A MAXIMAL SET WHICH IS NOT COMPLETE
Gerald E. Sacks

The definition of maximal set is due to John Myhill. A recursively enumerable
set M is called maximal if the complement of M is infinite and if for each recur-
sively enumerable set S, either M contains all but finitely many members of S or
M contains all but finitely many members of the complement of S. Friedberg [2]
was the first to construct a maximal set. A recursively enumerable set K is said
to be complete if every recursively enumerable set is recursive in K. Post [3]
originated the notion of completeness and constructed a complete set. It has been
conjectured that every maximal set is complete. This conjecture is strongly false,
since we show there exist infinitely many degrees of unsolvability which are degrees
of maximal sets. Our main result is: a set is recuvsive if and only if it is recur-
sive in every maximal set.

Our argument is a marriage of Friedberg’s construction of a maximal set with
the combinatorial principle we introduced in [4]. It is possible to regard Friedberg’s
construction as a convergent sequence of Post-like constructions of the type found in
[3]. Similarly, our construction can be viewed as a convergent sequence of Fried-
bergian constructions. The convergence is made possible by certain concealed, ef-
fective properties of Friedberg’s construction. For example, at stage s of Fried-
berg’s procedure, several members of the apparent complement of R, the e-th
recursively enumerable set, are put into M. Then it is shown that eventually all but
finitely many members of the complement of R are put into M or all but finitely
many members of R. are put into M. Let S. be the set of all members of the ap-
parent complement of R, which are put into M at any stage s. Then S, is the
cumulative effect of Friedberg’s procedure applied to R.. It can be shown that S,
is recursive.

Let C be a nonrecursive set which is recursive in a complete set. Our formal
argument is devoted to the construction of a maximal set M such that C is not re-
cursive in M. We preface the formal argument with an intuitive sketch of its key
ideas. The requirements we must meet are:

F.: C is not recursive in M with Godel number e;

Ge: M contains all but finitely many members of R, or M contains all but
finitely many members of the complement of Rg;

H: the complement of M is infinite.

At stage s we attack G, for all e < s. For each e < s, we put finitely many mem-
bers of the apparent complement of R, into M, in order to meet G.. We exercise
restraint in order to satisfy requirements H and F. for each e < s. Occasionally
we are faced with a conflict between requirements F; and Gj; if i < j, we favor Fj;
if 1> j, we favor Gj. Thus if we wish to add members to M to meet requirement
Ge , we are unconcerned with possible effects on F; for any i > e, but we may be
deterred by the possible effects on F; for some i < e.
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Let us consider the interaction between requirements Fg, Gg and F;; we ignore
H, since it is met by a procedure similar to that of Friedberg. In order to meet Fp,
we must take steps to ensure that C is not recursive in M with GGdel number 0.
We want

cm) = {0}M(n)

to be false or undefined for some n, where c(n) is the representing function of C.
Since C is recursive in a complete set, there exists a recursive function c(s, n)
(defined below) such that limg c(s, n) exists and is equal to c(n) for all n. In order
to meet requirement F, at stage s, we compare c(s, n), a recursive approximation
of the representing function of C, with U(y(s, n, 0)), a recursive approximation of
the partial function {0}M(n). The function m(s, 0) is the length of the longest “ac-
ceptable” initial segment of the natural numbers on which c(s, n) and U(y(s, n, 0))
agree. (The definition of “acceptable” is a minor technical matter which we save
for the formal argument.) We now consider adding several members to M in order
to meet requirement Gy, but we are not permitted to add any members capable of
destroying the equality of c(s, n) and U(y(s, n, 0)) for any n < m(s, 0); we are dedi-
cated to preserving the latter equality. Requirement F; is treated like F, save for
the important difference that the equality associated with F; is vulnerable to change
as a result of an attempt to meet Gg.

The proof that Fg is eventually met depends only on the fact that C is not re-
cursive. Suppose Fg is not met. Then c(n) = {0}M(n) for all n. It follows that for
each n, limg c(s, n) exists, limg U(y(s, n, 0)) exists, and

limg c(s, n) = limg U(y(s, n, 0)).

Fix n. There must be a t such that c(t, n) = U(y(t, n, 0)) and n < m(t, 0); but
U(y(t, n, 0)) is not subject to change at any stage following stage t, since Fg has
the highest priority of any requirement. But then we have an effective method for
deciding whether or not n € C, since y is recursive. The proof that F; is eventu-
ally met is similar. The only difference lies in the fact that U(y(s, n, 1)) is vulner-
able to attempts to meet Gy. Fortunately, we are able to show that S(0), the set of
all numbers added to M for the sake of Gg, is recursive. It follows that when the
situation demands it, we can determine limg U(y(s, n, 1)) in an effective manner.
The recursiveness of S(0) is a consequence of the fact that Fy is eventually met.

We attempt to meet Gg by adding members to M from time to time in a fashion
similar to Friedberg’s [2]. The only difficulty we face consists of our inability to
add any number less than m(s, 0) to M at stage s. We know that Fg is met. Thus
there must be an n such that limg U(y(s, n, 0)) does not exist or

lim  c(s, n) # lim  U(y(s, n, 0)).

In either event the set {m(s, O)I s> 0} is bounded. But then any sufficently large
number can be put into M without harming F.

Unfortunately, we need an additional argument to show G; is met. We know F,
and F; are met. We cannot add any number less than m(s, 0) to M at stage s be-
cause of the need to protect Fg. This difficulty, as we have just seen in the case of
Gg, eventually vanishes. We cannot add any number less than m(s, 1) to M at stage
s, if the purpose of adding that number is to meet G;. Fg and ¥; are the only ob-
stacles confronting us whenever we wish to augment M for the sake of G;. Al-
though F, eventually vanishes, F; may not. Suppose we augment M infinitely often



A MAXIMAL SET WHICH IS NOT COMPLETE 195

for the sake of meeting Gg; each such augmentation may destroy an equality asso-
ciated with F;. In other words, it may happen infinitely often that for the sake of

meeting Gg, we add a number to M at stage s which is less than m(s, 1). It then
may not follow that the set {m(s, 1)| s> 0} is bounded. But all is not lost.

We are saved by Lemma 4 below. It follows from Lemma 4 that there exists an
n such that (a) or (b) holds:

(a) {1}M(n) is undefined;
(b) m(s, 1) < n for infinitely many s.

With the help of either (a) or (b) we can show there are infinitely many opportunities
for augmenting M in order to meet G;. Note that finitely many opportunities for
augmenting M for the sake of meeting G; may not be enough. The difference be-
tween Gy and G, is important: the obstacle to meeting G, created by F, eventu-
ally vanishes completely; the obstacle to meeting G created by F; may never
vanish completely, but it at least vanishes for a moment infinitely often. Require-
ment G, for each e > 1, has the same general character as Gj.

The main combinatorial difference between Friedberg [2] and the present paper
may be expressed as follows. In [2] a requirement R is confronted by an obstacle
finitely often; eventually a stage is reached when all obstacles to requirement R
vanish forever. In the present paper, requirement R may be confronted by an ob-
stacle infinitely often; nonetheless, we can show R is not confronted by any obstacle
at infinitely many stages of the construction. It is somewhat surprising that such a
severely limited ability to meet requirements is sufficient.

We conclude our paper with a conjecture concerning maximal sets.

THEOREM 1. A set is rvecursive if and only if it is vecursive in every maximal
sel.

Proof. Let C be a nonrecursive set. We define a maximal set M such that C
is not recursive in M. Let K be a complete, recursively enumerable set. If C is
not recursive in K, then any maximal set will serve for M. Suppose C is recursive
in K. Let c, k respectively, be the representing function of C, K respectively; let
e be a Godel number such that c(n) = {e}*(n) for all n. Let g be a recursive func-
tion whose range is K. We defihe two recursive functions:

0 if (Bt)y<g (g(t) =n),
k(s, n) =
1 otherwise,

c(s, n) = 1+U<uyy<s Ti'(g pl_:(s,i), e, n,y)) .
i<y

Then for each n, limg k(s, n) exists and equals k(n), and limg c(s, n) exists and
equals 1 + c(n). For each e and s, we define a finite set RZ as follows:

n € RZ - (EY)Y< STl(e, n, Y) .

If W is a recursively enumerable set, then there exists an e such that

w=U{rS|s>0}.
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We define seven recursive functions y(s, n, e), m(s, €), z(s, n, e), h(s, n, e),
r(s, n, e), L(s, n, e), and M(s, n) simultaneously by induction on s.

Stage s = 0. We set y(0, n, €) = m(0, e) = z(0, n, €) = 0 and
h(0, n, ) = r(0, n, €) = L(0, n, €) = M(0, n) = 1
for all n and e.

Stage s> 0. We define

uyTi (H pivl(s'l’i), e, n, y) if there exists sucha y < s,
Y(S7 n, e) = i<y
0 otherwise.

The definition of m(s, €) has two cases.

Case ml. There isa t < m(s - 1, e) such that
yis, t, e) # y(s - 1, t, e) & c(s, t) # Uly(s, t, e)).

Let m(s, e) be the least such t.

Case m2. Otherwise, let m(s, e) be the least t such that
m(s - 1,e) <t<2m(s-1,e)+s & (En), (c(s, n) # U(y(s, n, €))).

Note that the least number operator in Case m2 is bounded.

For each n such that M(s - 1, n) = 1, let z(s, n, e) be the sum of the members
of

{2°f|t<e & neRS} U {0};

if M(s -1, n)# 1, let z(s, n, e) = 2°t1 | Note that z(s, n, €) < 2871 unless
M(s - 1, n) # 1. For each n, let h(s, n, €) be the cardinality of

{m|m<n & z(s, m, e) = z(s, n, e)} .

We define r(s, n, €) and L(s, n, e) for all n and e by means of a simultaneous
induction on e:

0 if (Ei); < . (Et)i< , (Em)(m < y(s, t, e) & L(s, m, i) # M(s - 1, m)),

r(s, n, e) =
1 otherwise;
M(s - 1, n) if (Ei)j<(Ef)(t<m(s, i) & r(s, t,i) =1 & n<y(s, t, i),
M(s - 1, n) if h(s, n, e) < e V n € RS,

L(s, n, e) =

1
M(s - 1, n) if (H)g> > (2(s,t, €) # 1+ 2(s,n, e) Vz(s, t, e) = 2°7" ),
0 otherwise.

Finally, we set M(s, n) = 0 if and only if (Ee), ¢ (L(s, n, e) = 0).
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Since all quantifiers and least number operators occurring above are properly
bounded, and since c(s, n) is a recursive function, it is easy to verify that M(s, n)
is a recursive function. Observe that

1> M(s,n) > M(s+1,n) >0

for all s and n. Thus for each n, limg M(s, n) exists and is at most 1; let it equal
M*(n). Let M be the recursively enumerable set whose representing function is M¥*.
Then

neM — (Es)(M(s, n) =0).
We need two notes:

(N1) (s)(n)(e)(r(s, n, &) = 0 —r(s,n+1,¢e) = 0);
(N2) (s)(n)(e)(n < m(s, e) — y(s, n, e)> 0).

Note (N1) is an immediate consequence of the definition of r. Note (N2) is proved by
induction on s. If s =0, then m(s, e) = 0. Suppose s> 0 and

n)(e)n<m(s-1,e) — y(s -1, n, e)> 0).

Fix n and e, and suppose n < m(s, e). If case m2 applies to the definition of
m(s, e), then y(s, n, e) =y(s -1, n, e) and n< m(s - 1, e), or

0 < c(s, n) = U(y(s, n, e));

and consequently, y(s, n, €) > 0, since U(0) = 0. Suppose Case ml applies. Then
n<m(s -1, e) and y(s - 1, n, e) > 0. Since n < m(s, e), either

y(s, n, e) =y(s - 1, n, e)

or c(s, n) = U(y(s, n, e)).

We adopt some of the terminology of Friedberg [2]. If z(s, n, ) = i < 2%1 then
we say n is in the i-th e-state at stage s. If z(s, n, €) = 2e+i, then n has no e-
state at stage s. Note that n has no e-state at stage s if and only if M(s - 1, n) = 0.
Two useful notes concerning e-states are:

(N3) if s<t and n is in some e-state at stage s and at stage t, then the e-
state of n at stage s is less than or equal to the e-state of n at stage t;

(N4) if m and n are in different e-states at stage s, then there exists a unique
¢ < e such that the c-states of m and n at stage s differ by one, and such that the
lower c-state is even.

We say n is an inhabitant of the i-th e-state if for some s, n is in the i-th e-
state at stage s. We say n is a resident of the i-th e-state if there is a t such that
for all s> t, n is in the i-th e-state at stage s. We say the i-th e-state is well-
inhabited, well-resided respectively, if it has infinitely many inhabitants, residents
respectively. Observe that for each e, the 0-th e-state is well-inhabited, since
z(0, n, €) = 0 for all n and e.

LEMMA 1. The highest well-inhabited e-state has at least e vresidents.
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Proof. Let y exceed any number which is an inhabitant of an e-state higher
than the i-th, where the i-th e-state is the highest well-inhabited e-state. Let w
be so large that

(n)n<Y(ES)s<W(n €M —’M(SJ n) = 0)1

In addition, let w be so large that no number passes from the i-th e-state to a
higher e-state at stage s for any s > w. Let J be the set of all n such that n is
in the i-th e-state at stage s for some s > w. Let k be one of the e smallest
members of J. We show k is a resident of the i-th e-state. Suppose it is not.
Then L(s, k, ¢) = 0, M(s, k) = 0, and M(s - 1, k) = 1 for some s and c, where

s > w. First suppose c¢ > e. Then the definition of L(s, k, c¢) tells us that

h(s, k, ¢) > c. This means the set

{m|m<k & z(s, m, ¢) = z(s, k, )}
has at least ¢ members. But then the set
{m|m<k & z(s, m, e) =z(s, k, €) =i}

has at least ¢ members, since ¢ > e. This last contradicts the definition of Kk,
since e < ¢ and s > w. Now suppose c¢ < e. Then the definition of L(s, k, c¢) tells
us 21> z(s, v, ¢) = 1 + z(s, k, ¢) for some v > k. But then

z(s, v, e)> z(s, k, €) =i,
since ¢ < e and since the definition of z is based on the fact that_
1+ 24 2% 4 oo g 20 ¢ ontL

Then v < y, since v is in an e-state higher than the i-th at stage s. Now k<v <<y,
keM, M(s ~1,k) =1 and s> w. This last contradicts the definition of w.

It follows from Lemma 1 that the complement of M is infinite, since a resident
of an e-state cannot be a member of M. The proof of Lemma 1 is close to the one
given by Friedberg [2].

For each e, we say e is stable if limg y(s, n, €) exists and is positive for all n.
If e is not the Gddel number of a system of equations, then e is not stable. Thus
there are infinitely many nonstable e. Let {ej < e; < e, < ---} be the set of all
nonstable e. For each j, let n; be the least n such that limg y(s, n, ej) does not
exist or does equal 0. I

i=2c.2" and j=2 a2,
where 0 < cp < dk< 1, then we say j extends i. If i < getl and i+ 1 extends i,
then i is even and i < 2¢t! _ 1. We introduce two predicates.
Afe): if e is stable, then the set {m(s, )| s > 0} is finite.

B(e): if the i-th e-state is well-resided and i + 1 extends i, then the (i + 1)-th
e-state is not well-inhabited.

It will follow from (e)A(e) that C is not recursive in M. It will follow from
(e)B(e) that M is maximal. We prove (e)A(e) and (e)B(e) by means of a simul-
taneous induction on e.
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LEMMA 2. Ifrn< mf(s, e) and r(s, n, e) =1, then y(s, n, ) =y(s+ 1, n, e) and
n<m(s+1,e).

Proof. Since n < m(s, e), we have y(s, n, €) > 0 by Note (N2). But then

Y(S, n, e) = .UYT{( H p‘?d(s-l’j); €, n, Y) .
i<y

Since r(s, n, €) = 1, the definition of r tells us that L(s, j, i) = M(s - 1, j) when
j<y(s,n, e) and i < e. Since n < m(s, e) and r(s, n, €) = 1, the definition of L
tells us that L(s, j, i) = M(s - 1, j) when j < y(s, n, €) and i> e. Thus

M(s, j) = M(s - 1, j) for all j < y(s, n, e). But then y(s, n, e) =y(s+ 1, n, e).

Notes (N1) and (N2) make clear that the above argument works equally well for
each t < n. Thus

(t)tgn (Y(Sy t, e) = Y(S + 13 t: e)) .

Suppose m(s + 1, e) < n. Then m(s + 1, e) < m(s, e€), and Case ml of the definition
of m(s + 1, e) holds. This means there isa t < n (namely, m(s + 1, e)) such that
y(s, t, e) #y(s + 1, t, e).

LEMMA 3. (i)i<e B(i) — A(e).
Proof. We need another predicate.

D(i): if the j-th i-state is well-resided, k extends j, and k < gitl , then the
k-th i-state is not well-inhabited.

Fix i < e. We prove D(i) with the help of (i); <. B(i). Suppose D(i) is false.
Let j and k be such that the j-th i-state is well-resided, k extends j, k < 2+l
and the k-th i-state is well-inhabited. By Note (N4) and the fact that k extends j,
there must be a ¢ < i such that any number in the j-th e-state is in the j'-th c-
state, any number in the k-th e-state is in the (j' + 1)-th c-state, and j' + 1 ex-
tends j. But then the j'-th c-state is well-resided and the (j' + 1)-th c-state is
well-inhabited. These last remarks contradict B(c).

Let S(i) denote
{n| (Es)g>;(L(s, n,i) =0 & M(s = 1, n) = 1} .

Fix i < e. We use D(i) to show S(i) is recursive. Since the complement of M is
infinite, there exists at least one i-state which is well-resided. We claim there is
at most one well-resided i-state. Suppose the k-th i-state and the j-th i-state are
both well-resided. By note (N4), there is a ¢ < i such that any number in the j-th
i-state is in the j'-th c-state, any number in the k-th i-state is in the k'-th c-state,
j' and k' differ by 1, and the lower c-state, let us say j', is even. Then j'+ 1 ex-
tends j', the j'-th c-state is'well-resided, and the (§j' + 1)-th c-state is well-
inhabited. This last contradicts B(c).

Let the j-th i-state be the unique well-resided i-state. Let m be larger than
any member of

{n| k < 2i*! & Kk extends j & (Es)(z(s,n, i) = k) }

or
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{n|n is a resident of the k-th i-state for some k # j} ;

the existence of m follows from D(i) and the definition of j. Fix n> m. We give
an intuitive, effective procedure for deciding whether or not n is a member of S(i).
We fix w> 0, and we consider the status of n at stage w. If M{w - 1, n) = 0, then
we can tell whether n € S(i) by examining all stages of our construction prior to
stage w. Suppose M(w - 1, n) = 1, Suppose n is in the k-th i-state at stage w.
First let k# j. Since n> m, n is not a resident of the k-th i-state. But then there
must be an s > w such that M(s, n) = 0 or such that the i-state of n at stage s ex-
tends k. If M(s, n) = 0, then we can tell whether n € S(i) by examining all stages
prior to stage s. Now let k = j. Since n> m, n cannot be in an i-state higher than
the j-th at any stage s > w. Thus either n is a resident of the j-th i-state or

M(s, n) = 0 and z(s, n, i) = j for some s> w. Suppose there is an s with the latter
property. Then L(s,n,c) =0 & M(s - 1, n) = 1 for some c. We claim c # i. Sup-
pose c¢ = i. Then the definition of L provides us with a t such that

t>n, z(s,t, i) <2 z(s,t,i)=1+2(s,n,i), ngRP.

Then j is even, since z(s, n, i) = j and n £ R{. Let j' = z(s, t, i). We see that
j' < 21+l j' extends j, and t> n> m. This last is contrary to the definition of m.
Consequently, ¢ # i and n £ S(i).

We recapitulate. At-stage s =0, n is in the 0-th i-state. As we pass from one
stage to the next, n is put into M, or the i-state of n is extended, or the i-state of
n remains the same. If n lands in an i-state other than the j-th, then n must
eventually move on to M or to a higher i-state. If n lands in the j-th i-state, then
n £ S(i). If n is put into M, it immediately becomes clear whether or not n € S(i).
Since there are only 2itl 'y i-states, it eventually becomes clear whether or not
n € S(i). '

We suppose A(e) is false and show that, contrary to hypothesis, C is recursive.
Thus e is stable, and the set {m(s, e)] s> 0} is infinite. Let R(n, s) denote the
predicate

(I (m)t)(m < y(s,t,e) & t<n & i<e — m £8S(i) VvV M(s - 1, m) = 0)
& n<m(s,e) & s> e.
Since S(i) is recursive for each i < e, R must be recursive. Since the set
{m(s, e)] s> 0} is infinite, and since limg y(s, n, e) exists and is positive for
each n, it follows that (n)(Es)R(n, s). Let w(n) = usR(n, s). Fix n. We show that
limg y(s, n, e) = y(w(n), n, e). Let s> w(n) be such that
Y(W(n)a n, e) = Y(S’ n, e) & R(n’ S) .

Since R(n, s) holds, it must be that n < m(s, €) and r(s, n, e) = 1. It follows from
Lemma 2 and Note (N1) that

y(s+1,n,e)=y(s,n,e) & R(n, s+ 1).
Finally we show that
1 + c(n) = limg c(s, n) = U(y(w(n), n, e)).

If this last is true, then C is recursive, since w is recursive.
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Fix n, and suppose limg c(s, n) # U(y(w(n), n, e)). Let s* be so large that
c(s, n) = limg c(s, n) # U(y(w(n), n, e) = U(y(s, n, e))

for all s> s*. Fix s> s*, and suppose m(s - 1, e) < m(s*, e) + n. If Case ml of
the definition of m(s, €) applies, then m(s, e) < m(s*, e) + n. Suppose Case m2 ap-
plies. If n< 2m(s - 1, e) + s, then m(s, e) = m(s - 1, e) or m(s, e) < n; if
n> 2m(s - 1, e) + s, then m(s, e) < n. Thus m(s, e) < m(s*, e) + n for all s > s*,
This last is impossible since we have assumed that the set {m(s e) s > 0} is
infinite.

LEMMA 4. For each k and v theve is an s > v Such that

(j)j<k(r(sy nj; ej) =0V Y(S’ nj; eJ) =0V m(ss eJ) _<_ nJ) .

Proof. Fix k and v. Suppose there is no s with the desired properties. We

define an infinite, descending sequence of natural numbers.

We propose the following system of equations as a definition by induction of two
functions, S and Q.

S(0)
Q(t) = Ujj<k(r(s(t), nj, ej) = 1 & Y(S(t)’ nj, eJ) > O & nj < m(S(t), eJ));
S+ 1)

v

ps(Em)(s > S(t) & m < y(S(t), NG (¢) eQ(t)) & M(s, m) # M(S(t) - 1, m)).

Clearly S(0) > v. Suppose t> 0, S(t) is well-defined, and S(t) > v. Then Q(t) <k,
since we have supposed the lemma to be false. Thus

y(8(t), nq(y)» eq(e)) > 05

and limg y(s, nn(t)> €Q t)) does not exist or does equal 0. Consequently, there must
be an s> S(t) suc thag

0 < ¥(s, ng(y)» en@) * YSW®), ng(ys ea@);
this last can happen only if there is an m such that
m < Y(S(t), nQ(t), eQ(t)) & M(s - 1, m) # M(S(t) -1, m).

But then S(t + 1) is well-defined and S(t + 1) > v.
For each t> 0, let

u(t+ 1) = pm(M(S(t + 1), m) # M(S(t) - 1, m)).
Fix t> 0. We show u(t + 1) < u(t). Since we know that
u(t + 1) < y(S(t), ng(e) eq(r))
it suffices to show that
V(S(E), ng ey ey < ul®).

It follows from the definition of S that
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M(w, m) = M(S(t - 1) - 1, m)

whenever S(t) > w> S(t - 1) and m < y(S(t - 1), No(t-1) eQ(t_l)). Consequently,
M(S(t), u(t)) # M(S(t) - 1, u(t)).

There must be an i such that L(S(t), u(t), i) = 0 # M(S(t) - 1, u(t)). Let

s = S(t), n =Ny, e=eqn()-

Suppose e < i. Then r(s, n, €) =1 and n < m(s, e), since Q(t) < k. But then the
definition.of L tells us that y(s, n, e) < u(t), since L(s, u(t), i) # M(s - 1, u(t)) = 1.
Now suppose i < e. Then again r(s, n, €) = 1 and n < m(s, e€). But then the defini-
tion of r(s, n, e) tells us that y(s, n, e) < u(t). ‘

LEMMA 5. (i);<. A@) & ();. . B — Ble).

Proof (by veductio ad absurdum). Suppose the i-th e-state is well-resided,
i+ 1 extends i, and the (i + 1)-th e-state is well-inhabited. We claim there is a z
such that

(a) if ¢ < e, the j-th c-state is well-resided, k extends j, k < 2°*1  and n is
an inhabitant of the k-th c-state, then n < z, and

(b) if n is one of the e smallest residents of the i-th e-state, then n < z.

In the proof of Lemma 3, we observed that (i); « . D(i) follows from (i); < . B(i);
but then z exists. Let w be so large that every one of the e smallest residents of
the i-th e-state is in the i-th e-state at stage w. Let w have the additional prop-
erty that some number greater than z is in the (i + 1)-th e-state at stage w. Since
R(S: is finite for each ¢ and s, and since i + 1> 0, it follows that for each s, the
(i + 1)-th e-state is empty or has a greatest member. We define a partial function:

x(s) ~ greatest member of (i + 1)-th e-state at stage s.

We claim that x(s) is defined for each s > w and that x(s) > x(s - 1) for each
s> w. Clearly x(w) is defined, and x(w) > z. Fix s> w. Suppose x(s) is defined
and x(s) > z. To show that x(s + 1) is defined and x(s + 1) > x(s), we consider three
alternatives:

(1) at stage s + 1, the e-state of x(s) is i+ 1;
(2) at stage s + 1, the e-state of x(s) is greater than i + 1;
(3) at stage s, x(s) is put in M.

If (1) holds, then x(s + 1) is defined and x(s + 1) > x(s). Suppose (2) holds. Note
that i + 1 is odd, since i + 1 extends i. Then x(s) € R, since z(s, x(s), e) =i + 1.
It follows that x(s) € B‘.(s:“L1 - Rg for some c < e, since (2) holds. The c-state of

x(s) at stage s is well-resided, because ¢ < e and the i-th e-state is well-resided,
and because z(s, x(s), e) =i+ 1. Let the c-state of x(s) at stage s be j and at
stage s+ 1 be k. Then k extends j, and by (a), x(s) < z. But, fortunately, we sup-

posed x(s) > z, so (2) cannot hold. Suppose (3) holds. Then
L(s, x(s), d) # M(s - 1, x(s)) = 1

for some d. The definition of L tells us that
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29 > z(s, t, d) = 1+ z(s, x(s), d) & x(s) £ RS
for some t> x(s). First suppose d > e. Then
z(s, t, €) = z(s, x(s), ) & t> x(s).

This last contradicts the definition of x(s). Now suppose d = e. Then x(s) £ RZ,
and so z(s, x(s), e) is even. But z(s, x(s), €) =i + 1 is odd, since i + 1 extends i.
Finally, suppose d < e. Let z(s, x(s), d) =j and j+ 1 = k. The j-th d-state is
well-resided, since d < e and since the i-th e-state is well-resided. In addition, k
extends j, since x(s) £ Rz. We know that t is an inhabitant of the k-th d-state. By
(a), t<z < x(s). But t> x(s).

Thus x(s) is defined for all s> w, and x(s + 1) > x(s) for all s> w. We use the
function x to obtain the desired absurdity. If j < e and j is stable, let m(j) be the
greatest member of {m(s, j)| s> 0}; m(j) exists by A(). If j<e and j is not
stable, let m(j) be n,, where j = e;. Recall that n; is the least witness to the fact
that ¢, is not stable. If j < e and t < m(j), then limg y(s, t, j) exists and is posi-
tive. Let y be such that

MDj<e i< m)is, t, ) <y).
Let w* > w be so large that
(m)m<Y(S)SZW* (M(s - 1, m) = lim_ M(s, m)).
Let n be a resident of the i-th e-state such that n > z and n > y. It follows from
the definitions of n and z that h(s, n, €) > e for all sufficiently large s. We know i
is even, so n £ RZ for any s. The function x is unbounded, since it is nondecreas-
ing after stage w, and since the (i + 1)-th e-state is well-inhabited. Note that the
definition of R] implies that x(s) < s when x(s) is defined. But then for all suf-
ficiently large s,
s>x(s)>n & 2¢tl > 7(s, x(s), €) = 1 + z(s, n, e).
Let v> w* be so large that for each s > v,
h(s,n, €)> e & n£ RS & (Et)gs y>n 271> 2(s, t, €) = 1+ z(s, n, €)).
By Lemma 4, there is an s > v + e such that for each k< e,
r(s, n, e,) = 0 V y(s, ny, e) =0 VvV m(s, e) < np.
We claim L(s, n, e) = 0. Since s> v, it is enough to show
MDj<ceWls, t, ) =0V n>yls, t,§) Vms, i) <.
Fix j< e and t< m(s, j). Suppose j is stable. Then t < m(j), since m(s, j) < m(j);
and consequently, y(s, t, j) <y < n. Suppose j is not stable. Then j = e for some
k< e. If t<m(j), then y(s, t, j) < n. Suppose t> m(j) = ny. Then m(s, j) > ny,

and so

r(s, ny, e,) =0 V y(s, n, e,) = 0.
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If r(s, ng, e,) =0, then r(s, t, j) = 0, since n, <t and j = e, . It follows from Note
(N2) that y(s, ny, ey) > 0, since m(s, ey) > ny. Thus L(s, n, €) =0 and s> e.
Hence n € M. But this last is absurd, because n is a resident of the i-th e-state.

Lemmas 4 and 5 constitute a proof of (e)A(e) and (e)B(e). We use A(e) to show
C is not recursive in M with Gddel number e. Suppose

1+ cn) = {e}Mn)

for all n. Then limg y(s, n, e) exists and is positive for each n. By A(e), the set
{ m(s, e)’ s> 0} is finite; let its greatest member be m. Let s be so large that
s> m and

c(s, n) = 1+ cn) = {e}Mm) = Uly(s, n, e))

for all n < m. Consider the definition of m(s, e). If Case ml holds, then
m < m(s, e), which is impossible by the definition of m. If Case m2 holds, then
m < m(s, e), since m < s.

We use (i)ig o B(i) to show that M contains all but finitely many members of
R. or M contains all but finitely many members of the complement of R.. Sup-
pose not. Then there exist two different e-states such that each is well-resided.
Then, for some ¢ < e, there exist two c-states, the j-th and the (j + 1)-th, such that
the j-th is well-resided, the (j + 1)-th is well-inhabited, and j + 1 extends j.

THEOREM 2. Theve exist infinitely many degrees which ave degrees of maxi-
mal sets.

Proof. We proceed exactly as in Theorem 1 save for one detail. Let
Co, C1, -+, C, be a finite sequence of nonrecursive sets of degrees less than or
equal to 0'. Let K be a complete set. For each i < m, let e; be such that

{e} @) = ¢;(m)

for all n, where Kk, c; respectively, is the representing function of K, C; respec-
tively. Define k(s, n) as in Theorem 1. For each i < m, let

c(i, s, n) = 1+U(uyy<sTi(.I<j[ pi.{(s’j), e;, n,y)) .
J Y

In the definition of m(s, e) at stage s> 0, replace e by (e); and c(s, n) by
c(m = (e)y, s, n). The argument of Theorem 1 is easily repeated. A(e) is now used
to prove that C__ . (&)o is not recursive in M with Godel number e.

It is a result of Dekker [1] that each nonzero, recursively enumerable degree is
the degree of a hyper-simple set which is not hyper-hyper-simple. In a forthcoming
paper, C. E, M. Yates will show that there exists a complete maximal set. In
another forthcoming paper, D. A, Martin will show that there exists a nonzero, re-
cursively enumerable degree which is not the degree of any maximal set. We con-
clude by wondering if there is any simple way of characterizing those recursively
enumerable degrees that are degrees of maximal sets.
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