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INTRODUCTION

In [6] we gave an algebraic version, in the context of polyadic algebras, of the
well-known theorem of Beth [1] in the theory of definition (see Theorem 2.9 below).
In that paper we saw how a generalization of Beth’s theorem due to Svenonius [13] is
embodied in the following polyadic statement reminiscent of elementary field theory:
every simple polyadic algebra admits a simple normal vich extension [6, Corollary
4.6].

In the present paper we shall obtain a further polyadic version of Beth’s theorem
suggestive of yet another chapter of abstract algebra: the theory of free products of
groups with amalgamation. It is well-known [11, p. 32] that in a free product of
groups with amalgamation the intersection of the factors is precisely the amalga-
mated subgroup. Our second algebraic version of Beth’s theorem is obtained by re-
placing the word “group?” in this statement by “polyadic algebra.” The proof of this
and the definitions of the free product of polyadic algebras with or without amalga-
mation occupy the first two sections of the paper.

Beth’s theorem is often presented in conjunction with Craig’s Infevpolation
theorem [2], [3]. In Sections 3 and 4 we give an algebraic treatment of Craig’s
theorem. In its algebraic setting the Interpolation theorem becomes a statement
about f7ee polyadic algebras.

For unexplained notations and elementary facts concerning polyadic algebras,
we refer to Halmos’s publications [7] to [10].

We are indebted to the referee for his simplification of our proof of Lemma 4.2.

1. FREE PRODUCTS OF POLYADIC ALGEBRAS

We assume that the reader is familiar with the concepts of (operational) system
or algebra, type of a system, subsystem, quotient system, direct product of a family
of systems of the same type, homomorphism of a system into one of the same type,
and so forth.

Let A* be a class of systems of a fixed type. All systems considered are as-
sumed to be members of A*. The following definition is well established [11].

(1.1) Definition. Let B* = { Bhl h € H} be a family of systems. The A*-free
product of B* is a family of monomorphisms f;: By, — B such that

(1.2) B is generated by the union of the f,(B;), and

(1.3) for any family of homomorphisms g;: By, — C, there exists a (necessarily
unique) homomorphism g: B — C such that g} = gf},.
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The homomorphism g is said to extend the g;. When there is no ambiguity, B
itself is referred to as the free product of B¥*. The unicity of the free product up to
equivalence is obvious. However, the free product may fail to exist for certain A*
and B*. We shall need the following existence theorem, which the reader should
compare with (viii) and (ix) in [12]. Indeed, since the class of I-polyadic algebras
is equational (for a fixed I), it satisfies the hypotheses of (viii), and we could have
invoked (viii) instead of Theorem (1.4) below. However, our theorem is stronger
than (viii) (because it does not require A* to be closed under the formation of
homomorphic images), and we give a direct proof of it.

(1.4) THEOREM. For the A*-free product of B* to exist it is sufficient that the
following two conditions be satisfied:

(1.5) A* is closed under the extraction of subsystems and the formation of divect
products; and

(1.8) theve exists a C € A* in which all members of B* can be imbedded.

Proof. Consider a set of representatives from all equivalence classes of
families of homomorphisms gn: B, — C such that . C is generated by the union of
the g, (By). Let {gpx: By — Ck[ h ¢ H} be a typical representative, k varying
over some (presumably large) set K. Set D = I Cy (the direct product system), and
define f: B;, — D by the equation f1(p) = { gnk(p)}, where p € B;,. Let B be the
subalgebra of D generated by the union of the f;(B;). From (1.5) it follows that
B € A*, and from (1.6) it follows that the f;, are monomorphisms. It is clear that
the family of monomorphisms f}: By, — B is the A*-free product of B*; for any
family of homomorphisms g,: B;, — C must be equivalent to a family of homomorph-
isms gpk: B — Cy, for some k, and can therefore be identified with it. If g de-
notes the restriction to B of the natural projection of D onto Cy, then gy = gf}, for
all h, as desired. m

For a fixed set I of variables, the class of all I-polyadic algebras satisfies (1.5).
If I is infinite and B* consists of locally finite algebras, then (1.6) is precisely
Theorem 2.6 of [6]. Therefore, if we assume I to be infinite, the free product of
any family B* of locally finite I-algebras with respect to the class of all I-algebras
exists. It is obviously also a free product with respect to the class of all locally
finite I-polyadic algebras.

2. FREE PRODUCTS WITH AMALGAMATION
Let M*= {my,: M — Bh| h €e H} be a family of monomorphisms. As before,
all systems considered are assumed to be in A*.

(2.1) Definition. A family of homomorphisms u,: B, — A is said to amalga-
mate M* if the homomorphism uw, my is independent of h.

(2.2) Definition. The A*-free product of B* = { Bh| h € H} with amalgamation
of M* is a family of monomorphisms v;,: B, — B satisfying the conditions

(2.3) B is generated by the union of the v (Bn),
(2.4) the family amalgamates M*, and

(2.5) for any family of homomorphisms w,: B, — A that amalgamates M*,
there exists a (necessarily unique) homomorphism u: B — A such that u, = uvy, .

By “polyadic algebra” we shall henceforth mean “locally finite I-polyadic algebra
of infinite degree.” The following theorem was proved in [6] (Theorem 2.7).
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(2.6) THEOREM. Leimij: M — B; (i=1, 2) be monomorphisms of polyadic
algebvas. Then there exist monomorvphisms u;: B; — A that amalgamale the m; .

From this theorem and the fact that the class of locally finite I-polyadic alge-
bras is closed under the formation of unions of increasing chains, one easily obtains
(by using Zorn’s lemma) the following proposition.

(2.7 THEOREM. Let {mh: M — B, | h € H} be a family of monomovphisms of
polyadic algebras. Then there exists a family of monomovphisms uy: By, — A that
amalgamates the my, .

Henceforth we assume that A* is the class of all polyadic algebras, and accord-
ingly that B* is a family of polyadic algebras and M* a family of polyadic mono-
morphisms,

(2.8) THEOREM. The A*-free product B of B* with amalgamation of M*
exists.

Proof. Let {fh: B,, — B Dbe the free product of B*. Let N be the intersection
of the kernels of the “extensions” to B of all families of homomorphisms
uy,: B;, — A that amalgamate M*. By (2.7), N N f,(B) = {0} for each h. From
this it follows that if we set vy, = nf,, (where n: B — B is the natural mapping), then
{vy: B, — B} isthe A*-free product of B¥ with amalgamation of M*. &

In [6, Theorem 4.2] we gave an algebraic interpretation of Beth’s theorem; it
reads as follows.

(2.9) THEOREM. Let A, be any extension of a polyadic algebva A, and suppose
p € A, -A. Then therve exist two homomorphisms e; and e, of Ay into some
algebva D such that e(p) # e,(p) and e; | A= e, | A.

We now propose another algebraic version of the same theorem.

(2.10) THEOREM. In the free product B of the family B* of polyadic algebras
with amalgamation of M*,the intersection of any two factors is precisely the amal-
gamated part, (More precisely, for any pair of distinct elements h; and h, of H,
the intersection of v, (B ) with v, (B, _) is v}, m;(M), which is independent of h).

1 1 2 2

We shall show that (2.9) and (2.10) are interdeducible. First we prove that (2.9)
implies (2.10). If the set

[Vhl(Bhl) N th(th)] - [thh(M)]

is nonvoid, let p be an element of it, and apply (2.9) (with A = v}, my(M) and
A = B) to obtain two homomorphisms e;: B — D (i = 1, 2) such that el A =e
and e;(p) # e,(p). Set vy, = e;vy, if h q& h,, and set Uy, =€V, - The family ?uh}

amalgamates M*. Let u: B — D be the extension of the u;, . Choose p; € By
1
(i =1, 2) such that Vhi(pi) = p. Then

e,(p) = elvhl(pl) = uhl(pl) = uvhl(pl) = u(p).

Similarly, e,(p) = u(p). Therefore e;(p) = e,(p), contradicting e;(p) # e,(p). M

To show that (2.10) implies (2.9), we let g;: A; — B; (i= 1, 2) be isomorphisms.
Let
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{vi: B; — B|i=1,2}

be the free product of the Bj with amalgamation of {g; | A, g2 | A}. Finally, let
e; =v;g; (i=1, 2). Since p ¢ A, (2.10) shows that ej(p) # e,(p). ®

We now let A* be the class of all (locally finite) polyadic algebras with equality
(and with a fixed infinite set of variables). In this context one must understand
“homomorphism?” to mean “equality homomorphism.” If B* = { By, [ h € H} is a
family of members of A*, the A*-free product of B* does not always exist. An
obvious necessary condition for its existence is that the subalgebra Aj;, of By
generated by (the range of) the equality of By, be independent of h to within iso-
morphism. This condition is also sufficient. To show this we use Lemma 3.1 of [6],
which can be stated as follows.

(2.11) LEMMA. Let {Ch | h € H} be a family of subalgebras of a polyadic algebra
C. If the union of this famwiily genevates C, and if E is a common equality for the
Cy, then E is an equality for C.

From this lemma it follows that if, for each h, mp: A — Ay is an isomorphism,
then the A*-free product of B* is the free product B of B* (with respect to the
class of all polyadic algebras) with amalgamation of the my, .

From these considerations there follow (equivalent) obvious equality versions of
(2.9) and (2.10).

3. FREE POLYADIC ALGEBRAS

In the remaining two sections we shall confine ourselves to equality algebras, in
order to avoid certain technicalities connected with operations and constants. Ac-
cordingly, all polyadic homomorphisms considered preserve equality.

Let 0: A — A be an homomorphism, P an n-ary predicate of A, T an n-ary
operation of A, and ¢ a constant of A (n a positive integer). In [6, Section 1] we
defined the images 0P, oT and oc by the equations

(3.1) (oP)(iy, -+, iy) = o[P(iy, -, in)],

(3.2) o [S(T@y, -+, i)/I)p] = S[(e D)y, -, i,)/T]op,
(3.3) o [S(c/I)p] = S(oc/T)op,

in which 3 C I, p € A, and (i, -, ip) € I™

Let V be a set of predicates and W a set of operations and constants of a (poly-
adic) algebra A. Assume that A is generated by V together with W, in other
words, that A has no proper (equality) subalgebra containing the ranges of all
predicates in V and closed under all operations and constants in W.

(3.4) Definition. A mapping of the union of V and W into an algebra B is a
function that assigns to an n-ary predicate in V an n-ary predicate of B; to an
n-ary operation in W, an n-ary operation of B; and to a constant in W, a constant
of B.

(3.5) Definition. The union of V and W is said to generate A freely if any map-
ping of it into any polyadic algebra B is induced by an homomorphism of A into B
(in the sense of (3.1), (3.2) and (3.3)). The algebra A is said to be free if it admits
a set of predicates, operations, and constants that generates it freely.
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The existence of free algebras can be established by adapting an argument that
works more generally for classes of operational systems closed under the formation
of subsystems and direct products. For notational convenience we state and prove
the existence theorem only for a simple special case. The unicity is obvious.

(3.6) THEOREM. There exists an algebra A freely genevated by a monadic
bredicate P, a binary opervation T, and a constant c.

Proof. Let K be a set indexing a set of representatives of all equivalence
classes of quadruples (Al » Py, Ty, ¢y ), where A, is an algebra generated by a
monadic predicate P;, a binary operation T,;, and a constant c;. (Two quadruples
(A, P;, Ty, cy) and (A,, P,, T,, c,) are declared equivalent if and only if there
exists an isomorphism o: A; — A, such that cP;=P,, 0T; =T, and oc; =c5,.)
Let (A, Py, Ty, c, ) be such a typical representative. Let (A, P, T, c) be ob-
tained as follows: A is the subalgebra of the direct product of all A, generated by
P, T and c; and P, T and c are defined in an obvious fashion (for instance, T is
defined by the equation

siT(@,, i,)/3lp = {slTy (G, i,)/I]p.},

where p = {p) } is in the direct product, (i;, i,) € I%, and J C I). It is easy to show
that A is freely generated by P, T and c. Indeed, let f be a mapping from

{P, T, c} into an algebra B. To define the homomorphism ¢: A — B such that

oP = fP, and so forth, we may assume that B is generated by fP, fT, and fc, and we
may therefore identify (B, fP, fT, fc) with some (A, Py, Ty, ¢i). The desired o
is simply the projection homomorphism A — Ap. =B

4. CRAIG’S INTERPOLATION THEOREM

The algebraic version of Craig’s interpolation theorem [2, Theorem 5, p. 267] is
the following statement.

(4.1) THEOREM. Let V and W be rvespectively a set of predicates and a set of
operations and constants freely genevating an (equality) polyadic algebva A. Let Vi
and V , be two subsets of V whose union is V, and let V ( be the intersection of V,
and V ,. Finally, for i= 0, 1, 2, let A, be the (equality) subalgebra of A generated
by V, and W. Then, if a3 <a, with a; € A; and a, € A,, there exists an element
ag€ Ag such that a; <ag <a,.

Our proof is similar to an argument in logic showing that A. Robinson’s consist-
ency lemma implies Craig’s theorem; the role of Robinson’s lemma is here played
by Theorem (2.6).

(4.2) LEMMA. Let By, B;, B, B be Boolean algebras such that B, C B,
B, C B, and By C B) N B,. Assume that a; <a,, witha, € B, and a, € B,,
assume theve is no ag € By such that a; < ag < a,. Then there exist maximal
tdeals Ny and N, of By and B,, respectively, such that Ny N By =N, N By,
a; ¢ Ny, and a, € N, .

and

Proof. Let us introduce certain proper ideals of B, B;, and B,: We denote by
N(Zl) the ideal of B, generated by a,, and we define N((?l) = N(Zl) N By . The proof
will be complete when we have established the existence of a proper maximal ideal
N, of B; such that N(()l) C N; and a'1 € N, , and of a proper maximal ideal N, of
B, including (N; N B,) U Ngl).
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If N; could not be chosen proper, it would follow that ag V a'l = 1 for some
ag € Bp such that aj; < a,, and hence that a; <a, <a,, contrary to our assump-
tion. As for N,, if s V a, =1 for some s € B, then s < a, and hence
s' € Ng ) N; and s ¢ N, . It follows that (N; N B,) U’ N(l) generates a proper
ideal of B,.

Since N; N Bj is a maximal ideal of Bj included in N, , it is obvious that
N; N By =N, N B,. Moreover,a; ¢ N, and a, € N,. m

(4.3) LEMMA. Let V,W,V; and A; (i=0, 1, 2) be as in Theorem (4.1). For
each i, let B; be the Boolean algebra of closed elements of A;. Then, if a; < a,,
with a) € By and a, € B,, there exists an ag € By such that a; <a;<a,.

Proof. Let B be the Boolean algebra of closed elements of A. Then
Bg, By, By, B, a;, and a, satisfy the hypotheses of Lemma (4.2). We may there-
fore let Ny and N, be as in the conclusion of (4.2) and set Ny =N; N B,. We apply
(2.8), letting m; (i = 1, 2) be the “natural” monomorphism A, /No — A i/ N; .
(Division of a polyadlc algebra by an ideal of its algebra of closed elements means
the same thing as division by the generated polyadic ideal.) We obtain monomorph-
isms w;: A;/ N; — D that amalgamate the m;. Composed with the natural homo-
morphisms n;: A; — A;/N;, these w; yield (because of the amalgamation) a well-
defined mapping of V U W in D, -This mapping extends to an homomorphism
p: A — D such that p(a;) = 1 and p(a;) = 0, contrary to the hypothesis a; <a,. B

(4.4) LEMMA. If A is a free algebra, then any extension C obtained by fixing
the new variables in a dilation of A is free.

Proof. Let V U W generate A freely, and let K be the set of fixed new vari-
ables. Then V U (W U K) generates C. Let f be a mapping of V U (W UK) into an
algebra D, and let 0: A — D be the homomorphism that induces f | (Vv U W). The
generic element p of C is of the form P(iy, ---, i,, k1, ---, K,), where P is an
(n + m)-ary predicate of A, m and n are positive integers, (i}, ---, i) € I, and
(ky, +--, k;y) € K™, The homomorphism ¢ can be extended to an homomorphism
0: C — D that induces f by setting op = (o0 P)(iy, ---, ip, fky, ==, k).

Proof of Theorem (4.1). Let {i;, -+, i,} be a common support for a; and a,,
and let C be obtained from A by the adjunction of n new fixed variables k;, ---, k.
Let P; and P, be n-ary predicates of A, and A,, respectively, such that
a; = Py(iy, -, iy) and a, = Py(iy, -, iy). Then Py(ky, -, k) < Pylky, -, k).
By virtue of Lemmas (4.4) and (4.3) applied to C instead of B, there exists a closed
element by of C, (the subalgebra of C generated by Vo U [W U{ky, -, k }])
such that Pl(kl , o, k) <bg < Py(iy, *-, ip). The element by has the form
Po(kl , e ) where Po is some n-ary predicate of A,. It follows that
a; <a, <a2, where aj = P (1 i), W

To conclude, we remark that since A is obviously the free product of A; and
A, with amalgamation of A,, Ay = A; N A, by virtue of Theorem (2.10).
course, this could easily be proved directly.
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