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RETRACTS AND EXTENSION SPACES FOR
PERFECTLY NORMAL SPACES

Byron H. McCandless

Let Q be a class of topological spaces, and n a nonnegative integer. A topo-
logical space Y is called an n-AR(Q) [n-ANR(Q)] if

(a) Y isin Q and

(b) whenever Z is in Q and Y is imbedded as a closed subset of Z with
dim(Z - Y) < n, then Y is a retractof Z [Y is a retract of some neighbor-
hood of Y in Z].

Y is called an AR(Q) [ANR(Q)] if it satisfies (a) and the statement (b') obtained
from (b) by omitting “with dim(Z - Y) < n.” A space Y is called an n-ES(Q)
[n-NES(Q)] if

(a) Y isin Q and

(b) whenever X is in Q, C is a closed subset of X with dim (X - C) < n, and
f: C — Y is a continuous mapping, then f has a continuous extension over X
[over some neighborhood of C in X] with respect to Y.

Finally, Y is called an ES(Q) [NES(Q)] if Y satisfies (a) and the statement (b') ob-
tained from (b) by omitting “with dim (X - C) < n.” In the above definitions, dim X
means the dimension of X defined in terms of finite open coverings.

A normal space X is called perfectly normal if every closed subset of X is a
Gg. Every metric space is perfectly normal, and every perfectly normal space is
countably paracompact [1, p. 221]. Some justification for our interest in the class of
perfectly normal spaces is provided by the following theorem of M. Katétov [ 7].

THEOREM. Let B be a separvable Banach space, K a convex subsetl of B, and C

a closed set of type Gp in a novmal space X. Then every continuous mapping
f: C — K has a continuous extension F: X — K with

dim F(X - C) < min[dim C + 1, dim £(C) + 1, dim X] .

The object of this paper is to prove the following five theorems.

THEOREM 1. Let Y be a separable metric space. Then the following implica-
tions hold between the statements listed below: (a) is equivalent to (d) and (b) is
equivalent to (c); moreover, (b) implies (a) and (c) implies (d).

(a) Y is Lcn-1,
(b) Y is an n-ANR (perfectly normal).
(c) Y is an n-NES (perfectly normal).

(@) If X is perfectly normal,dim X < n, and C is closed in X, then any con-
tinuous f: C — Y has a continuous extension over some neighbovhood of C in
X with vespect to Y.
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THEOREM 2. Let Y be a separable metric space. Then the following implica-
tions hold between the statements listed below: (a') is equivalent to (A') and (b') is
equivalent to (c'); moreover, (b') implies (a'), and (c') implies (d').

(@) Y is LC* Y and 7(Y)=0 (i=0, -, n - 1).
(") Y is an n-AR (perfectly normal).
(c") Y is an n-ES (perfectly normal).

(") If X is pevfectly normal, dim X < n, and C is closed in X, then any con-
tinuous f: C — Y has a continuous extension over X.

THEOREM 3. Let Y be an n-dimensional separable metrvic space. Then
(i) Y iés an ANR (perfectly normal) if and only if Y is LCP,

(i) Y is an AR (perfectly normal)- if and only if Y is LC™ and m(Y) =0
(i=0,1, -, n).

THEOREM 4. Let Y be a perfectly normal space, Then

(i) Y is an ANR (perfectly normal) if and only if Y is an NES (perfectly
normal),

(ii) Y is an AR (perfectly normal) if and only if Y is an ES (perfectly normal).
THEOREM 5. Let Y be a separable metlric space. Then

(i) Y is an ANR (perfectly normal) if and only if Y is an ANR (metric),

(ii) Y is an AR (perfectly normal) if and only if Y is an AR (metric).

Kuratowski [10, p. 265] proved that if Q is the class of all separable metric
spaces, then the statements of Theorem 1 are equivalent, likewise the statements of
Theorem 2. Kodama later generalized Kuratowski’s results to the case where Y is
metric and Q is the class of all metric spaces [8]. Theorem 3 was also proved by
Kuratowski for the case where Q is the class of separable metric spaces [10, p.
289]. Theorem 4 has been proved by several authors under various hypotheses [ 3,
5]. Dowker[ 2, p. 313] proved Theorem 5 for the case where Y is metric and Q is
the class of completely normal perfectly normal spaces.

Before proceeding to the proofs of the theorems we need some preparatory
remarks.

Let Y be a metric space, and B the Banach space of all bounded, continuous,
real-valued functions defined on Y. Kuratowski [9] showed that Y is imbedded iso-
metrically in B. Wojdyslawski [11] subsequently proved that in Kuratowski’s im-
bedding, Y is a closed subset of the convex hull K of Y, and moreover that B is
separable whenever Y is separable. This is the Banach space B that will be used
in the application of Katétov’s theorem.

Another imbedding space that is useful in the non-metric cases is the adjunction
space [6, p. 9], which was first used by O. Hanner in problems of this type [4, p.
376]. Let X and Y be spaces, C a closed subset of X, and f: C — Y a continuous
mapping. Let Z be the adjunction space (called by Hanner the identification space)
obtained from the free union X U Y of X and Y by identifying each x € C with
f(x) € Y. There are two natural mappings j: Y — Z and k: X — Z, and a set V is
open in Z if and only if j~*(V) and k~*(V) are open. The mapping j is a homeo-
morphism; and therefore we may assume that Y is a subspace of Z. Note that
k|X - C is 2 homeomorphism onto Z - Y. Moreover, k is an extension of f over
X with respect to Z.
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Later, we shall need the following lemma.

LEMMA 1. Let X and Y be perfectly normal spaces, C a closed subset of X,
and f: C — Y a continuous mapping. Then the adjunction space Z is also perfectly
novmal.

Proof. Since X and Y are normal, it follows that Z is normal [4, p. 376].
Hence it remains to be shown that every closed subset of Z is of type G5. Let F
be a closed subset of Z. Then F N Y a closed subset of Y. Since Y is perfectly
normal, F N Y is of type Gg. Therefore

(1) Fny=[)u,

i=]

where the Uj are open sets of Y. Since Y is closed in Z, it follows that for each i,
U; C Y, closure being taken in Z. Therefore the sets F U U; are closed in Z, and
hence each of the sets k~1(F U Tj) is closed in X. Since X is perfectly normal,
each of the sets k™! (F UT;) is of type Gg, and thus

©
) k-Y{FuT) =) Vi; (=1,2,3, ),
j=1

where the Vi’j are open sets of X. Now Hanner has proved [4, p. 377] that the sets

are open in Z. We shall prove that the intersection of the countable collection

{Gi.j} i,j=1

is equal to F. Since le - C is a homeomorphism, it follows that for fixed i
[> o]
nk(Vij—C) =(FUT)N@Z-Y) =Fn(Z-Y.
j=1 ’

Therefore
<0
-ni G ;=[Fn@Z-Dluy
J:

for each i, and hence

2
N g

L=t 7

i=1

-MNNe;=Fn@z-vivNu,=[Fn@Z-DIU[FnY] = F.
i=1 j=1 |

This shows that F is of type Gg, and completes the proof of the lemma.

Proof of Theorem 1. The propositions that (b) implies (a), (d) implies (a), (c)
implies (b), and (c) implies (d) were proved by Kuratowski [10, p. 265]. Therefore
we need prove only that (a) implies (d) and that (b) implies (c).
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Proof that (a) implies (d). Let X be a perfectly normal space of dimension at
most n, C a closed subset of X, and f: C — Y a continuous mapping. By Kuratow-
ski’s imbedding we may assume that Y is a closed subset of a convex subset K of a
separable Banach space B. Since X is perfectly normal, C is a closed set of type
Gg in X. Therefore we can apply Kat&tov’s theorem to obtain a continuous extension
F: X — K of f with dim F(X - C) < n. Since

F(X - C) D F(X) - F(C) = F(X) - £C) D F(X) - Y,

it follows that dim [F(X) - Y] < n. By Kuratowski’s version of Theorem 1, (a) im-
plies that Y is an n-ANR (separable metric). But B is separable metric, so that
Y U F(X) is also separable metric. Since Y is closed in K, Y is also closed in
Y U F(X), and moreover

dim (Y U F(X) - Y) = dim[F(X) - Y] < n.

Hence Y is a retract of some neighborhood V of Y in Y U F(X). Let r: V — Y be
the retraction, and define U = F-}(V). U is a neighborhood of C in X. Define

f*: U—Y by f*(x) = r F(x) for x € U. Then f* is a continuous extension of f over
U; this completes the proof that (a) implies (d).

Proof that (b) implies (¢). Let X be a perfectly normal space, C a closed sub-
set of X such that dim (X - C) < n, and f: C — Y a continuous mapping. We shall
show that f has a continuous extension over some neighborhood U of C. In this
case Katétov’s theorem will not give us the result, since we have no control over
dim F(X - C). Instead, let us use Hanner’s method. Let Z be the adjunction space
of X U Y described above. Z is perfectly normal, by Lemma 1, and-since Z - Y is
homeomorphic to X - C, it follows that dim(Z - Y) < n. Hence, by (b), Y is a re-
tract of some neighborhood V of Y in Z. Let r: V —'Y be the retraction. Then
U = k"1(V) is a neighborhood of C in X, and the mapping f*: U — Y defined by
*(x) = rk(x) for x € U is the required extension of £ over U. This completes the
proof of Theorem 1.

Proof of Theorem 2. The proof that (a') implies (d') is obtained from the proof
that (a) implies (d) by replacing V by Y U F(X) and U by X. The proof that (b')
implies (c') is obtained from the proof that (b) implies (c) by replacing V by Z and
U by X. The remaining implications were proved by Kuratowski [10, p. 266].

Proof of Theorem 3. (i) If Y is separable metric and an ANR (perfectly normal),
then Y is.an ANR (separable metric). Hence Kuratowski’s theorem [10, p. 289]
shows that Y is LCH,

Conversely, if dim Y =n and Y is LC™, then Y is an ANR (separable metric)
[10, p. 289]. Let Y be imbedded in a perfectly normal space Z as a closed subset.
By Kuratowski’s imbedding theorem, we can assume that Y is a closed subset of a
convex subset K of a separable Banach space. Define a mapping f: Y - Y C K by
f(y) =y for each y € Y. By Katetov’s theorem, f has a continuous extension
F: Z —- K. Since Y is an ANR (separable metric), Y is a retract of some neighbor-
hood V of Y in K. Let r: V — Y be the retraction, and define U = ¥ (V). Then U
is a neighborhood of Y in Z, and for z € U, r F(z) is a retraction of U onto Y.
Therefore Y is an ANR (perfectly normal).

The proof of (ii) is so similar to that of (i) that it need not be given.

Proof of Theorem 4. (i) It is easy to see that if Y is an NES (perfectly normal)
then Y is an ANR (perfectly normal).
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To establish the converse, we need only mention that by Lemma 1 the adjunction
space Z is perfectly normal, so that Hanner’s proof [5, p. 325] is valid in this case
also.

The same remarks apply to the proof of (ii).

Proof of Theorem 5. (i) If Y is an ANR (perfectly normal), then, being metric,
Y is an ANR (metric).

Suppose now that Y is an ANR (metric). Then we can use the same argument as
in (i) of Theorem 3 to show that Y is an ANR (perfectly normal).

The proof of (ii) is similar to that of (i), and it will not be given.
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