THE STRUCTURE OF A LATTICE-ORDERED GROUP WITH A FINITE NUMBER OF DISJOINT ELEMENTS

Paul Conrad

1. DEFINITIONS AND STATEMENT OF THE MAIN THEOREM

Throughout this paper, the terminology and results of Chapter XIV of Birkhoff's book [1] will be used. $L = L(+, \cap, \cup, <)$ will always denote an 1-group. An element a in L will be called *positive* if a > 0, and *strictly positive* if a > 0.

Definition 1. The elements a_1, \dots, a_n of L are disjoint if they are strictly positive and $a_i \cap a_j = 0$ for all $i \neq j$. Clearly, L is a linearly ordered group (notation: o-group) if and only if it does not contain a pair of disjoint elements.

Definition 2. L is a cardinal sum of 1-ideals A_1, \cdots, A_n (notation: $L = A_1 + \cdots + A_n$) if L is the direct sum of the A_i (notation: $L = A_1 + \cdots + A_n$) and if for $a_i \in A_i$, $a_1 + \cdots + a_n \geq 0$ if and only if $a_i \geq 0$ for $i = 1, \cdots, n$.

Definition 3. L is a lexico-extension of an 1-group S (notation: $L = \langle S \rangle$) if S is an 1-ideal of L, L/S is an o-group, and every positive element in L but not in S exceeds every element in S. In particular, $L = \langle L \rangle$.

Let S be an 1-ideal of L. It is easy to verify that $L = \langle S \rangle$ if and only if each nonzero coset of L/S consists entirely of positive elements or of negative elements. If S = 0, then $L = \langle S \rangle$ if and only if L is an o-group.

LEMMA 1.1. If $S \neq 0$, then $L = \langle S \rangle$ if and only if each $a (0 < a \in L \setminus S)$ exceeds every element in S.

Proof. Suppose that each a $(0 < a \in L \setminus S)$ exceeds every element in S, and assume (by way of contradiction) that L/S is not an o-group. Then there exist strictly positive elements X and Y in L/S for which $X \cap Y = S$. Let X = x + S and Y = y + S, where $0 < x \in L \setminus S$ and $0 < y \in L \setminus S$; then $S = X \cap Y = x \cap y + S$. Thus $x \cap y \in S$, and since $S \neq 0$ there exists an element z in S such that $z > x \cap y$. But x and y exceed z and therefore $x \cap y > z$, a contradiction.

Let A_1, A_2, \cdots, A_n be o-groups. Then, by a finite alternating sequence of cardinal summations and lexico-extensions, we can construct 1-groups from the A_i , in which each A_i is used exactly once to make a cardinal extension, and in which the lexico-extensions are arbitrary. We shall call such groups lexico-sums of the A_i . For example, if n = 3, then there are two ways of constructing lexico-sums of A_1 , A_2 , and A_3 in this order, namely $A_1 + A_2 + A_3 > 0$ and $A_1 + A_2 + A_3 > 0$. Let $A_1 + A_2 + A_3 > 0$ be a lexico-sum of A_1, \cdots, A_n , and pick one strictly positive element A_i in each A_i . Then for $n \geq 2$ the following two propositions are easily verified.

I. a_1, \dots, a_n are disjoint, and S does not contain n + 1 disjoint elements.

II. $S = \langle A | + B \rangle$, where A is a lexico-sum of A_1, \dots, A_s , and where B is a lexico-sum of A_{s+b}, \dots, A_n for a suitable ordering of the subscripts.

The following is the main theorem proved in this paper.

Received October 26, 1959.

This work was supported by a grant from the National Science Foundation.

THEOREM 1. Let L be an 1-group which contains n disjoint elements $a_1, \cdots a_n$ but does not contain n+1 such elements. Let A_i be the subgroup of L generated by $\{x \in L: x \cap a_j = 0 \text{ for all } j \neq i\}$. Then the A_i are o-groups, and L is a lexicosum of the A_i .

COROLLARY I. An 1-group L is a lexico-sum of n ordered subgroups if and only if L contains n disjoint elements but does not contain n + 1 such elements.

The corollary is an immediate consequence of the theorem and Proposition I. In [2], this theorem is proved for the case where n=2; if n=1, then L itself is an ogroup and the theorem is trivially true.

2. PRELIMINARY LEMMAS

If S is a subset of a group G, then [S] will always denote the subgroup of G that is generated by S.

LEMMA 2.1. Let A be a subsemigroup of a group G. Then the following are equivalent.

- a) $[A] = \{x y : x, y \in A\}.$
- b) If $a, b \in A$, then there exist x, y in A such that a + x = b + y. That is, every pair of elements in A has a common right multiple.

This is a rather trivial corollary of a result of Ore [5], but since it is used in some of the key steps in the proof of our theorem, we shall give a proof. Let $B = \{x - y: x, y \in A\}$, and first suppose that [A] = B. If $a, b \in A$, then $-a + b \in [A]$, and hence -a + b = x - y for some x, y in A. Thus a + x = b + y.

Conversely, suppose that (b) is satisfied. If $a \in A$, then $a = 2a - a \in B$. Thus $[A] \supseteq B \supseteq A$, and it suffices to show that B is a group. Clearly, $0 \in B$ and B is closed with respect to inverses. Consider a - b and c - d in B. Pick $x, y \in A$ such that b + x = c + y. Then x - y = -b + c, and

$$a - b + c - d = a + x - y - d = a + x - (d + y) \in B$$
.

Thus B is a group.

A subset S of L is convex if

- (i) a < x < b and $a, b \in S$ imply that $x \in S$, and
- (ii) $a \cup 0 \in S$ for all $a \in S$.

Clearly the intersection of convex subsets is a convex subset. Also note that a set of positive elements is convex if and only if (i) is satisfied.

LEMMA 2.2. Let S be a normal subgroup of L. Then the following are equivalent.

- (a) S is an 1-ideal.
- (b) S is convex.

Birkhoff proved that (a) implies (b) [1, p. 222], and the converse is an immediate consequence of his Theorem 2 on page 215.

LEMMA 2.3. If A is a convex subsemigroup of positive elements of L that contains 0, then $[A] = \{x - y : x, y \in A\}$, [A] is convex, and A is the semigroup of all positive elements of [A].

Proof. Consider x, y \in A. Because A is convex, x \cap y \in A. Also,

$$x = x \cap y + x' \ge x' \ge 0$$
, $y = x \cap y + y' \ge y' \ge 0$

and $x' \cap y' = 0$. Thus x', $y' \in A$ and

$$x' + y' = x' \cup y' = y' \cup x' = y' + x'$$
.

Furthermore,

$$x + y' = x \cap y + x' + y' = x \cap y + y' + x' = y + x'$$
.

Thus by Lemma 2.1, $[A] = \{x - y: x, y \in A\}$. If $a_1 - a_2 < x < b_1 - b_2$, where a_i , $b_i \in A$, then $0 < a_1 < x + a_2 < b_1 - b_2 + a_2 < b_1 + a_2$. Thus $x + a_2 \in A$, and hence

$$x = x + a_2 - a_2 \in [A]$$
.

Next consider $a = a_1 - a_2$ in [A], where $a_i \in A$. Since $a_1 + a_2 \ge a_1 - a_2$ and $a_1 + a_2 \ge 0$, $0 \le a \cup 0 \le a_1 + a_2 \in A$, and hence $a \cup 0 \in A$. Therefore [A] is convex. In particular, if $0 \le a \in [A]$, then $a \cup 0 = a \in A$.

Let L_1, \dots, L_n be subsemigroups of L, and let A be the subgroup of L that is generated by the L_i . Then $A = L_1 \oplus \dots \oplus L_n$ will mean that $A = L_1 + \dots + L_n$, that $L_i \cap (L_1 + \dots + L_{i-1} + L_{i+1} + \dots + L_n) = 0$ for all i, and that $a_i + a_j = a_j + a_i$ for all $a_i \in A_i$ and $a_i \in A_j$ provided that $i \neq j$.

THEOREM 2. Let L_1 , ..., L_n be convex subsemigroups of positive elements of L such that $L_i \cap L_j = 0$ for all $i \neq j$, and let A be the subsemigroup of L that is generated by the L_i .

- a) $A = L_1 \oplus \cdots \oplus L_n$; and if $x = x_1 + \cdots + x_n$ for $x_i \in L_i$, then $x = x_1 \cup \cdots \cup x_n$, and this representation is unique.
- b) $[A] = \{a b: a, b \in A\}$ and $[L_i] = \{x y: x, y \in L_i\}$ for $i = 1, \dots, n$. [A] is convex, and A is the convex subsemigroup of all positive elements of [A].

c)
$$[A] = [L_1] + \cdots + [L_n].$$

Proof. If $x \in L_i$ and $y \in L_j$, where $i \neq j$, then $x \cap y \in L_i \cap L_j = 0$ because L_i and L_j are convex. Thus $x \cap y = 0$, and hence $x + y = x \cup y = y \cup x = y + x$. It follows that $A = L_1 + \cdots + L_n$. To complete the proof of (a), we use induction on n. Let

$$x \in L_i \cap (L_1 + \cdots + L_{i-1} + L_{i+1} + \cdots + L_n)$$
.

Then, by induction,

$$x = x_i = x_1 \cup \cdots \cup x_{i-1} \cup x_{i+1} \cup \cdots \cup x_n$$

where the $x_i \in L_j$. But then

$$0=\mathbf{x_i}\cap\mathbf{x_j}=(\mathbf{x_1}\cap\mathbf{x_j})\cup\cdots\cup(\mathbf{x_n}\cap\mathbf{x_j})=\mathbf{x_j}$$

for all $j \neq i$. Thus x = 0 and $A = L_1 \oplus \cdots \oplus L_n$. If $x = x_1 + \cdots + x_n$, where the $x_i \in L_i$, then by induction $x = (x_1 \cup \cdots \cup x_{n-1}) + x_n$. But

$$(\mathbf{x}_1 \cup \cdots \cup \mathbf{x}_{n-1}) \cap \mathbf{x}_n = (\mathbf{x}_1 \cap \mathbf{x}_n) \cup \cdots \cup (\mathbf{x}_{n-1} \cap \mathbf{x}_n) = 0$$
,

and therefore $x = x_1 \cup \cdots \cup x_n$. If $x = x_1 \cup \cdots \cup x_n = y_1 \cup \cdots \cup y_n$, where $y_i, x_i \in L_i$, then $y_i = x \cap y_i = x_i \cap y_i = y_i \cap x_i = x \cap x_i = x_i$. Therefore the representation is unique.

To prove (b), it suffices by Lemma 2.3 to show that A is convex. If

$$0 < x < b \in A$$
.

then $0 < x < b = b_1 \cup \cdots \cup b_n$, where the $b_i \in L_i$. Thus

$$\mathbf{x} = \mathbf{x} \cap (\mathbf{b_1} \cup \cdots \cup \mathbf{b_n}) = (\mathbf{x} \cap \mathbf{b_1}) \cup \cdots \cup (\mathbf{x} \cap \mathbf{b_n}) \in \mathbf{L_1} + \cdots + \mathbf{L_n}.$$

Therefore A is convex.

Finally assume that (c) is true for all m < n, where $n \ge 2$, and let

$$B = L_2 \oplus \cdots \oplus L_n$$
.

Then, by induction, $[B] = [L_2] + \cdots + [L_n]$, and B and [B] are convex. By Lemma 2.3, $[L_1]$ is convex and hence $[L_1] \cap [B]$ is convex. Thus either $[L_1] \cap [B] = 0$ or $[L_1] \cap [B]$ contains a strictly positive element z. In the latter case

$$z = a_1 - a_2 = b_1 - b_2$$
,

where $a_i \in L_1$ and $b_i \in B$. Thus $a_1 = z + a_2 \ge z > 0$ and $b_1 = z + b_2 \ge z > 0$. Since L_1 and B are convex, $z \in L_1 \cap B$, a contradiction. Therefore $[L_1] \cap [B] = 0$. Next consider $x \in [L_1]$ and $y \in [B]$. Here $x = x_1 - x_2$ and $y = y_1 - y_2$, where $x_i \in L_1$ and $y_i \in B$. Since the x_i and the y_i commute, x + y = y + x and hence $[A] = [L_1] \oplus [B]$. If $0 \le x + y$, then $0 \le x + y \le |x| + |y|$, and by [1, p. 245, Lemma 3], x + y = u + v, where $0 \le u \le |x|$ and $0 \le v \le |y|$. Since $[L_1]$ and [B] are convex, $u \in [L_1]$ and $v \in [B]$. Therefore $x = u \ge 0$ and $y = v \ge 0$, and hence

$$[A] = [L_1] + [B] = [L_1] + \cdots + [L_n].$$

COROLLARY. If A_1, \dots, A_n are convex subgroups of L and if the subgroup G of L that is generated by the A_i is $\sum_{i=1}^n \bigoplus A_i$, then $G = \sum_{i=1}^n \bigoplus A_i$.

Proof. Let $L_i = \{x \in A_i: x \ge 0\}$. Then the L_i are convex subsemigroups of positive elements, and $L_i \cap L_j = 0$ if $i \ne j$. Moreover, $[L_i] = A_i$. Thus, by (c),

$$G = \sum_{i=1}^{n} [+] A_i.$$

Remark. Let A be the semigroup described in Theorem 2, and suppose that [A] contains m disjoint elements, but does not contain m+1 such elements. Then $m=m_1+\cdots+m_n$, where L_i contains m_i disjoint elements but not m_i+1 such elements. If a_1, \cdots, a_n are disjoint elements of [A], then m_i of the a_j belong to L_i for $i=1,\cdots,n$.

3. PROOF OF THEOREM 1

We assume that n > 2. The proof consists of thirteen steps.

(1) $L_i = \{x \in L: x \cap a_j = 0 \text{ for all } j \neq i\}$ is a linearly ordered convex subsemigroup of L. $[L_i] = \{x - y: x, y \in L_i\}$ is a convex o-subgroup, and

$$L_i = \{x \in [L_i]: x > 0\}.$$

For if $0 \le x \le a \in L_i$, then $0 \le x \cap a_j \le a \cap a_j = 0$ for all $j \ne i$. Thus $x \in L_i$, and hence L_i is convex. L_i is the intersection of the n-1 semigroups

$$\{x \in L: x \cap a_j = 0\}$$

for all $j \neq i$ (see [1, p. 219] for a proof that these are semigroups). Thus L_i is a semigroup. Let x and y be nonzero elements in L_i . Then $x \cap y > 0$, for otherwise x, y, a_j for all $j \neq i$ are n+1 disjoint elements. Therefore L_i contains no disjoint elements. Proposition (1) now follows from Lemma 2.3.

If $x \in L_i \cap L_j$, where $i \neq j$, then $x \cap a_i = 0$ for all i. Thus x = 0, for otherwise x and the a_i are n+1 disjoint elements of L. Therefore $L_i \cap L_j = 0$ for all $i \neq j$, and by Theorem 2 we have:

- (2) The subsemigroup A of L that is generated by all the L_i is $L_1 \oplus \cdots \oplus L_n$. $[A] = [L_1] \oplus \cdots \oplus [L_n] = \{a b: a, b \in A\}$, [A] is convex, and A is the convex subsemigroup of all positive elements of [A]. A similar statement holds for each partial sum of the L_i .
- (3) Pick $0 < b_i \in L_i$ for $i = 1, \cdots, n$ and define $H_i = \{x \in L: x \cap b_j = 0 \text{ for all } j \neq i\}$. Then $L_i = H_i$ for $i = 1, \cdots, n$. For if $x \in L_i$, then since $b_j \in L_j$, $x \cap b_j = 0$ for all $j \neq i$. Thus $x \in H_i$ and hence $L_i \subseteq H_i$. In particular, $0 < a_i \in H_i$. Thus, by reversing the argument, we have $H_i \subset L_i$.

Note that for any $x \in L$, $x \cap a_i = 0$ if and only if $x \cap b_i = 0$. This is a consequence of the fact that L_i is linearly ordered and convex.

(4) $B_i = \{x \in L: x \cap a_i = 0\}$ is a convex subsemigroup of L. The subsemigroup B of L that is generated by L_i and B_i is $L_i \oplus B_i$. $[B] = [L_i] \oplus [B_i]$, [B] is convex, and $B = \{x \in [B]: x \geq 0\}$. For each i, $[B_i]$ contains the n-1 disjoint elements $a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n$ but does not contain n such elements. Each B_i is independent of the particular choice of the a_j in the A_j . Clearly, B_i is convex, and if $x \in L_i \cap B_i$, then $x \cap a_j = 0$ for all j. Therefore x = 0 and $L_i \cap B_i = 0$. Thus all statements except the last follow from Theorem 2. The last statement follows from the remark after (3).

Let $N=1,\cdots$, n, and let S be a nonvoid subset of N that contains s elements. Let $G_S=\left\{x\in L^+\colon x\cap a_i=0 \text{ for all } i\in N\setminus S\right\}$. It is easy to show that G_S is a convex subsemigroup of positive elements of L that contains $\Sigma_{i\in S}\oplus L_i$, and that G_S is independent of the particular choice of the a_i in the L_i . Moreover, G_S contains s disjoint elements but not s+1 such elements.

(5) If $0 < a \in G_S \setminus \Sigma_{i \in S} \oplus L_i$, then there exist i, $j \in S$ such that $a > L_i \oplus L_j$. In particular, if S = N, then $G_S = L^+$, and thus, if $0 < a \in L \setminus A$, then there exist i, $j \in N$ such that $a > L_i \oplus L_j$. We use induction on s. If s = 1, then G_S is one of the L_i , and the statement is trivial. Suppose that s > 1 and that (5) is satisfied by all subsets T of N that contain s - 1 elements. Consider $0 < a \in G_S \setminus \Sigma_{i \in S} \oplus L_i$. For each $i \in S$,

$$a = a \cap a_i + a',$$
 $a_i = a \cap a_i + a'_i,$ $a'_i \in L_i,$ $a' \cap a'_i = 0.$

Case I. There exists an $i \in S$ such that $a_i' > 0$. Here, $a' \cap a_i = 0$, for otherwise a_i' and $a' \cap a_i$ are positive elements in the o-group $[L_i]$ and hence

$$0 < a_i' \cap a' \cap a_i = 0 \cap a_i = 0$$
.

Since $0 \le a' \le a$, $0 \le a' \cap a_j \le a \cap a_j = 0$ for all $j \in N \setminus S$. Thus $a' \in G_S$. Let $T = S \setminus \{i\}$. Then T contains s - 1 elements and $a' \in G_T$. If

$$a' \in \sum_{i \in T} \bigoplus L_i \subseteq \sum_{i \in S} \bigoplus L_i$$

then $a = a \cap a_i + a' \in \Sigma_{i \in S} \oplus L_i$, a contradiction. Thus

$$0 < a' \in G_T \setminus \sum_{i \in T} \oplus L_i$$
,

and hence by induction there exist h, k \in T \subset S such that a > L_h \oplus L_k.

Case II. $a_i^! = 0$ for all $i \in S$. Here $a_i < a$ for all $i \in S$, and hence $a > \Sigma_{i \in S} + a_i$. Therefore either $a > \Sigma_{i \in S} \oplus L_i$, or we can replace the a_i by b_i $(0 < b_i \in L_i)$ for all $i \in S$, and one of the resulting $b_i^!$ is strictly positive. Thus we have Case I again.

(6) If b_1, \dots, b_n are disjoint elements of L, then they belong to A. Moreover, $b_i \in L^i_i$ for some permutation $i \to i^i$ of N. For if $i \neq j$, $b_k \cap a_i \neq 0$ and $b_k \cap a_j \neq 0$, then

$$b_1, \dots, b_{k-1}, b_k \cap a_i, b_k \cap a_j, b_{k+1}, \dots, b_n$$

are disjoint. Therefore $b_k \cap a_i \neq 0$ for at most one i, and hence $b_k \in L_i$ for some i. But since the L_i are linearly ordered, no two of the b_k can belong to the same L_i .

(7) [A] is invariant with respect to o-automorphisms of L. In particular, [A] is a normal subgroup of L. Let α be an o-automorphism of L. Then, since [A] = $\{a - b: a, b \in A\}$, it suffices to show that $A\alpha \subseteq A$. Now

$$a_i\alpha \cap a_j\alpha = (a_i \cap a_j)\alpha = 0\alpha = 0$$
,

provided that $i \neq j$. Thus the $a_i \alpha$ are disjoint, and hence by (6) $0 < a_i \alpha \in L_i^!$ where $i \to i'$ is a permutation of N. Thus by (3)

$$A\alpha = (L_1 \oplus \cdots \oplus L_n)\alpha \subseteq L_{l'} \oplus \cdots \oplus L_{n'} = A.$$

Let G = L/[A], with the natural order.

(8) G is an 1-group with fewer than n disjoint elements. For suppose (by way of contradiction) that X_1, \dots, X_n are disjoint elements in G. Then $X_i = x_i + [A]$ ($0 < x_i \in L \setminus [A]$, and $x_i \cap x_j \in [A]$ for all $i \neq j$). By (5), for each i there exist i, i, i is an i in i in

$$[A] = [L_1] + \cdots + [L_n], x_i \cap x_j \notin [A],$$

a contradiction.

Now we use induction on the number of disjoint elements. We assume that Theorem 1 is true for all 1-groups with fewer than n disjoint elements. Thus G is a lexico-sum of fewer than n o-groups. Let π be the natural o-homomorphism of L onto G.

- Case I. G is an o-group. Here the $B_i\pi$ are convex semigroups of positive elements that contain 0, and thus they form a chain. Without loss of generality, we may assume that $B_1\pi\subseteq B_2\pi\subseteq\cdots\subseteq B_n\pi$. Let B be the semigroup generated by L_n and B_n . Then, by (4), $[B]=[L_n]+[B_n]$, [B] is a convex subgroup of L, and $B=L_n\oplus B_n$ is the convex semigroup of positive elements of [B]. Since B_n contains a_1,\cdots,a_{n-1} and does not contain n disjoint elements, $[B_n]$ is a lexico-sum of $[L_1],\cdots,[L_{n-1}]$ and thus [B] is a lexico-sum of all the $[L_i]$. We now must show that L=<[B]>.
- (9) [B] is invariant with respect to o-automorphisms of L. For let α be an o-automorphism of L. Then the mapping β of [A] + a ϵ G upon [A] + a α is an o-automorphism of G. By the proof of (7), α induces a permutation of the L_i. Thus α induces a permutation of the B_i, and B_i $\pi\beta$ = B_i $\alpha\pi$ = B_j π . Thus β induces a permutation of the B_i π . Since B_n π \supset B_i π for all i ϵ N, B_n $\pi\beta$ = B_n π . Finally

$$\begin{split} [\mathbf{B}]/[\mathbf{A}] &= [\mathbf{B}]\pi = ([\mathbf{B_n}] + [\mathbf{L_n}])\pi = [\mathbf{B_n}]\pi = [\mathbf{B_n}]\pi\beta = [\mathbf{B_n}]\alpha\pi = ([\mathbf{B_n}]\alpha + [\mathbf{A}])\pi \\ &= ([\mathbf{B_n}]\alpha + [\mathbf{A}]\alpha)\pi = ([\mathbf{B_n}] + [\mathbf{A}])\alpha\pi = [\mathbf{B}]\alpha\pi = [\mathbf{B}]\alpha/[\mathbf{A}]. \end{split}$$

Therefore $[B] = [B]\alpha$.

To show that $L = \langle [B] \rangle$, it suffices by Lemma 1.1 to prove:

(10) If $0 < a \in L \setminus [B]$, then a exceeds every element in [B]. $a = a \cap a_i + a'$, and $a_i = a \cap a_i + a_i'$, where $a' \cap a_i' = 0$. If $a_i' \neq 0$, then $a' \in B_i$ because $0 < a_i' \in L_i$ and $a' \cap a_i' = 0$. Thus $a' \pi = [A] + a' \in B_i \pi \subseteq B_n \pi$, and thus a' = b + c, where $b \in B_n$ and $c \in [A]$. Thus $a = a \cap a_i + a' \in [B]$, a contradiction. Therefore $a_i = a \cap a_i$, and hence $a > a_i$ for all $i \in N$. Thus, by (3), $a > c_i$ for all $c_i \in L_i$ and all $i \in N$. It follows that a > [A]. Now consider $b \in [B]$. Since $a\pi > b\pi$, a > d + b for some $d \in [A]$. Also, $0 < a - b - d \in L \setminus [B]$. Therefore a - b - d > -d, and hence a > b.

We have shown that [B] is a lexico-sum of the $[L_i]$ and that L is a lexico-extension of [B]. Therefore L is a lexico-sum of the $[L_i]$. This completes the proof of Case I.

Case II. G is not an o-group. Here, since G is a lexico-sum of fewer than n o-groups, $G = \langle U | + V \rangle$, where U and V are lexico-sums of n_u and n_v o-groups, respectively, and where $n_u + n_v < n$ and $n_u \neq 0 \neq n_v$. Suppose first that there exists an $i \in N$ such that $[B_i]\pi \supseteq U | + V$. If C is any convex subgroup of G, then either $C \subseteq U | + V$ or $C \supseteq U | + V$. Also, the convex subgroups between G and U | + V form a chain, because G/(U | + V) is an o-group. Thus, without loss of generality, we may assume that $[B_n]\pi \supseteq [B_i]\pi$ for all $i \in N$. Now, if we repeat the argument in Case I, it follows that $[B] = [L_n] + [B_n]$ is a lexico-sum of the $[L_i]$ and that L is a lexico-extension of [B]. Therefore L is a lexico-sum of the $[L_i]$.

Suppose that $[B_i]_{\pi} \subset U[+] V$ for all $i \in N$. Let $\mathfrak{U} = U\pi^{-1}$ and let $\mathfrak{V} = V\pi^{-1}$. By (5), if $0 < a \in \mathfrak{U} \setminus [A]$, then there exist i, $j \in N$ such that $a > L_i \oplus L_j$. Let

$$N_u = \{i \in N: \text{ there exists an } a \in \mathbb{I} \setminus [A] \text{ such that } a > L_i\}$$
, $N_v = \{i \in N: \text{ there exists an } a \in \mathfrak{B} \setminus [A] \text{ such that } a > L_i\}$.

 $N_u \neq \square \neq N_v$, because $U \neq [A] \neq V$. In fact, N_u and N_v both contain at least two elements.

(11) $N_u \cap N_v = \Box$, or $N_u \cap N_v$ is void. For suppose that $i \in N_u \cap N_v$; then there exist $a, b \in L$ such that $0 < a \in \mathfrak{U} \setminus [A]$, $0 < b \in \mathfrak{V} \setminus [A]$, $a > L_i$ and $b > L_i$. Therefore $a\pi \in U$, $b\pi \in V$, and thus $a \cap b + [A] = a\pi \cap b\pi = [A]$. But this is impossible, because $a \cap b > L_i$.

Thus without loss of generality we may assume that $N=1, \cdots, n$, $N_u=1, \cdots, s$ and $N_v=t+1, \cdots, n$, where s< t+1. Let H be the subsemigroup of L that is generated by G_{N_u} , G_{N_v} and $K=\Sigma_{i=s+1}^t \oplus L_i$.

 $(12) \ [H] = [G_{N_u}] + [K] + [G_{N_v}], \ [H] \ \textit{is convex, and } H \ \textit{is the semigroup of all positive elements of } [H]. Since the semigroups G_{N_v}, K and G_{N_u} are convex, it suffices by Theorem 2 to show that they are pairwise disjoint. If $x \in G_{N_u} \cap G_{N_v}$, then $x \cap a_i = 0$ for all i, and hence $x = 0$. If $x \in G_{N_u} \cap K$, then $x = x_{s+1} \cup \cdots \cup x_t$, where $x_i \in L_i$, and $x \cap a_i = 0$ for $i = s+1$, ..., t. Thus $0 = x \cap a_i = x_i \cap a_i$ for $i = s+1$, ..., t. Therefore, since the L_i are ordered, the $x_i = 0$ and hence $x = 0$. Thus $G_{N_u} \cap K = 0$, and by a similar argument, $G_{N_v} \cap K = 0$.}$

Now [H] is convex and contains a_1, \dots, a_n , and hence it contains exactly n disjoint elements. It follows that G_{N_u} , K, G_{N_v} contain s, t - s, n - t disjoint elements, respectively. Thus by induction $[G_{N_u}]$, [K] and $[G_{N_v}]$ are lexico-sums of the $[L_i]$ that they contain. Therefore [H] is a lexico-sum of the $[L_i]$ for all $i \in N$. To complete the proof of Theorem 1, we need only show that $L = \langle [H] \rangle$.

(13) $[H]\pi = U + V$ and $[H] = (U + V)\pi^{-1}$. To prove that $[H]\pi \subseteq U + V$, it suffices to show that if $h \in G_{N_V}$, then $h\pi \in U + V$. By the definition of $\mathfrak U$, there exist $u_1, \cdots, u_s \in \mathfrak U$ such that $u_i > L_i$. Thus $L_1 \oplus \cdots \oplus L_s < u_1 + \cdots + u_s = u$. Now suppose (by way of contradiction) that $h\pi \in G \setminus U + V$. Then $h\pi > U + V$, and so $h + [A] = h\pi > u\pi = u + [A]$. But this means that there exist $y_i \in [L_i]$ such that $h + y_1 + \cdots + y_n > u > L_1 \oplus \cdots \oplus L_s$. Thus

$$\mathtt{L}_{1} \oplus \cdots \oplus \mathtt{L}_{s} < \mathtt{h} + \mathtt{y}_{s+1} + \cdots + \mathtt{y}_{n} = \mathtt{k} \in \mathtt{G}_{N_{\mathbf{v}}} \oplus \mathtt{K}.$$

Therefore $a_1 < k$ and $a_1 \cap k = 0$, a contradiction.

To prove that $[H]\pi\supseteq U \biguplus V$, it suffices to show that $[H]\pi$ contains the positive part of V (for then $[H]\pi$ contains the difference group V, and by symmetry $[H]\pi$ contains U). Consider the positive element a+[A] in V. $0 < a \in \mathfrak{B} \setminus [A]$. Thus $a \not > L_i$ for $i=1, \cdots$, t and therefore for each $i=1, \cdots$, t there exists a b_i $(0 < b_i \in L_i)$ such that $a \cap b_i < b_i$. By (3) we may assume that $a \cap a_i < a_i$ for $i=1, \cdots$, t. Now

$$a = a \cap a_i + a',$$
 $a_i = a \cap a_i + a'_i,$ $0 < a'_i \in L_i,$ $a' \cap a'_i = 0,$ $a' \neq 0,$

for otherwise $a \le a_i$ and hence $a \in L_i$. In particular, for i = 1, $a \equiv a' \mod [A]$, $a' \cap a_1 = 0$ and $0 < a' \le a$. Let $b_1 = a'$, and repeat the above process on b_1 and 2. We get a b_2 such that $a \equiv b_2 \mod [A]$, $b_2 \cap a_2 = 0$ and $0 < b_2 \le b_1 \le a$, and thus $b_2 \cap a_1 = 0$. Continuing in this way, we get a b_1 such that $a \equiv b_1 \mod [A]$ and $b_1 \cap a_1 = 0$ for $i = 1, \dots, t$. Thus $b_1 \in G_{N_V}$ and $b_1 \pi = a + [A]$. Therefore $G_{N_V} \pi$ contains the positive elements in V. Finally, consider $d + [A] \in U + V$. Since $[H]\pi \supseteq U + V$, there exists an $h \in [H]$ such that $d + [A] = d\pi = h\pi = h + [A]$. Thus

d = h + a, where $a \in [A] \subseteq [H]$, and hence $d \in [H]$. Therefore $[H] = (U + V)\pi^{-1}$. This completes the proof of (13).

[H] is normal in L, because [H] = $(U + V)\pi^{-1}$ and U + V is normal in G. L/[H] is an o-group, because it is isomorphic to G/(U + V), which is an o-group. Since $[B_i]\pi \subset U + V$ and $[H] = (U + V)\pi^{-1}$, $[B_i] \subset [H]$ for all $i \in N$. By repeating verbatim the argument in (10) with [B] replaced by [H], we can show that if $0 < a \in L \setminus [H]$, then a exceeds every element in [H]. Therefore L is a lexico-extension of [H], and hence L is a lexico-sum of the $[L_i]$. This completes the proof of Theorem 1.

As in Theorem 1, assume that L contains n disjoint elements a_1, \dots, a_n but not n+1 such elements.

COROLLARY II. If L/[A] is an o-group, then

$$L = < \cdots <<<[L_1] + [L_2] > + [L_3] > [L_4] > + \cdots + [L_n] >.$$

Proof. By the proof for Case I, $L = \langle [B_n] | + [L_n] \rangle$, where the lexico-extension may be trivial. $[B_n] / \sum_{i=1}^{n-1} [+ [L_i]]$ is an o-group; thus

$$[B_n] = \langle [\{x \in B_n \colon x \cap a_j = 0 \text{ for all } j \neq n-1\}] \ | + \ [L_{n-1}] \rangle.$$

The corollary now follows by finite induction.

4. EXAMPLES OF LEXICO-EXTENSIONS

In this section, let N=0, a, b, c, \cdots be an 1-group, and let $\triangle=\theta$, α , β , γ , \cdots be an o-group. There exists at least one lexico-extension of N by \triangle , namely the direct sum $\triangle \oplus$ N, where we define (α, a) to be positive if $\alpha > \theta$ or $\alpha = \theta$ and a > 0. In general, by the extension theory of Schreier (see [3] or [4]), any lexico-extension G of N by \triangle has the following representation. $G = \triangle \times N$; (α, a) is positive if $\alpha > \theta$ or $\alpha = \theta$ and a > 0;

$$(\alpha, a) + (\beta, b) = (\alpha + \beta, f(\alpha, \beta) + ar(\beta) + b),$$

where r is a mapping of \triangle into the group A(N) of all order-preserving automorphisms of N, f is a mapping of $\triangle \times \triangle$ into N, and r and f satisfy

- (1) $[ar(\alpha)]r(\beta) = -f(\alpha, \beta) + ar(\alpha + \beta) + f(\alpha, \beta)$ and $ar(\theta) = a$,
- (2) $f(\alpha, \theta) = f(\theta, \beta) = 0$.
- (3) $f(\alpha, \beta + \gamma) + f(\beta, \gamma) = f(\alpha + \beta, \gamma) + f(\alpha, \beta) r(\gamma)$

for all $a \in N$ and all $\alpha, \beta, \gamma \in \Delta$.

If G splits over N, then we can choose f so that $f(\alpha, \beta) \equiv 0$. Thus G is determined by \triangle , N, and a homomorphism r of \triangle into A(N). If N is in the center of G, then we can choose r so that $ar(\alpha) \equiv a$. Thus G is determined by \triangle , N (where N is abelian), and a mapping f of $\triangle \times \triangle$ into N such that (2) and

(3')
$$f(\alpha, \beta + \gamma) + f(\beta, \gamma) = f(\alpha + \beta, \gamma) + f(\alpha, \beta)$$

are satisfied. Note that here order does not rear its ugly head—every central extension of N by \triangle is a lexico-extension under the above ordering of G.

Example I. Let \triangle be the group of integers. Let N = U + V + D, where D is an 1-group and $U = V = \triangle$. For $\alpha, \beta \in \triangle$ and $(u, v, d) \in N$ we define $f(\alpha, \beta) \equiv 0$,

$$(u, v, d) \mathbf{r}(\alpha) = \begin{cases} (u, v, d) & \text{if } \alpha \text{ is even,} \\ (v, u, d) & \text{if } \alpha \text{ is odd.} \end{cases}$$

Then r is a homomorphism of \triangle into A(N), and so $G = \triangle \times N$ is a splitting lexico-extension of N by \triangle .

Example II. Let F be an 1-group, and let \triangle be an o-group. For each $\delta \in \triangle$, let $F_{\delta} = F$. Let $N = \sum_{\delta \in \triangle} + F$ (the small or the large direct sum). For $(\cdots, f_{\delta}, \cdots) \in N$ and $\alpha, \beta \in \triangle$, we define $f(\alpha, \beta) \equiv 0$ and $(\cdots, f_{\delta}, \cdots) r(\alpha) = (\cdots, f_{\delta + \alpha}, \cdots)$. That is, the element in the $(\delta + \alpha)$ th component is replaced by the element in the α 'th component. Then r is a homomorphism of \triangle into A(N), and again $G = \triangle \times N$ is a splitting lexico-extension of N by \triangle .

Example III. Let N=R+D, where D is an abelian 1-group and R is the additive group of rational numbers. Let $\Delta=R_1\oplus\cdots\oplus R_n$, ordered lexico-graphically, where $R_i=R$ for $i=1,\cdots,n$. Let A be an n-by-n rational matrix. For $\alpha=(\alpha_1,\cdots,\alpha_n)$ and $\beta=(\beta_1,\cdots,\beta_n)$ in Δ , define $f(\alpha,\beta)=\alpha A\beta^t$, where β^t is the transpose of β . Then f satisfies (3') and hence $G=\Delta\times N$ is a central lexico-extension of N by Δ . N is a direct summand of G if and only if there exists a mapping g of Δ into N such that $g(\theta)=0$ and $f(\alpha,\beta)=-g(\alpha+\beta)+g(\alpha)+g(\beta)$ for all α and β in Δ . Note that $-g(\alpha+\beta)+g(\alpha)+g(\beta)$ is a symmetric function. Thus if A is not symmetric, then N is not a direct summand.

REFERENCES

- 1. G. Birkhoff, Lattice theory, Revised Edition, Amer. Math. Soc. Colloquium Publications 25 (1948).
- 2. A. H. Clifford and P. Conrad, Lattice ordered groups having at most two disjoint elements. Proc. Glasgow Math. Assoc. (to appear).
- 3. P. Conrad, Extensions of ordered groups, Proc. Amer. Math. Soc. 6 (1955), 516-528.
- 4. L. Fuchs, The extension of partially ordered groups, Acta. Math. Acad. Sci. Hungar. 1 (1950), 118-124.
- 5. O. Ore, Linear equations in non-commutative fields, Ann. of Math. (2) 32 (1931), 463-477.

Tulane University