THE STRUCTURE OF A LATTICE-ORDERED GROUP WITH
A FINITE NUMBER OF DISJOINT ELEMENTS

Paul Conrad

1. DEFINITIONS AND STATEMENT OF THE MAIN THEOREM

Throughout this paper, the terminology and results of Chapter XIV of Birkhoff’s
book [1] will be used. L = L+, N, U, <) will always denote an l-group. An element
a in L will be called positive if a > 0, and strictly positive if a> 0.

Definition 1. The elements aj, -, ap of L are disjoint if they are strictly posi-
tive and aift aj=0 for all i+ j. Clearly, L is a linearly ordered group (notation:
o-group) if and only if it does not contain a pair of disjoint elements.

Definition 2. L is a cavdinal sum of 1-ideals Ajq, ---, A, (notation:
L=Aj[+ --[+] Ap if L is the direct sum of the A; (notation: L= A; @ - ® A,)
and if for a; € A;, a;+---+a, >0 ifandonly if a; >0 for i=1, ---, n.

Definition3. L is a lexico-extension of an l-group S (notation: L = <S>) if S
is an l-ideal of L, L/S is an o-group, and every positive element in L but not in S
exceeds every element in S. In particular, L = <L>.

Let S be an 1l-ideal of L. It is easy to verify that L = <S> if and only if each
nonzero coset of L/S consists entirely of positive elements or of negative elements.
If S=0, then L = <S> if and only if L is an o-group.

LEMMA 1.1. If S+ 0, then L= <S> if and only if each a (0 < ae L\ 8S) ex-
ceeds every element in S.

Proof., Suppose that each a (0 < a € L\ S) exceeds every element in S, and as-
sume (by way of contradiction) that L/S is not an o-group. Then there exist strictly
positive elements X and Y in L/S for which XNY =8S. Let X=x+ S and
Y=y+S, where 0<xe L\NS and 0<ye L\ S; then S=XNY =xny +S. Thus
xNy € S, and since S # 0 there exists an element z in S such that z > xny. But x
and y exceed z and therefore xNy > z, a contradiction.

Let Ay, Az, ---, Anh be o-groups. Then, by a finite alternating sequence of cardi-
nal summations and lexico-extensions, we can construct l-groups from the Aj;, in
which each A; is used exactly once to make a cardinal extension, and in which the
lexico-extensions are arbitrary. We shall call such groups lexico-sums of the A;.
For example, if n = 3, then there are two ways of constructing lexico-sums of A,,
A,,and A; in this order, namely <A, [H] <A,[+] A;>> and <<A,[F1A, >[5 A;>. Let
S be a lexico-sum of Aj, ---, A,, and pick one strictly positive element a; in each
A;. Then for n > 2 the following two propositions are easily verified.

I. aj, ---, ap are disjoint, and S does not contain n + 1 disjoint elements.

Io. S=<A[+ B>, where A is a lexico-sum of Ay, -+, A, and where B is a
lexico-sum of A4y, -+, A, for a suitable ordering of the subscripts.

The following is the main theorem proved in this paper.
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THEOREM 1. Let L be an 1-group which contains n disjoint elements ay, --- a,
but does not contain n+ 1 such elements. Lelt A; be the subgroup of L generated
by {xe€ L: xNaj=0 for all j+i}. Thenthe A; are o-groups, and L is a lexico-
sum of the A;.

COROLLARY 1. An l-group L is a lexico-sum of n ordered subgroups if and
only if L contains n disjoint elements bul does not contain n+ 1 such elements,

The corollary is an immediate consequence of the theorem and Proposition I. In
[2], this theorem is proved for the case where n = 2; if n = 1, then L itself is an o-
group and the theorem is trivially true.

2. PRELIMINARY LEMMAS

If S is a subset of a group G, then [S] will always denote the subgroup of G that
is generated by S.

LEMMA 2.1. Let A be a subsemigroup of a group G. Then the following are
equivalent.

a) [Al={x-y:x,ye A}

b) If a, b € A, then there exist x, y in A such that a+ x=Db+ y. That is, every
pair of elements in A has a common right multiple.

This is a rather trivial corollary of a result of Ore [5], but since it is used in
some of the key steps in the proof of our theorem, we shall give a proof. Let
B={x-y:x,ye€ A}, and first suppose that [A] =B. If a,be€ A, then - a+ be [A],
and hence -a+ b=x -y for some x,y in A, Thus a+ x=b +y.

Conversely, suppose that (b) is satisfied. If a€ A, then a=2a - a€ B, Thus
[A] D B> A, and it suffices to show that B is a group. Clearly, 0 € B and B is
closed with respect to inverses. Consider a - b and ¢ - d in B. Pick x,y € A such
that b+ x=c+y. Then x-y=-Db+ ¢, and

a-b+c-d=a+x-y-d=a+x-(d+y)e B.

Thus B is a group.
A subset S of L is convex if
(i) a<x<b and a, b e S imply that x € S, and
(ii) aUO€ S for all a€ S.

Clearly the intersection of convex subsets is a convex subset. Also note that a set
of positive elements is convex if and only if (i) is satisfied.

LEMMA 2.2. Let S be a novmal subgroup of L. Then the following are equiva-
lent.

(@) S is an 1-ideal.
(b) S is convex,

Birkhoff proved that (a) implies (b) [1, p. 222], and the converse is an immediate
consequence of his Theorem 2 on page 215.

LEMMA 2.3. If A is a convex subsemigroup of positive elements of Li that con-
tains O, then [A]l = {x - y: x, y€ A}, [A] is convex, and A is the semigroup of all
positive elements of [Al.
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Proof, Consider x,y € A. Because A is convex, XNy € A, Also,
x=xNy+x'>x'>0, y=xNy+y'>y'>0
and x'Ny'=0. Thus x',y'€ A and
X'+y'=x'Uy'=y'Ux'=y"'+ x'.
- Furthermore,
X+y'=xNy+x'+y'=xNy+y'+x'=y+x'.

Thus by Lemma 2.1, [A] = {x-y:x,ye A}. If a, - a,<x<b, - b,, where aj, b; € A,
then 0<a,<x+a,<b, -b,+2a,<b,+a, Thus x+ a, € A, and hence

x=x+a.2-a2€ [A].

Next consider a = a, - a, in [A], where aj€ A. Since a, + a, >a; -a, and
a,+a3,>0, 0<au0<a,+a,€ A, and hence aU0 € A. Therefore [A] is convex.
In particular, if 0 < a € [A], then aUO0 =a € A.

Let Lj, -+, Ly be subsemigroups of L, and let A be the subgroup of L that is
generated by the L;. Then A=Lj®@ ---® L, will mean that A= Lj + --- + Ly, that
L; WLy + -+ Li 3+ L+ .-+ Ly) =0 for all i, and that aj+ aj = aj + a; for all
a; € Aj and aj€ Aj provided that i # j.

THEOREM 2. Let L, ---, L, be convex subsemigroups of positive elements of
L suchthat LiNL; =0 for all i #j, and let A be the subsemigroup of L that is
generated by the L.

a) A=L)® - @® Ly; and if x = X1+ --- + X, for Xxj € Lj, then x = x3 U--- Uxp,
and this representation is unique.

b) [A]={a-b:a,be A} and [Lij]l={x-y:x,ye€ Lj} fori=1, -, n. [A] is
convex, and A is the convex subsemigroup of all positive elements of [Al.

c) [A] = [Ly] (3] - (4 (L]

Proof. If x€ L; and y € Lj, where i # j, then xNy € LijN Lj = 0 because L; and
Lj are convex. Thus xNy =0, and hence x+y =xXxUy=yUXx=y + X. It follows that
A=1L; + -+ L,,. To complete the proof of (a), we use induction on n. Let
x€ LyN(Ly + -+ Lj_3+ Ljp + .-+ Ly,
Then, by induction,
X=Xx;=xj3U---Ux; 1UX;7U---U Xy,
where the x;€ Lj; But then
0 = Xin XJ = (x]. ﬂXj) U...U (Xnan) = xJ

for all j#i. Thus x=0 and A=Lj® ---@® Lpn If x=x1+ --- + X, where the
X; € L;, then by induction x = (x U ---Uxy_)) + X, But

(XIU." an-l) NXp= (xlnxn) U... Ux,_1Nxy) =0,
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and therefore x=x3U *U Xp. If x=x3U:-+UXp =y1U U yp, where yj, x;€ Ly,
then y; = xNyi = XiNyj =yiNXij = XNX; = x;. Therefore the representation is unique.

To prove (b), it suffices by Lemma 2.3 to show that A is convex. If
0<x<beA,
then 0 <x<b=DbiuU-- Ubn, where the b;j € Lij. Thus
Xx=xNbi1VU---Uby) = (xNb1)U---U(xNby) € Ly + -+ + L.

Therefore A is convex.

Finally assume that (c) is true for all m < n, where n > 2, and let

B=L;@ @ Ln.

Then, by induction, [B] = [L2][{] -*- [f] [La], and B and [B] are convex. By Lemma
2.3, [L,] is convex and hence [L,]N[B] is convex. Thus either [L,]Nn[B]=0 or
[L,]N[B] contains a strictly positive element z. In the latter case

Z=a, -a,=Db, -b,,

where aj € Lij and bj€ B. Thus a, =2+ a,>z>0 and b, =z + b, >z > 0. Since
L, and B are convex, z € L, NB, a contradiction. Therefore [L,]N[B] = 0. Next
consider x € [L,] and y € [B]. Here x=x, - x, and y =y, - y,, where xj€ Ly and
yi € B. Since the xj and the y; commute, x +y =y + x and hence [A] = [L,]® [B].
If 0<x+y,then 0<x+y< |x| +|y|, and by [1, p. 245, Lemma 3], x +y = u + v,
where 0 <u< |x| and 0<v < |y|. Since [L,] and [B] are convex, u €[ L,] and
v € [B]. Therefore x=u> 0 and y = v > 0, and hence

[A] = [L4][3] [B] = [14][A -+ [ [La].
COROLLARY. If Ay, -+, A, are convex subgroups of L and if the subgroup G
n n

of L that is generated by the Ajis 2, (D A, then G =2, [¥] A;

i=1 i=1

Proof. Let Lji= { X€ A x> 0}. Then the L; are convex subsemigroups of
positive elements, and L; N L; =0 if i # j. Moreover, [Li] = A3 Thus, by (c),

n
G=2, A;
i=1

Remark. Let A be the semigroup described in Theorem 2, and suppose that [A]
contains m disjoint elements, but does not contain m + 1 such elements. Then
m=m) + *-- + mp, Wwhere L;j contains m; disjoint elements but not m; + 1 such ele-
ments. If aj, :--, a, are disjoint elements of [A], then m; of the aj belong to Lj
for i=1, :--, n.
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3. PROOF OF THEOREM 1

We assume that n > 2. The proof consists of thirteen steps.

| (1) Li={xe L:xN aj=0 for all j +1i} is a linearly ovdered convex subsemi-
- group of L. [Lil={x-y:x,ye€ Li} is a convex o-subgroup, and

L;={xe€ [Li]: x> 0} .

For if 0 <x<ae€ Lj, then 0 <xnaj<anaj=0 for all j #i. Thus x € Lj, and
hence L; is convex. L; is the intersection of the n - 1 semigroups

{xe L: xnaj=0}

for all j #i (see [1, p. 219] for a proof that these are semigroups). Thus Lj is a
semigroup. Let x and y be nonzero elements in Lj. Then xny > 0, for otherwise
X,y,aj forall j#i are n+ 1 disjoint elements. Therefore Lji contains no disjoint
elements. Proposition (1) now follows from Lemma 2.3.

If xe LiN Lj, where i+ j, then xNaj =0 for all i. Thus x = 0, for otherwise x
and the a; are n+ 1 disjoint elements of I.. Therefore LjiN Lj=0 for all i # j, and
by Theorem 2 we have:

(2) The subsemigroup A of L that is genevated by all the Li is L1(® -+ @ Ln.
[A] = [L1]l[F] ---[F [Ln]l = {a - b: a, be A}, [A] is convex, and A is the convex sub-
semigroup of all positive elements of [A]. A similar statement holds for each par-
tial sum of the L;.

(8) Pick0<bie€ Li for i=1, -+, n and define Hi= {x€ L: xNbj= 0 for all
j#1i}. Then Lj=H; for i=1, ..., n. For if x € Lj, then since bje Lj, xNbj=0
for all j #i. Thus x € Hj and hence Lj C Hj. In particular, 0 < aj € H;. Thus, by
reversing the argument, we have Hj C L.

Note that for any x € L, xMN a; = 0 if and only if xNbj = 0. This is a consequence
of the fact that L ; is linearly ordered and convex.

(4) B; = {x€ L: xNnaj; = 0} is a convex subsemigroup of L. The subsemigvoup
B of L that is genevated by L and Bj is Li® Bi. [B] = [Li] [¥] [Bil, [B] is convex,
and B = {x¢€[Bl: x> 0}. For each i, [Bi] contains the n - 1 disjoint elements
aj, ***, &j_1, @i+l ***y &y bul does not contain n such elements. Each B; is inde-
pendent of the particulayr choice of the aj in the Aj. Clearly, B;j is convex, and if
x€ L;N By, then xNa; =0 for all j. Therefore x=0 and Lin B; = 0. Thus all
statements except the last follow from Theorem 2. The last statement follows from
the remark after (3).

Let N=1, ---, n, and let S be a nonvoid subset of N that contains s elements.
Let Gg = {x eLt:xnaj=0 for all i e N\ S}. It is easy to show that Gg is a convex
subsemigroup of positive elements of L that contains Z;cg@® L;, and that Gg is in-
dependent of the particular choice of the a; in the Lj. Moreover, Gg contains s
disjoint elements but not s + 1 such elements.

(5) If 0 <ae€ Gs\ Zics@® Lj, then theve exist i, j € S such that a> L;@ L;
In particular, if S = N, then Gg = L*, and thus, if 0 < a€ L \\ A, then theve exist
i, j€ N such that a> L; @ L;. We use induction on s. If s =1, then Gg is one of
the Lj, and the statement is trivial. Suppose that s > 1 and that (5) is satisfied by
all subsets T of N that contain s - 1 elements. Consider 0 < a€ Gg\Zjes ® Li.
For each i€ S,
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a=ana;+a', a;j=anaj+aj, ajel; a'nal=0.

Case 1. There exists an i € S such that aj > 0. Here, a'Na; = 0, for otherwise
aj and a'Na; are positive elements in the o-group [Lji] and hence

0<ajna'na;j=0na;=0.

Since 0 < a'<a, 0<a'Naj<anNa;=0 for all je N\S. Thus a'€e Gg. Let
T=S~\{i}. Then T contains s - i elements and a' € G. If

a' € 2 @LiEE ® L,

i€eT ieS
then a=ana; + a'€ Tjeg D Lj, a contradiction. Thus

0<a'e Gp\ 2 ® Lj,
ieT
and hence by induction there exist h, k € T C S such that a> L, ® Li.

Casell. a} =0 for all i€ S. Here a; < a for all i€ S, and hence a > Zjeg + a;.
Therefore either a > Zjes P Lj, or we can replace the aj by bi (0 < bje Lj) for
all i € S, and one of the resulting b! is strictly positive. Thus we have Case I again.

(6) If by, ---, by, are disjoint elements of L, then they belong to A. Moreover,
b; € L{ for some permutation i — i' of N. For if i # j, bxNa;# 0 and bxNaj+ 0,
then

by, ---, br_1, bxMaj, bxNaj, bk, -, bn
are disjoint. Therefore byiN a; # 0 for at most one i, and hence byx € Lj; for some i.

But since the Lj are linearly ordered, no two of the bk can belong to the same Lij.

(7) [A] is invariant with respect to o-automorphisms of L. In particular,[A] is
a noymal subgroup of L. Let a be an o-automorphism of L. Then, since
[A] = {a- b:a, be A}, it suffices to show that Ao C A. Now

ajaNaja = (a; Na;)a = 0o =0,

provided that i # j. Thus the ajo are disjoint, and hence by (6) 0 < aja € L.j where
i — i' is a permutation of N. Thus by (3)

A = (L1® @ LyecLp@ @ Lyt = A.
Let G = L/[A], with the natural order.

(8) G is an 1-group with feweyr than n disjoint elements. For suppose (by way
of contradiction) that X;, :--, X,, are disjoint elements in G. Then X;= x;+ [A]
(0 < x; € L\ [A], and x;Nx;€ [A] for all i# j). By (5), for each i there exist
h, k € N such that x; > L, (® Ly It follows that there exist i, j, k € N such that
X; > Ly, X;> Lk and i#j. Thus x;Nx;> Ly, and hence, since

[A] = [Li][H - [ [L,], xinx;¢[A]

. a contradiction.
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Now we use induction on the number of disjoint elements. We assume that Theo-
rem 1 is true for all l-groups with fewer than n disjoint elements. Thus G is a
lexico-sum of fewer than n o-groups. Let 7 be the natural o-homomorphism of L
onto G.

Case 1. G is an o-group. Here the Bj7 are convex semigroups of positive ele-
ments that contain 0, and thus they form a chain. Without loss of generality, we may
assume that By 7 C B7 C **- € Bh7. Let B be the semigroup generated by L, and
Bp. Then, by (4), [B] = [L,][F] [B.], [B] is a convex subgroup of L, and B = L, ® B,
is the convex semigroup of positive elements of [B]. Since B, contains aj, :--, an_1
and does not contain n disjoint elements, [B,] is a lexico-sum of [Li], «+, [Ly_1]
and thus [B] is a lexico-sum of all the [L;]. We now must show that L = <[B]>.

(9) [B] is invariant with respect to o-automovphisms of L. For let o be an o-
automorphism of L. Then the mapping B8 of [A]+ a€ G upon [ A] + aa is an o-
automorphism of G. By the proof of (7), @ induces a permutation of the Lj;. Thus
@ induces a permutation of the B;, and B;7n8 = Bjow = Bjn. Thus 8 induces a per-
mutation of the B;n. Since B,n D Bjw for all i €N, B8 = Byn. Finally

[BI/[A] = [Bl7 = ([By] + [LnD7 = [Byl7 = [By 08 = [Bylan = (Bule + [A]7
= ((Byla + [Ale)m = ((Bn] + [ADaw = [Blarw = [Bla/[A].

Therefore [B] = [Bla.
To show that L = <[B]>, it suffices by Lemma 1.1 to prove:

(10) If 0 < ae L\ [B], then a exceeds every element in [B]. a=aNaj+ a', and
a; = anaj+ aj, where a'Nal=10. If aj# 0, then a'e B; because 0 < aje Lj and
a'nal=0. Thus a'm =[A]+ a'e B;nc B_m, and thus a'=b + ¢, where b € B, and
ce [A]l. Thus a=aNaj+ a'e [B], a contradiction. Therefore aj= an aj, and hence
a> aj for all i € N. Thus, by (3), a > ¢; for all c;€ L; and all i € N. It follows
that a > [A]. Now consider b € [B]. Since arm > bm, a> d+ b for some de [A].
Also, 0<a -b-de L\ [B]. Therefore a-b -d> - d, and hence a > b.

We have shown that [B] is a lexico-sum of the [L;] and that L is a lexico-
extension of [B]. Therefore L is a lexico-sum of the [L;]. This completes the
proof of Case 1.

Case Il. G is not an o-group. Here, since G is a lexico-sum of fewer than n
o-groups, G = <U[+] V>, where U and V are lexico-sums of n;, and n, o-groups,
respectively, and where ny+ ny <n and ny # 0 # ny. Suppose first that there exists
an i € N such that [B;]r D U[+] V. If C is any convex subgroup of G, then either
CcU[HVor CDOU[H V. Also, the convex subgroups between G and U[+] V form
a chain, because G/(U[+] V) is an o-group. Thus, without loss of generality, we may
assume that [Bylw D [Bi]r for all i € N. Now, if we repeat the argument in Case I,
it follows that [B] = [Lyl{#] [Bnl is a lexico-sum of the [L;] and that L is a lexico-
extension of [B]. Therefore L is a lexico-sum of the [Lj].

Suppose that [Bilnc U[X] V for all ie N. Let U = Uz~! andlet 8 = Va-!. By
(5), if 0 < a e u \ [A], then there exist i, j € N such that a > L;® L;. Let

N, = {i € N: there exists an a € 1t \ [A] such that a > L},
N, = {i€ N: there exists an a € 8 \ [A] such that a > L;}.

N, #[_]+# Ny, because U # [A]l# V. In fact, Ny, and Ny both contain at least two ele-
ments.
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(11) Ny N Ny = D, o NuN N, is void. For suppose that i € N,N Ny; then there
exist a, b€ L such that 0 <ae U \[A], 0<be®B \[A], a>1; and b > L;.
Therefore am € U, br € V, and thus anb + [A] = ann br = [A]. But this is impossible,
because anb > L. ’

Thus without loss of generality we may assume that N=1, :--, n, Ny=1, ---, s
and Ny =t+ 1, -*-, n, where s < t:— 1. Let H be the subsemigroup of L that is
generated by Gy, GNv and K=2;__., ® L.

(12) [H] = [GNu] [K] [GNV], [H] is convex, and H is the semigroup of all
positive elements of [H]. Since the semigroups GNv’ K and GNu are convex, it suf-
fices by Theorem 2 to show that they are pairwise disjoint. If x € GNuﬂ GNv’ then
xNaj = 0 forall i, and hence x = 0. If x€ Gy _NK, then x=Xxg,;U---Uxy,

where x;€ L, and xna;=0 for i=s+ 1, ---, t. Thus 0=xN3g = X; Na; for
i=s+ 1, -, t. Therefore, since the L; are ordered, the x; = 0 and hence x = 0.
Thus Gy NK = 0, and by a similar argument, Gy N K = 0.

u v

Now [H] is convex and contains aj, -+, a,, and hence it contains exactly n dis-
joint elements. It follows that Gy , K, Gy contain s, t - s, n - t disjoint elements,
u \'4

respectively. Thus by induction [GNu], [K] and [Gy ] are lexico-sums of the [L;]
v

that they contain. Therefore [H] is a lexico-sum of the [L;] for all i € N. To com-
plete the proof of Theorem 1, we need only show that L = <[H]>.

(13) [Hlm = U[x] V and [H] = (U[+] V)n~%. To prove that [H]r c U[+]V, it suffices
to show that if he Gy , then hr € U[+] V. By the definition of 11, there exist
v

uj, s, ug € U suchthat yy > L;. Thus Li@® - @ L, <uj+ ---+u =u. Now sup-
pose (by way of contradiction) that hm € G\ U V. Then hr > U[+] V, and so

h+ [A] = hm > ur = u + [A]. But this means that there exist y; € [L;] such that
h+yi1+ -« +yn>u>L1@® «--® Lgs. Thus

L@ ®L;<h+yg 1+ --+y,=ke GNV®K

Therefore a, <k and a; Nk = 0, a contradiction.

To prove that [H]r D U[3] V, it suffices to show that [H]r contains the positive
part of V (for then [H]r contains the difference group V, and by symmetry [H]r
contains U). Consider the positive element a + [A] in V. 0 < 2a€ 8 \\[A]. Thus
a} L; for i=1, ---, t and therefore for each i = 1, ---, t there exists a b;

(0 < b; € L;) such that anb; < b;. By (3) we may assume that ana; < a; for
i=1, .., t. Now

a=afNa;+ a', aj=aNaj+ 3, 0<aje L, a'Nal=0, a'#£0,

for otherwise a < a; and hence a € Lj;. In particular, for i =1, a=a'mod [A],
a'na, =0 and 0< a' < a. Let b, = a', and repeat the above process on b, and 2.
We get a b, such that a = b, mod [A], b,N a, =0 and 0 < b, < b, < a, and thus
b,N a, = 0. Continuing in this way, we get a b; such that a = by mod [A] and
b,Na; =0 for i=1, ---, t. Thus b,€ Gy and b,7 = a+ [A]. Therefore GNvﬂ'

v

contains the positive elements in V. Finally, consider d + [A] € U[3 V. Since
[Hlr > U[H] V, there exists an h e [H] such that d+ [A] = dr = hr = h+ [A]. Thus
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d=h+ a, where a € [A] c [H], and hence d € [H]. Therefore [H] = (U[+] V)7-2.
This completes the proof of (13).

[H] is normal in L, because [H] = (U[¥] V)7-! and U] V is normal in G. L/[H]
is an o-group, because it is isomorphic to G/(U[+] V), which is an o-group. Since
[Bilr c U[] V and [H] = (U[d] V)»~%, [Bi] c [H] for all i € N. By repeating verbatim
the argument in (10) with [B] replaced by [H], we can show that if 0 < ae L\ [H],
then a exceeds every element in [H]. Therefore L is a lexico-extension of [H], and
hence L is a lexico-sum of the [Li]. This completes the proof of Theorem 1.

As in Theorem 1, assume that L. contains n disjoint elements aj, ---, a, but not
n + 1 such elements.

COROLLARY 1II. If L/[A] is an o-group, then
L=< - <<<[Lj][H [Ly 1> E [L3]> [Lg]> [ - [ [Ly]>.

Proof. By the proof for Case I, L. = < [B,][#] [Ly,]>, where the lexico-extension
may be trivial. [B }/=Z f___'ll [L;] is an o-group; thus

[Bnl = <[{xe€By:xna;=0 forall j#n-1}]F[L,_1]>.

The corollary now follows by finite induction.

4. EXAMPLES OF LEXICO-EXTENSIONS

In this section, let N=0, a, b, ¢, --- be an l-group, and let A =0, a, B, v, *-+ be
an o-group. There exists at least one lexico-extension of N by A, namely the direct
sum A @ N, where we define (o, a) to be positive if @« > 6 or @ =9 and a> 0. In
general, by the extension theory of Schreier (see [3] or [4]), any lexico-extension G
of N by A has the following representation. G = A X N; («, a) is positive if o > 6
or @ =6 and a > 0;

(@, a) + (B, b) = (& + B, f(o, B) + ar(B) + b),
where r is a mapping of A into the group A(N) of all order-preserving automorph-
isms of N, f is a mapping of A X A into N, and r and f satisfy
(1) [ar(@)]r(B) = - f(a, B) + ar(@ + B) + f(@, B) and ar(9) = a,
(2) f(a, 6) = £(6, ) = 0,
@) f(a, B+ )+ £(B, v) = fla + B, ¥) + f(a, B) r(¥)
for all a€ N and all o, 8, Yy € A.

If G splits over N, then we can choose f so that f(a, 8) = 0. Thus G is deter-
mined by A, N, and a homomorphism r of A into A(N). If N is in the center of G,
then we can choose r so that ar(a) = a. Thus G is determined by A, N {(where N
is abelian), and a mapping f of A X A into N such that (2) and

3') fla, B+v)+ 1B, ¥) =fa + B, y) + f(a, B)

are satisfied. Note that here order does not rear its ugly head—every central exten-
sion of N by A is a lexico-extension under the above ordering of G.

Example 1. Let A be the group of integers. Let N = U[+] V[+] D, where D is an
l-group and U=V =A. For ao,B€ A and (u, v, d) € N we define f(a, 8) =0,
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(u, v, d) if o is even,
(u1 v, d) I‘(Ol) =
(v, u, d) if o is odd.

Then r is a homomorphism of A into- A(N), and so G = A X N is a splitting lexico-
extension of N by A.

Example 1. Let F be an l-group, and let A be an o-group. For each 6 € A, let
Fg=F. Let N=Zgea[H] F (the small or the large direct sum). For (---, f5, -=©) € N
and a, B € A, we define f(o, 8) =0 and (---, f5, ---)r(@) = (-.+, f5,4, ---). That is, the
element in the (6 + @)th component is replaced by the element in the &’th component.
Then r is a homomorphism of A into A(N), and again G = A X N is a splitting
lexico-extension of N by A.

Example II. Let N = R[3) D, where D is an abelian l-group and R is the addi-
tive group of rational numbers. Let A =R @ --® Ry, ordered lexico-graphically,
where R;=R for i=1, ---, n. Let A be an n-by-n rational matrix. For
a=(aj, -, ) and B = By, *-, By) in A, define f(a, B) = a ABt, where Bt is the
transpose of 8. Then f satisfies (3') and hence G = A X N is a central lexico-
extension of N by A. N is a direct summand of G if and only if there exists a map-
ping g of A into N such that g(8) = 0 and f(x, B) = - gl + B) + g(a) + g(B) for all
a and B8 in A. Note that - g(o + B) + g(a) + g(B) is a symmetric function. Thus if
A is not symmetric, then N is not a direct summand.
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