EXTENSIONS OF IRREDUCIBLE MODULES
Irving Reiner

Let G be-a finite group of order g, let R be the ring of all algebraic integers in
an algebraic number field K, and let RG be the group ring consisting of the R-
linear combinations of the elements of G. We consider left RG-modules which are
finitely generated over R. For two such modules M and N, let ExtllaG (M, N) de-

note the R-module whose elements are the classes of extensions of M by N. When
there is no danger of confusion, we shall write Ext instead of Ext%{G.

A well-known form of Maschke’s Theorem (see [1], which is a general reference
for results cited in this note) asserts that

g-Ext(M, N) =0

for all RG-modules M and N. As has been shown by D. G. Higman [3], it is useful
to associate with each fixed RG-module M, the collection d(M) of all elements a € R
such that

a-Ext(M, N) =0 for all N.

Of course, d(M) is an ideal in R, and g € d(M).

Now let M be an RG-module which is torsion-free over R, and set
KM=K®X®g M.

We shall call M absolutely irveducible if the KG-module KM is absolutely irreduc-
ible, that is, if L ® g KM is irreducible for each extension field L of K. For such
a module M, it is well known that the dimension (KM: K) divides g. Let us set

du =B
M™ (KM: K)*

The purpose of this note is to establish the following surprising result.

THEOREM. Let M be an absolutely ivrveducible R- torsion-free RG- module.
Then d(M) is the principal ideal genevated by dm. In othev wovds, Az annihilates
Ext%lG (M, N) for all N, and any element of R with this property must be a multiple
Of dM'

In proving the theorem, we may first reduce the problem to the case where the
underlying ring R is a principal ideal ring. For P a prime ideal in R, let Rp
denote the valuation ring in K belonging to the P-adic valuation of K. Then

ExtllaG(M, N) = (direct sum) 2 EthlapG RpM, RpN),
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274 IRVING REINER
and so it suffices to work over the principal ideal rings Rp instead of over R. To

avoid changing notation, we assume for the remainder of the proof that R is a prin-
cipal ideal ring containing all the algebraic integers of K.

Next we need a lemma which is due to D. G. Higman [2]. For the convenience of
the reader, we shall sketch a proof thereof.

LEMMA. Let M be an arbitrary R-lorsion-free RG-module. An element a € R
lies in d(M) if and only if theve exists an R-endomorphism u of M such that

(1) 2 xtu (xm) = am (m € M).
x€ G

Proof. Define the RG-module F = RG ®i M, with the action of G given by

y(22b; ® my) = 2yyb; ® ym; (b; € RG, m; € M,y € G).

It is easily seen (Swan [4]) that an R-basis of M is also an RG-basis for F, so F

is a free RG-module. Let G = {xq, ---, Xg}, where x; =1. Then F=2Zx;® M, and
the map

Exi® m; — Zmi

is an RG-homomorphism of ¥ onto M. The kernel M' of this homomorphism is the
RG-submodule of F given by

g
M'= 2J(x; - 1) ® M.
i=2
Now let N be any RG-module. The exact sequence

0—>M —F—M—0

gives rise to the exact sequence

0
Homp, (F, N) = Homg (M', N) — Ext (M, N) — 0,
since Ext(F, N) = 0. Thus for a € R, a-Ext(M, N) = 0 if and only if
(2) a-HompgM', N) ¢ 6{ Homg(F, N)} .

Let a € R, and suppose that (1) holds for some u € Homy (M, M). Define
v € Homg (M', M') by

v{2(x - 1) @ m;} = 2(x; - 1) ® u(my).
From (1) we find readily that

27 y'lvy=a-1M,,
vy€G
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where 1pt denotes the identity map on M'. To prove that (2) holds, let h be any
element of Homgg(M', N). Then hv € Homg(M', N). Since M is R-torsion-free,
F=M@ M' as R-modules, and so we can choose t € Homg(F, N) such that

t(m') = hv(m'), m' € M'. If we set

w = 2 y‘lty,
ve G

it is easy to see that w € Homy g(F, N) and that 6(w) = a-h. Hence (2) is true, and
therefore a € d(M).

Conversely, let a € d(M). Then in particular,
a-Homp(M', M") € 6 {Homg(F, M)},
and so a- 1y, = 6(w) for some w € Homgg(F, M'). Set
g
w(l® m) = 27 (x;- 1) @ uym) (m e M).
i=2

Then each u; € Homg(M', M'"), and from the relation a -1y, = 6(w), one finds that (1)
holds with u chosen as -u;. This completes the proof of the lemma.

Assume now that M is absolutely irreducible, and suppose that relative to some
R-basis, M affords the matrix representation

x - A® = @y®)  xeq),

where the indices i and j range from 1 to (KM: K). One of the standard orthog-
onality relations states that

(3) 22 aij(x)ars(x'l) =d, 0, Gjr'
x€QG

Let U be the diagonal matrix with diagonal entries 0, .--, 0, 1, of the same size as
each A(x), and let I be the identity matrix of that size. Then (3) yields

27 Ax"DHUA®) = dy,I.
x€G

If u is the R-endomorphism of M defined by U, the above may be written as

2 x 1y (xm) = dpgm (m € M).
X€EG

By virtue of the preceding lemma, we conclude from this that d,; € d(M).

Furthermore, let a € d(M). Then there exists a matrix V = (Vij) with entries in
R, such that

27 Ax-DHVA®X) = al.
x€qG

By using (3), this gives
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a = dM . Evii s

and so a is a multiple of dp4. This completes the proof of the theorem.
COROLLARY. Let N be an absolutely ivreducible R-torsion-free RG-module.
Then
dy - Ext (M, N) =0 jforall M,

and any element of R with this property must be a multiple of dy.

Proof. Let N* denote the contragredient of N, and M* that of M. Then N¥* is
also absolutely irreducible, and dyy = dy. The result now follows from the iso-
morphism Ext (M, N) = Ext (N*, M*).
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