ON A THEOREM OF FISHER CONCERNING THE HOMEOMORPHISM GROUP OF A MANIFOLD

Morton Brown

An n-manifold M^n is a connected, separable metric space each point of which has an open neighborhood whose closure is homeomorphic to the n-cell I^n . An internal cell of M^n is a subset Q of M^n for which there exists a homeomorphism of Euclidean space E^n into M^n such that Q is the image of the unit n-cell of E^n . Alternatively, Q is a topological n-cell in the interior \mathring{M}^n of M^n whose boundary \mathring{Q} is locally flat in M^n [1]. A homeomorphism h of M^n is supported on a set $K \subset M^n$ if h(x) = x whenever $x \notin K$. Suppose that $H(M^n)$ denotes the group of all homeomorphisms of M^n onto M^n and $FH(M^n)$ denotes the subgroup generated by homeomorphisms supported on internal cells. Then according to Fisher [2] $FH(M^n)$ is simple and is the intersection of all nontrivial normal subgroups of $H(M^n)$.

Suppose $\epsilon>0$ and $FH_\epsilon(M^n)$ denotes the subgroup of $FH(M^n)$ generated by homeomorphisms supported on internal cells of diameter less than ϵ . The purpose of this note is to prove that

$$FH(M^n) = \bigcap_{\varepsilon > 0} FH_{\varepsilon}(M^n),$$

that is, a homeomorphism h is in $FH(M^n)$ if and only if for each $\epsilon > 0$, h is the composition of homeomorphisms supported on subsets of the interior of M^n of diameter less than ϵ . A similar theorem holds for the piecewise linear case.

The following lemma has a straightforward proof.

LEMMA 1. Let $I^n = I^{n-1} \times I^1$ and suppose X is a compact subset of I^n such that $X \cap \dot{I}^n \subset I^{n-1} \times 0$. Then there is a piecewise linear homeomorphism h of I^n such that $h \mid \dot{I}^n = 1$ and $h(X) \subset I^{n-1} \times [0, 1/2)$.

LEMMA 2. Let h be a homeomorphism of $I^n = I^{n-1} \times I^1$ onto itself such that $h \mid I^n = 1$ and $h(I^{n-1} \times 1/2) \subset I^{n-1} \times [1/3, 2/3]$. Then there exists a homeomorphism h' of I^n such that

$$h' \mid (\dot{I}^n \cup I^{n-1} \times [0, 1/4] \cup I^{n-1} \times [3/4, 1]) = 1$$
 and $h' \mid I^{n-1} \times 1/2 = h \mid I^{n-1} \times 1/2$.

Proof. Let g be a piecewise linear homeomorphism of $I^{n-1} \times [1/4, 3/4]$ onto $I^{n-1} \times [0, 1]$ that is the identity on $I^{n-1} \times [1/2, 2/3]$. Let h': $I^n \to I^n$ be defined by

$$h'(x) = \begin{cases} x, & x \in I^{n-1} \times ([0, 1/4] \cup [3/4, 1]) \\ g^{-1}hg(x), & x \in I^{n-1} \times [1/4, 3/4] \end{cases}$$

Remark. If h is piecewise linear, so is h'.

LEMMA 3. Let $h\colon I^n\to I^n$ be a homeomorphism such that $h\mid \dot{I}^n=1$. Then h is the composition of five homeomorphisms, each the identity on \dot{I}^n , and each supported on one of the cells

Received August 15, 1962.

$$I_1 = I^{n-1} \times [0, 1/2], I_2 = I^{n-1} \times [1/2, 1], I_3 = I^{n-1} \times [1/4, 3/4].$$

Proof. Apply Lemma 1 (with a suitable change of parameter) to get a piecewise linear homeomorphism g_1 of I_1 onto I_1 such that $g_1 \mid \dot{I}_1 = 1$ and

$$g_1(h(I^{n-1} \times 1/2) \cap I_1) \subset I^{n-1} \times (1/4, 1/2].$$

We may think of g_1 as a piecewise linear homeomorphism of I^n by requiring g_1 to be the identity on I^n - I_1 . Similarly, there exists a piecewise linear homeomorphism g_2 of I^n such that g_2 is the identity on \dot{I}^n , g_2 is supported on I_2 and

$$g_2(h(I^{n-1} \times 1/2) \cap I_2) \subset I^{n-1} \times [1/2, 3/4)$$
.

Hence $g_2\,g_1\,h(I^{n-l}\times 1/2)\subset I^{n-l}\times (1/4,\,3/4)$. Applying Lemma 2 (with a suitable change of parameters), we can get a homeomorphism g_3 of I^n such that g_3 is the identity on \dot{I}^n , g_3 is supported on I_3 , and

$$g_3 | I^{n-1} \times 1/2 = g_2 g_1 h | I^{n-1} \times 1/2$$
.

Then $g_3^{-1}g_2g_1h \mid I^{n-1} \times 1/2 = 1$. Let g_4 , g_5 be defined by

$$g_4 = \begin{cases} (g_3^{-1}g_2g_1h)^{-1} & \text{on } I_1 \\ 1 & \text{on } I^n - I_1 \end{cases}$$

$$g_5 = \begin{cases} (g_3^{-1}g_2g_1h)^{-1} & \text{on } I_2 \\ 1 & \text{on } I^n - I_2. \end{cases}$$

Then $h = g_1^{-1}g_2^{-1}g_3g_4^{-1}g_5^{-1}$.

Remark. If h is piecewise linear so are the gi.

Let $a_1, \dots, a_n, b_1, \dots, b_n$ be real numbers with $a_i < b_i$. Then the set Q^n of all points $x = (x_1, \dots, x_n) \in E^n$ such that $a_i \le x_i \le b_i$ $(i = 1, \dots, n)$ will be called an n-cube. Let

$$\triangle(Q^n) \equiv \text{measure of } Q^n = \sum_{i=1}^n (b_i - a_i).$$

Suppose I^n is the unit n-cube of E^n , and suppose $H_{\epsilon}(I^n)$ ($0 < \epsilon \le 1$) is the subgroup of homeomorphisms of I^n generated by homeomorphisms that are the identity on \dot{I}^n and that are supported on n-cubes of measure less than or equal to ϵ . (The boundaries of these cubes one allowed to intersect \dot{I}^n .) Let

$$H_0(I^n) = \bigcap_{\varepsilon > 0} H_{\varepsilon}(I^n)$$
.

Obviously, $\epsilon > \delta > 0$ implies $H_{\epsilon}(I^n) \supset H_{\delta}(I^n)$. On the other hand, suppose Q^n is an n-cube on I^n of measure $\Delta = \Delta(Q^n)$ and h is a homeomorphism of Q^n which is the identity on \dot{Q}^n . Let e be the length of a longest side of Q^n ; that is, let e be the maximum value of the various $b_i - a_i$. Then $e \geq \Delta/n$ so

$$\triangle - \frac{e}{2} \leq \triangle - \frac{\triangle}{2n}$$
.

Lemma 3 implies that h is the composition of homeomorphisms of Q^n which are supported on cubes of measure no greater than $\triangle - \triangle/2n$. Hence

$$H_1(I^n) = H_{1-\frac{1}{2n}}(I^n) = H_{(1-\frac{1}{2n})^2}(I^n) = \cdots;$$

that is, $H(I^n) = H_0(I^n)$. Thus we have proved the desired result.

THEOREM. Let h be a homeomorphism of I^n that is the identity on \dot{I}^n , and let $\epsilon > 0$. Then h is the composition of a finite sequence of homeomorphisms each the identity on \dot{I}^n and each supported on an n-cube of measure less than ϵ . If h is piecewise linear then so are the composing homeomorphisms.

COROLLARY 1. Let M^n be a manifold, let h be a homeomorphism of M^n supported on an internal n-cell, and let $\epsilon>0$. Then h is the composition of a finite sequence of homeomorphisms of M, each supported on a closed subset of M of diameter less than ϵ .

COROLLARY 2. Let M^n be a combinatorial manifold (n \neq 4), let h be a piecewise linear homeomorphism of M^n supported on a (topological) internal cell, and let $\epsilon > 0$. Then h is the composition of a finite sequence of piecewise linear homeomorphisms of M^n , each supported on a closed subset of diameter less than ϵ .

Proof. This corollary follows directly from the Theorem if h is supported on an internal combinatorial cell. Otherwise, we argue as follows. By hypothesis h is supported on the internal cell Q^n . Let U be a neighborhood of Q^n homeomorphic to E^n . Then U inherits a piecewise linear structure from M. By theorems of Stallings [4] and Moise [3], U is piecewise linearly equivalent to the ordinary combinatorial structure E^n . Hence U is the monotone union of combinatorial n-cells C^n_i (each of which are polyhedra in M). One of these, say $C^n_{i_0}$, must contain Q^n in its interior.

Then h is supported on $C_{i_0}^n$.

REFERENCES

- 1. M. Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. 75 (1962), 331-341.
- 2. G. Fisher, On the group of homeomorphisms of a manifold, Trans. Amer. Math. Soc. 97 (1960), 193-212.
- 3. E. E. Moise, Affine structures in 3-manifolds. V, Ann. of Math. (2) 56 (1952), 96-114.
- 4. J. Stallings, The piecewise linear structure of Euclidean space, to appear.

Institute for Advanced Study and The University of Michigan