R)%Z < NZ = 0.
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The ideal RZR of R annihilates R from either side. Thus if RZR # 0, we get the
desired contradiction. But if RZR = 0, then RZ is already a nonzero ideal of R
that annihilates R from either side, and we still get the contradiction.

Remark. By iteration of the above lemma, it is obvious that R is weakly nil-
potent if only R/N is nilpotent and N is weakly nilpotent. We have not been able to
decide whether it suffices to assume that R/N is weakly nilpotent, in order to infer
the weak nilpotency of R.

The property P of rings is called ideal if the fact that the ring R has property
# implies that every ideal of R has property @$. The property $ of rings is called
consevvative if the fact that a left (right) ideal I of a ring R has property $ im-
plies that the ideal IR (RI) also has property §. The applicability of ideal proper-
ties rests on the following trivial fact.

LEMMA 3. If in the left ideal L of the ving R theve exists a bilateral ideal 1
of L having the ideal property $,then LI is a left ideal of R having property P.

We mention some simple examples of properties that are ideal and conservative:
nilpotency (of finite class), local nilpotency, the property of satisfying the equation
nr = 0 for some fixed integer n. It is an open question (known as the KoefZe prob-
lem) whether the property of being a nil ring is conservative.

LEMMA 4. Both the ring properties of being solvable and of being weakly nil-
potent are ideal and conservative,

Proof, That both properties are ideal is obvious. —Let L be a solvable (weakly
nilpotent) left ideal of R, and suppose LR is not solvable (weakly nilpotent). By the
properties of solvably (nilpotently) embedded ideals, we may assume that no nonzero
ideal I of R is solvably (nilpotently) embedded in LR, in particular, that LR con-
tains no ideal I# 0 of R such that I = 0 (ILR = LRI = 0). If we exhibit such an
ideal I of R contained in LR, then we have a contradiction to the assumption that
LR is not solvable (weakly nilpotent). Let V be the ideal of L consisting of all ele-
ments v of L with vR = 0.

First we consider the case where L is solvable: Let A be an ideal of L maxi-
mal with respect to the condition A D V D A%, If LA ¢ V, then the ideal LAR of R
is contained in LR and satisfies the relation (LARY C LAZ2R C VR = 0; this yields
the desired contradiction. H LA C V, choose an ideal B of L that is maximal with
respect to the condition B D A D B2 & V. Consider now the ideal LBR of R. This
ideal is contained in LR, and (LBRY C LBZ2R C LAR = 0. Again we have the desired
contradiction, and the lemma is established for solvability.

Now let L. be weakly nilpotent. Let ﬁv be the general term of the upper annihi-
lator chain of the weakly nilpotent ring L/V, and let N, be the preimage of N, in
L. If Ny is the first member of this chain satisfying the condition LN, R # 0, then
by definition of the upper annihilator chain, the ordinal @ is not a limit ordinal.
The ideal LN, of R is contained in LR and satisfies the conditions

(LNL,R)YLRC LN, _R=0 and LR(LN,R)C LN, _;R=0.
o = o-1 o = o-1

This contradiction completes the proof of the lemma.

If S is a subring of the ring R, then the left fransporter of R into S is the set
T.(R; S) = {x € R; RxES}

[we denote it by T, where no confusion is to be feared]. The intersection
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Ss(R; 8) = T, NS [= A]

is called the left attraction of S in R. The vight transporter T4 and the vight ai-
traction are defined in the same way. The intersection

T(R; S) = T, N T4 [=T]
is the fransporter of R into S; the intersection
AR; S) = A_NA4 [=A]

is the attraction of S in R.

Evidently, T, and A, are left ideals of R. Inthe subring {T, S} of R the
left ideal Ty is also a right ideal: for t € T4 and s € S, Rts = (Rt)s € S, and
ts € T;,. Hence, in particular, A; is an ideal of S. Furthermore,

T4qT,CSNT = A; T,T4 is anideal; T2, T2cCS.

Since S is a right ideal in {T, S} and a left ideal in {Ty, S}, both T and S are
ideals in {T, S}. In particular, we have established the following proposition.

LEMMA 5. If a proper subring S of the ving R+ 0 is not a propeyr ideal in any
lavger subring of R, then T = A C S. The relation S = A holds exactly if S is an
ideal of R.

LEMMA 6. If B is an ideal and conservative property of vings, and if the ving
R has no nonzero ideals with the propevty P, then for every subving S of R with the
property B, the left attraction Ag(R; S) is 0.

Proof. Let the subring S have property . The left attraction Ag of S in R,
being an ideal of S, also has property 9. Because P is conservative, the ideal
A R of R has property §; in other words, As R = 0 by assumption. But then the
left ideal A is even an ideal in R, and since it has property §, we conclude that
A =0.

The left idealizer of the subring S of the ring R is the set
I;(SCR) = {xeR; xSCS};

this is the largest subring of R that contains S as a left ideal.

LEMMA 7. If the subving S is a left ideal of every proper subving T of R con-
taining it, then every ideal J of S satisfying JS C Ag(R; S) lies in Ag(R; Ig(S C R)).

Proof. ¥ S is a left ideal of R, then the much stronger relation
Jc8S = As(R; S)

holds. I S is not a left ideal, then I (S C R) is a maximal subring of R. If the
statement of the lemma were false, then there would exist an element of the form rj
(r € R, j € J) that together with I.(S € R) generates all of R. Thus every element
of R may be expressed as a sum of elemenis of the form

m

IIt (rj)aV t, €I (SCcR), o, nonnegative integers.
3 14 2 14 _ 4 v

v=
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If such a summand is multiplied by J, then the product is contained in S if rj is the
final factor of the summand. If the final factor lies in Ig(S C R), then either the
summand is already contained in Ig(S C R) or else the final factor is preceded by rj
and hence the summand is of the form -+--rjt. But

ceeTjtd = oo rj(td) [ e TjS < ...rAS(R; S) ES.

Thus, no element of the form rj may lie outside I(S € R), and the lemma is proved.

If in this lemma we assume that S is already a maximal subring, and observe
that in the proof tJ is contained not only in M but also in J, then the argument that
proved Lemma 7 yields (together with a trivial induction step) the following result.

COROLLARY. If M is a maximal subring of the ring R, then every nilpotent
ideal of M is contained in A (R; M).

Evidently, this corollary entails several criteria for the nonsimplicity of rings.

Proof of the theorem, To show that M is an ideal, we shall construct a trans-
finitely ascending sequence of ideals J,, of R, contained in M and satisfying the
conditions

2 .
Jy29,, @y)°cdy,; HM#J, thend, ,#J

Since this sequence ascends transfinitely (if necessary), there exists some ordinal

U such that Ju = M.,

Choose Jy = 0. Assume that for all ordinals @ < g an ideal J, of R has been
chosen in M subject to the above conditions. We shall now choose a suitable Jg.

If B is a limit ordinal, choose Jg = U Ja -
a<p

If B is of the form « + 1, consider the factor ring R/J,. The attraction
Ag(R/Jy; M/J,) is locally nilpotent and contains all the nilpotent ideals of M/Jy,
by the corollary. Hence, if M/Jy # 0, then either AJ(R Ay ;3 M/Jg)R/Jy =0, in
which case A (R/Jy; M/Jy) is an ideal—or A (R/Jy; M/Jo)R/Jy is an ideal in
R/Jy; in any case, A;(R/Jq; M/Jq)R/J, is by Lemma 1 solvably embedded in
R/Jy , and thus there exists an ideal I in R/J, with I# I =0. X¥now IN M/Jy # 0,
we choose the preimage of thls intersection to be Jy4+1 . I I N M/J, = 0, then every
ideal K of M/J, with K+ K® = 0 attracts I from either side into M/Ja by the
above corollary, and hence annihilates I from either side. Thus K is an ideal of
R/J ; its preimage may be chosen as Jg41.

Thus, for every ordinal p an ideal J N of R in M is defined, and M is an ideal
of R.

Evidently, the factor ring R/M has prime order (hence it is commutative, and
all the commutators ab - ba of R lie in M). If R/M is a zero-ring, then R is
solvable. If R/M is a field, then none of the nonzero elements of R/M can be the
image of a nilpotent element of R; hence in this case all the nilpotent elements of R
are contained in M.

If M is weakly nilpotent, then there is nothing to prove, provided R/M is a
field. But if R C M, then Lemma 2 tells us that R is weakly nilpotent.

Remark, It would be of interest to obtain an analogous theorem for the case
where M is locally nilpotent, or even nil. Our method of proof does not seem to
work, because we have made essential use of the existence of nilpotent ideals in M.



A REMARK ON MAXIMAIL SUBRINGS 255

Note that our theorem and its proof hold also for an arbitrary associative
algebra over a commutative field with M a maximal subalgebra.
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