REPRESENTATIONS OF A CLASS OF INFINITE GROUPS

Joseph Lehner
1. INTRODUCTION

The results of this paper are contained in two theorems.

THEOREM 1. A free grvoup with a countable number of genevators can by
faithfully vepresented by a group of 2-by-2 unimodular matvices with rational inte-
gral enlries (that is, by a subgvoup of the modulay gvoup).

THEOREM 1. Let G be a group with a countable number of generators t;
(j=1, 2, ---) and a finite number of generating velalions

(1) t, =t, ==t =1 (qj=integer22).
Let &, be the algebraic numbeyr field obtained by adjoining the quantities

(2) Aj=2cosw/q; (j=1,2, -, n)

to the rational field. Then G can be faithfully represented by a group of 2-by-2
unimodular matvices whose entrvies ave integers in F .

The proof will show that in each case infinitely many inequivalent representa-
tions are possible.

It will also be clear from the construction that Theorem 2 is valid for a group G
whose generators fall into two classes A and B; those in A have power relations of
type (1), those in B are free. Either A or B or both may be finite or denumerably
infinite; either may be empty.

An application of these results to the theory of discontinuous groups of linear
transformations of the plane is made in Section 5.

Such representations are useful in the construction of subgroup topologies for
groups of the above types. (See [3].) The construction will be carried out in a future
publication.

2. THE ISOMETRIC CIRCLE

Our main tool will be the isometric circle of L. R. Ford [2, p. 23 ff]. Let z be a
complex variable. Given a linear transformation of the plane z' = (az + b)/(cz + d),
with ad - bec =1 and c # 0, we define the circle

I(T): |cz + d| =1
and call it the isometric circle of T. If T has an isometric circle (that is, if ¢ # 0),

then so has T-!. The isometric circle I(T) together with its interior will be called
the isometric disk of T, and we shall denote it by K(T).
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It is readily verified that T maps I(T) onto I(T~!), and that it maps the interior
(exterior) of I(T) onto the exterior (interior) of I(T"?); [2, p. 25].

3. FREE GROUPS

Let G be a free group with generators t,, tp, -*. Let T; be the transformation
with matrix

-r; - 1+ rjz
(3) Tj= ( ) (J =1, 2’ "')a

1 -rj

where r; is a rational integer and
rj+1-r-23, rIZZ.

Write T_j for Ty 1. The isometric circle of T; is Iz - r | = 1; that of Ty -1y

]z + T l = 1 The isometric disks K(T ) (G = +1 +2, --+) are pairwise d1$]01nt be—
cause of the restrictions on the r;j 1mposed above

Let G* be the group generated by T; Gj=1,2, ). We shall show that G* is a
free group.

Let SxSk_1°*S; be a wordin G*. Each S; isa Tj. It may happen that
S;= Sjt1, but we never have S;;; = S-’l.

Let P be a point in the plane lying outside of every isometric disk K(Tj)
(j=1,2,--). Then S,(P) lies inside K(S;!). Since S,(P) lies outside K(Sz) —this is
true even if S, = S,—we see that S, S,(P) lies inside K(S 1). Continuing in this way,
we conclude that Q Sk Sk-1 *** S1(P) lies inside K(Sk ). Since P was outside K(Si),

it follows that Q # P. Hence Sk Sk-1°°*S; # 1. No nontrivial word of G* is equal to
the identity, and G* is a free group.

Since T j has rational integral entries and determinant 1, the same is true of
each element of G*.

The mapping tj< T; (j = +1, +2, ---) now establishes an isomorphism between G
and G* and completes the proof of Theorem 1.

Since the integers rj can be selected in infinitely many ways, there exist infinite-
ly many representations of the above type. Obviously the sets {rj} can be chosen so
that these are mutually inequivalent.

4. GROUPS WITH RELATIONS
Let G satisfy the hypotheses of Theorem 2. Define the matrices

B; pj(hj - pj) -1
Tj:( G=1,2, ", n),
1 Aj - Pj

-1 _1+r.2
J J .
T; = ) G=n+1,n+ 2, -),

1 —rj
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where Aj is defined by (2), pj and rj are rational integers, and

Pj+1 - Pj > 2+ X541,

Tigl =T33, T 23+ Py, TSPy -A -3,

The effect of these inequalities is to make the disks K(T;) ( | j| > n) disjoint from
each other and from the disks K(T};) (l j| < n). The latter form intersecting pairs
{K(T}),K(T_;)} (j=1,2, -, n), but each pair is disjoint from any other pair. (In
case q;= 2, I(TJ-) and I(T_j) coincide.)

If we write T; (i <n) in normal form, we get

/AN E - : AR X T} .
I EIE g g pyn oFT),
Hence

(5) T

At this point we bring to bear the theory of discontinuous groups. Let G* be the
group generated by all T j} G=1,2,--), and let HJ* be the group generated by T;.

H}" is a discontinuous group, and

(6) F; = complement of K(Tj) UK(T -j)

is a fundamental region for HY. (See [2, Thm. 7, p. 45, and p. 53].

Now G¥* is the free product of all H}‘ Since F; contains the exterior of F; for
each i # j, we can assert, by Klein’s principle of Ineinandevschiebung, that G* is a
discontinuous group and that the complement of UJ‘?°=_00 K(T;) is a fundamental region

R for G*. (See [2, pp. 56-59], where this principle is called “the method of combina-
tion;” in particular, see the Theorem on p. 58.)

What are the relations in G*? According to a classical result of Poincare, the
relations determined by small circuits surrounding the vertices of R constitute a
set of generating relations in G*. (See [1, pp. 143-145).) The only vertices in R
are the points where K(Tj) and K(T_;) intersect (j =1, 2, ---, n). These vertices
give rise to the relations (5), which are therefore a set of generating relations for
G*. (If K(T;) and K(T_ j) coincide, we must consider the highest and lowest points
of I(T;) as vertices, and thus we obtain the relation sz =1.)

It follows that G and G* are isomorphic under the mapping t; < T; (j=1, 2, --).

Let &% be the field obtained by adjoining Aj, Az, **-, A, to the rationals. Since
An is an integer in % ,, each T; has entries that are integers in % . Hence each
matrix of G* has entries that are integers in &,. This completes the proof of
Theorem 2.

5. DISCONTINUOUS GROUPS

If T' is a Fuchsian group with signature (p, m; 93,92, ***, q,) P+ m> 0, m >n),
then the relations in I are as follows:
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q q q
(1) E)'=E; = =E, =1,
(8) P, P,---P___EE,..E_ A B A 'Bl...a B A lBl_1
1 P2 Py nE1Ep--E A By A "B, pBpfp Bp =1.

(See [1, p. 198].) The P; are parabolic elements of I'.

Suppose there exists at least one P;. Then we can solve (8) for P,. The group
I" is isomorphic to a group I'' whose generators are those of I' with P, deleted,
and whose generating relations are given by (7). I" is a group satisfying the hypo-
theses of Theorem 2. Therefore we have

THEOREM 3. Every Fuchsian group of signature (p, m; qi, dz, =+, Q) contain-
ing pavabolic elements has a faithful vepresentation by a group of 2-by-2 unimodulayr
matrices with entries in % .

REFERENCES

1. P. Fatou, Fonctions automovphes, Gauthier-Villars, Paris, 1930.
2. L. R. Ford, Automorphic functions, McGraw-Hill, New York, 1929.

3. M. Hall, A topology for free groups and velated groups, Ann. of Math. (2) 52
(1950), 127-139.

Michigan State Uhiversity



