ON p-ADIC FORMS

B. J. Birch and D. J. Lewis

In a recent paper [1], concerned with homogeneous equations in a \mathfrak{p} -adic field, we had difficulty in proving a crucial result (Lemma B, quoted below) on the normalization of homogeneous forms with \mathfrak{p} -adic coefficients. In this note, using on the way an invariant introduced by Davenport [3], we prove a sharper result more simply. We shall have to describe several methods of reduction of such forms.

Let $f = f(X) = f(x_1, \dots, x_n)$ be a form of degree d over a field k, say

(1)
$$f(x_1, \dots, x_n) = \sum_{j=1}^{n} a_{j_1}, \dots, j_d x_{j_1} \dots x_{j_d},$$

where the a's are symmetric in j_1, \dots, j_d . (It is perfectly easy to carry out our arguments with a linear system of forms rather than with a single form f, if in the definition of equivalent linear systems, the λ of (3) is taken to be a non-singular matrix. However, when one studies problems concerning the solubility of simultaneous equations over a p-adic field in more detail (see [2]), it becomes clear that this would be downright misleading.) Write A for the n-by-n^{d-1} matrix $(a_{j_1},\dots,j_{d-1},J)$ whose rows correspond to $J=1,\dots,n$ and whose columns correspond to the (d-1)-tuples (j_1,\dots,j_{d-1}) . If $X\to TX$ is a linear transformation, we write $f_T(X)$. As in our earlier paper, we write $f_T(X)$ for the number of variables that occur in monomials of f with non-zero coefficient, and define the order $f_T(X)$ of f by

(2)
$$o(f) = \min_{T} \gamma(f_{T}),$$

where the minimum is taken over all non-singular linear transformations T defined over k. A form is called *degenerate* if its order is less than n. As Davenport observed: A form f is degenerate if and only if all n-by-n minors of A vanish.

Suppose now that k is a \mathfrak{p} -adic field with ring of integers \mathfrak{o} , local prime π , prime ideal $\mathfrak{p}=\pi\mathfrak{o}$, and residue class field $k^*=\mathfrak{o}/\mathfrak{p}$. (In all our applications, k^* is finite; however such an assumption is not necessary here.) If a is in \mathfrak{o} , denote its canonical image in k^* by a*. This homomorphism can be extended to a homomorphism of $\mathfrak{o}[X]$ onto $k^*[X]$; thus if f is a polynomial with integer coefficients, then f* denotes the residue class of f modulo \mathfrak{p} . Let $\nu(f)$ denote the greatest power of \mathfrak{p} dividing every coefficient of f.

Two forms f and g are called *equivalent* if there exists a non-singular linear transformation T and a non-zero element λ in k such that

$$f_{T} = \lambda g$$

(T being defined over k). For example, every form f is equivalent to one with $\nu(g) = 0$.

Received July 11, 1961.

Our original Lemma B: Every form f over k of degree d and order n is equivalent to a form g over o with $o(g^*) \ge n/d$.

If $\nu(f) \geq 0$, that is, if all the coefficients a are integers, define $\triangle(f)$ to be the greatest common divisor of all n-by-n minors of A if f is non-degenerate, and to be 0 otherwise. Using the same arguments as in [3; see Lemma 2.1 and its Corollary], one easily shows that $\triangle(f)$ is invariant under integral unimodular transformations of the variables.

A form f is called \triangle -reduced if it is non-degenerate with integral coefficients and $\nu(\triangle(f)) \leq \nu(\triangle(g))$ for all integral forms g equivalent to f. When f is a non-degenerate integral form, $\nu(\triangle(f))$ is a nonnegative integer. It follows that every non-degenerate form is equivalent to a \triangle -reduced form. Note that if f is \triangle -reduced and T is integral and unimodular, then $\nu(f) = \nu(f_T) = 0$ and f_T also is \triangle -reduced.

Now for a second definition of reduction: Given any assignment of the variables x_1, \dots, x_n into disjoint batches B_0, B_1, \dots , we can, for a given form g, define a sequence of forms ${}^{(0)}g = g$, ${}^{(1)}g$, ${}^{(2)}g$, ... by the relation

(4)
$$(h)_{g} = (h)_{g}(x_{1}, \dots, x_{n}) = \pi^{-h}g(\pi^{\gamma_{n}1} x_{1}, \dots, \pi^{\gamma_{h}n} x_{n}),$$

where γ_{hr} is 1 if x_r is in $B_0 \cup B_1 \cup \cdots \cup B_{h-1}$ and is 0 otherwise. The ^(h)g depend both on g and on the batching, but all these forms consist of the same power-products of the variables as g, with various powers of π put into or taken out of the coefficients. We shall write β_h for the number of variables in B_h .

A form g of degree d is weakly reduced if the variables x_1, \dots, x_n have been assigned to d disjoint batches B_0, B_1, \dots, B_{d-1} in such a way that (i) each $^{(h)}g$, for $h=0,1,\dots,d-1$, has integral coefficients; (ii) every variable of B_h occurs in $^{(h)}g^*$; (iii) no variable of B_h can be eliminated from $^{(h)}g^*$ by a non-singular transformation U^* , defined over k^* , of the type

(5)
$$U^* = U_0^* \otimes U_1^* \otimes \cdots \otimes U_{d-1}^* \quad \text{with } U_i^* = I_i \text{ for } i \neq h,$$

the partitioning of U* being determined by the batching, and I_i being the β_i -by- β_i unit matrix. As usual, $C = A \otimes B$ if $C = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$.

Note that a non-singular linear transformation over k^* is always the image of an integral unimodular transformation over k. In particular, U^* may be regarded as the image of

(6)
$$U = I_0 \otimes I_1 \otimes \cdots \otimes U_h \otimes I_{h+1} \otimes \cdots \otimes I_{d-1},$$

where U_h is integral and unimodular. It should also be noted that the definition of weak reduction is relative to a particular batching.

When g is weakly reduced, it is convenient to define $^{(h)}g$ and B_h for $h \geq d$ by $^{(h)}g = ^{(h-d)}g$ and $B_h = B_{h-d}$; for h = d, this definition of $^{(d)}g$ is consistent with (4). It is easily seen that if g is weakly reduced, so is $^{(h)}g$ $(h \geq 0)$ with

$$B_{j}(^{(h)}g) = B_{j+h}(g).$$

If g is weakly reduced, then

(7)
$$\sum_{h=0}^{d-1} \beta_h = n,$$

and we assert that

(8)
$$o(h)g*) \ge \beta_h$$
 for $h = 0, 1, \dots, d-1$.

To prove (8), suppose it is false for some h; then

$$^{(h)}g^* = q^*(L_1^*, L_2^*, \dots, L_t^*),$$

where L_1^* , ..., L_t^* are independent linear forms over k^* , $t < \beta_h$, and q^* is a form over k^* . Write $L_1^* = M_i^* + N_i^*$, where M_i^* consists of those monomials of L_1^* which contain a variable of B_h ; say

$$M_i^* = \sum_j \lambda_{ij}^* \cdot x_j$$
 $(i = 1, \dots, t)$.

Now rank $(\lambda_{ij}^*) \le t < \beta_h$, so that there exist non-trivial solutions μ_r^* in k of the system

$$\sum_{r=1}^{\beta_{h}} \mu_{r}^{*} \lambda_{jr}^{*} = 0 \qquad (j = 1, 2, \dots, t).$$

Suppose that $\mu_1^* \neq 0$; then for the linear transformation U* with

$$\mathbf{U_{h}^{*}} = \begin{pmatrix} \mu_{1}^{*} & 0 & \cdots & 0 & 0 \\ \mu_{2}^{*} & 1 & \cdots & 0 & 0 \\ & \ddots & \ddots & \ddots & \ddots \\ & \ddots & 0 & & 1 & 0 \\ & \mu_{\beta_{h}} & 0 & \cdots & 0 & 1 \end{pmatrix},$$

the expression $[^{(h)}g(UX)]^*$ does not contain the variable x_1 of B_h ; this contradicts (iii).

PROPOSITION. If f is \triangle -reduced, there exists an integral unimodular transformation V such that f_V is weakly reduced relative to a particular batching of the variables.

Proof. The variables of any \triangle -reduced form f may be batched to satisfy (i) and (ii) in a straightforward manner, as follows. Take B_0 as all variables occurring in f*; then, for $1 \le h \le d-1$, take B_h as all variables occurring in h f* which have not already been assigned to an earlier batch. (Note that the definition of h f in (4) depends only on B_0, \dots, B_{h-1} .) It is easily seen that, for each $h \le d$, h f has integral coefficients. For a monomial in f could only occur in h with a non-integral coefficient if all its variables were in B_0, \dots, B_{h-2} ; such a monomial is multiplied by π^{d-h} in h and therefore it occurs with an integral coefficient. Hence the above process of batching is meaningful, and (i) is satisfied. (At this stage we have used only the fact that f has integral coefficients.) Observe that if f is \triangle -reduced, then

for each variable x_j there exists a monomial M of f such that the power of x_j in M exceeds $\nu(M)$; for otherwise the form

$$g(X) = f(x_1, \dots, x_{j-1}, \pi^{-1} x_j, x_{j+1}, \dots, x_n)$$

would be an integral form with $\nu(\triangle(g)) < \nu(\triangle(f))$. Hence each variable occurs in some B_h ; for if x_j does not occur, then the corresponding monomial of $^{(d)}f$ does not have integral coefficients—a contradiction.

Now choose an integral unimodular transformation V such that, relative to the process of batching just described, the integers $\beta_0(f_V)$, $\beta_1(f_V)$, ..., $\beta_{d-2}(f_V)$ are successively as small as possible. Set $g=f_V$. If a variable of $B_h(g)$ could be eliminated from h_0^h by a non-singular transformation U* of type (5), then B_0 , ..., B_{h-1} would be the same for g_U as for g_V , so that

$$\beta_{j}(g_{U}) = \beta_{j}(g)$$
 for $j = 0, 1, \dots, h-1$,

while

$$\beta_{\rm h}(g_{\rm U}) < \beta_{\rm h}(g)$$
,

where U is as in (6). This contradicts the choice of V. Hence (iii) is satisfied for g.

COROLLARY. Every non-degenerate form is equivalent to a weakly reduced form.

In view of (7) and (8), our original Lemma B is now an immediate consequence of the Corollary, since there exists some h such that $\beta(^{(h)}f) \ge n/d$, whence $o(^{(h)}g*) \ge n/d$. Once Lemma B or its equivalent has been proved, one can easily obtain a bit more. A weakly reduced form f is called *strongly reduced* if

(9)
$$\sum_{h=0}^{d-1} h \beta_h(f) \le \sum_{h=0}^{d-1} h \beta_h(g)$$

whenever g is weakly reduced and equivalent to f.

If f is weakly reduced, then so are the $^{(h)}f$, with $B_s(^{(h)}f) = B_{s+h}(f)$. Hence by (9), if f is strongly reduced, then

$$\sum_{h=0}^{d-1} h \beta_h(f) \leq \sum_{h=0}^{d-1} h \beta_h((s)_f) \leq \sum_{h=0}^{d-1} h \beta_{h+s}(f) \qquad (s = 0, 1, \dots, d-1).$$

Using (7), we obtain the following sharpened version of the original lemma:

LEMMA B'. Every form of degree d and order n is equivalent to a weakly reduced form f for which

$$d \sum_{h=0}^{H-1} \beta_h(f) \ge Hn \quad \text{for } H = 1, 2, \dots, d.$$

REFERENCES

- 1. B. J. Birch and D. J. Lewis, p-adic forms, J. Indian Math. Soc. 23 (1959), 11-32.
- 2. B. J. Birch, D. J. Lewis and T. G. Murphy, Simultaneous quadratic forms (to appear).
- 3. H. Davenport, Cubic forms in thirty-two variables, Philos. Trans. Roy. Soc. London. Ser. A 251 (1959), 193-232.

Churchill College, Cambridge and The University of Michigan