CONCAVE FUNCTIONS, REARRANGEMENTS,
AND BANACH LATTICES

B. J. Eisenstadt and G. G. Lorentz

1. INTRODUCTION

A theory of the representation of concave functions on an abstract Boolean ring
in terms of rearrangements of measures is given in Sections 2 and 3. These results
are used to give a Banach lattice characterization (Section 4) of certain spaces of
measurable functions introduced by G. G. Lorentz [8]. This application uses previous
results of the authors [3], as well as the results of D. Maharam [9], L. Loomis [7],
and H. Freudenthal [4].

2. INTEGRATION

Let B be a non-atomic o-Boolean ring. A positive function x is a family x(a)
of elements of B, defined for all @ > 0, for which

(1) x(a) > x(8) for B> a, and
@) U =) = x(@).
B>a

(Unions and intersections of nested families in B indexed by reals exist, since co-
final sequences exist.)

A (real) function y is the formal difference y =y + - y_ of two positive functions
which are disjoint. We reserve the phrase function on B for the more usual meaning
of a function with domain B. (We assume that all the functions on B in this paper
take on more than three values.) A function ® on B is positive if &(e) > 0 and
®(0) = 0 (we allow the possibility that &(e) = +=); ® is strictly positive if in addition
®(e) = 0=e = 0; & is a measure if it is positive and countably additive.

Let p be a given strictly positive measure on B which is locally finite
(1z(e) = +o implies that there exists an f such that 0 # f c e and u(f) < +».) It fol-
lows that g is full-valued [5]. An admissible measure is a measure ¢ defined on
B', the o-finite elements of B, which is finite when p is finite.

If x is a positive function, it determines a measure ¢, on B by

+00
®) b= | nx@Ine da.

THEOREM 1 (Radon-Nikodym). If ¢ is an admissible measuve, then there
exists a unique positive function X4 such that (3) holds for all e in B' (that is,
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LEMMA 1. If x is a positive function, then ¢y is admissible if and only if there

+co
exists an q, < + for which px(a)) da < 4o,
a, .
Proof. By (3), ¢, {e) < aypule) + S‘ p(x(a)) de, and therefore ¢, (e) is finite on

Oy
elements of finite p-measure if the integral is finite.

Conversely, suppose that ¢, is admissible. We show first that there exists an
oy < +o for which p(x(a,)) < +e«. If not, then pu(x(4™) = + for all n, and there
exists an e, C x(4™ for which u(e,) = 1/2", since p is full-valued. Putting

e= U e,, we have p(e) < 1. But ¢.(e) > au(x(ax)Ne) for all a, by (1) and (3).

Thus ¢x(e) > 4% w(x(4™ne)> 4% u(ey) =2 for all n. Thus ¢X(e) =+ and ¢y is
not admissible. Thus we have an a, for which u(x(a,)) < +w~. Then the fact that ¢
is admissible implies that

Foo oo
4o > ¢ (x(@ ) = §O p(x(@) N x(@ o) dar = g px(g)) + | px(@) do.
a,

COROLLARY. If ¢ is admissible, then ¢ is absolutely continuous.

3. REARRANGEMENTS, CONCAVE FUNCTIONS

Two positive functions x and y are covariant if for every «, B > 0 either
x(a) c y(B) or x(a) D y(B). The two functions are 'reafrfrangements of each other
(with respect to p) if p(x(a)) = p(y(a)) for all o > 0. Two admissible measures ¢
and Y are rearrangements if X and Xy are rearrangements.

LEMMA 2. If x and y ave positive functions, then a necessary and sufficient
condition for the existence of a positive function z which is covariant with X and is
a reavvangement of y is that

@) u( N xen>uc U yo.
U (={a))=+eo Ly (B)) <teo

(If p(x(@)) <+ for all o n“(x(a)) =400 X(@) is taken as y(0) U x(0). With this defi-
nition, (4) is satisfied in th1s case, and as we show, the lemma holds.)
Proof. Let F = {a >0 | pr(x(@)) < +e} . Then (4) reads

w( M x@)>u U yey.

agFy BeFy

Suppose there exists a positive function z which is covariant with x and is a re-
arrangement of y. Then, for each pair «, 8 > 0 for which « £ F, and B € Fy, we
have p(y(B)) = u(z(@)) < p(x(a)), and therefore z(8) ¢ x(a). Then

( N x@)> U z@)

adF, BEFy

and
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p( )V x@) > u( U 20) = sup n@®) = sup ue@)=n(U y@).
Qf Fy BEFy BEFy, BEFy, BeFy,

Conversely, there exists, by Zorn’s lemma, a maximal nested family of elements
{e,} such that

(a) for a € Fy, x(a) is an e, (b) ple,) <+, and (c) e, C 9 x(a).
afF4

A slightly stronger statement of the full-valuedness of p (the proof is identical) as-
serts that for

0<k< u ﬂ x(a))

aﬁ,Fx

there exists an e, such that p(ey) = k. The required positive function z is then
given by

z(B) = x(0) U y(0), for B such that u(y(B)) = +;

z@) = [1 x(@), for  such that py@) = u( {1 x(@)) < +w;
afF, afF, '

2(8) = ey, where p(ey) = nyO)< p( [1 x@).
OEF

These categories are distinct, and by (4) they exhaust the set of 8 > 0.
If ¢ is a measure on B, we define ¢* = gbu* by
(5) pXe) = sup (D).
fe B!
L(f)=p(e)

LEMMA 3. If ¢ is an admissible measure, then

+o0
(6) p*(e) = go min {p(x4(0), ()} da, and
(N Sfor e € B', ¢*(e) = sup Y(e), where the supremum is taken over all measures
Y/ which arve vearvangements of ¢.
Proof. Since u(xqb(a)ﬂ f) < min{u(x¢(a)), p(®} , (3) and (5) give immediately
that

-+oo
P*(e) < S;) min{u(x¢(a)), pie)} da .

If there were an f € B' comparable to all the x¢,(a) such that u(f) = u(e), then ¢(f)
would be given by (6) (since then u(x¢(a) nf) = min{u(x¢(a)), w(®)}) and the reverse
inequality would follow. That is, we require a
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0 (1 < a),
z(a) = zg(a) =
f (0<a<1),
covariant with x = xg(a), and a rearrangement of y = ye(a). The existence of such a

z requires that x and y satisfy (4). Now (4) is certainly satisfied if LL(X¢(0)) < + oo
or if u(e) = +. (In the latter case, a slight modification of the construction in
Lemma 2 ensures that f€ B'.) If u(x¢(0)) =+ and p(e) < +=, the required zs need
not exist. However, in this case, let

a =sup{a > 0| p(xy@)) =+o}.

By Lemma 1, @ < +». Define x, by

xg(c) forO__<_a<E-%,
Xp(a) = x¢(a—§a—n) for&-%ga<a+—;—n,

x,(a) fora+—a——<a

¢ 2n =

Then

w1 xg) = n(xg(@ - 2)) = o

QfFy
(4) holds, and by Lemma 2 there exists a z, covariant with x, and a rearrangement

of ye. That is, there exists an f, € B' which is comparable with the x, (o) and such
that p(fy) = p(e). Then

+o0
)2 | nlryen sy ax

oo a+—§%1
> (" nea@nt)ae - | pixge)nt)ao
0 a2
2n .
hl o
= | min {unte@), n(t)} ae - S e

+00 —
> S;) min { p(x4(@)), p(e)} da - = ue).

Since this is true for all n, (6) follows.

Now if ¢ is a rearrangement of the admissible measure ¢, (6) implies that
¢*(e) = ¥*(e) > Y(e), and we have one half of (7). Moreover, for x = Xe, for each
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e€ B', and for y = x4, (4) is satisfied, and there exists a z which is covariant with
x and is a rearrangement of y = Xgp- Then ¢, is a rearrangement of ¢ and

+o0

+oo
w0 = | pe@nede= | min{ue), nE)} d = ove),

0

and (7) is proved.

THEOREM 2. Two admissible measures ¢ and Y are vearvangements if and
only if ¢* = y*.

Proof. If ¢* = y*, then for all ue [0, suppu(e)] we have
e€B

+co too

i ,u} da = i ,u} da.
§  min{ntxg), utda= | min{nGxy), u} do

u u
Integrating by parts, we get S a ¢(t) dt = S a‘P(t) dt for all u, where oy and ay,
0 0

are the inverse functions of p(x,(a)) and p(x,{e)) (defined except at a countable set
of values of t). Then ay(t) = ay(t) almost everywhere, and since the functions
p(x(a)) are continuous on the right, we have p.(x¢(a)) = M(X,p(a)) for all . The
converse follows immediately from (7).

A characterization of those functions & on B which can be represented as a ¢*
is obtained by exhibiting a certain ®-dominated measure on B. The existence of
such measures is discussed in the following theorem. Here B need not be a o-ring,
nor non-atomic, and the measures need only be finitely additive.

THEOREM 3. (@) If @ is a finite-valued positive function on B and ¢ is a
measure on a subving B of B for which ¢(e) < ®(e) for e in B, then if (i) & is in-
creasing (e, C e, implies &(e,) < ®(e,)), and

& is multiply subadditive (¢if ey (k= 1, ---, n) cover e p times, then

(8) 4
pe(e) <2, ., Bley),

theve exists an extension ¢ of ¢ to a measuve on B such that ¢(e) < ®(e) for all e

in B. N

B) If ® is a finite-valued positive function on B which is (i) increasing and
(ii) concave (®(e,Ue,) + ®(e,N e,) < ®(e,) + ®(e,)), and F is a nested family in B,
then theve exists a measuve ¢ on B such that ¢(e) = ®(e) for all e in F and
¢(e) < &(e) for e in B.

Proof, Let S(B) be the set of formal sums 211;:1 ar ey (e in B, ay real), with
the natural relations and vector lattice operations. Then S(B) is a vector lattice and
B is imbedded in S(B). In [3], the authors obtained the following results. If & is a
positive function on B, then n

P(x) = mek___lakcIo(ek)

for all aj and ey such that |x| = Zﬁﬂ ax ex (ayx > 0) is a lattice semi-norm
(lxl < Iy]f implies that P,(x) < P,(y)) on S(B) if and only if & is increasing and
multiply subadditive. Moreover, P, is additive on positive covariant elements of
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S(B) if and only if & is increasing and concave. (Thus (i), together with (ii), implies

(8)).

We use the following easily verified version of the Hahn-Banach theorem. If V
is a vector lattice with lattice semi-norm P; V a subvector lattice; p a positive
linear functional on V such that |§(V)| < P(¥) for ¥ in V; then there exists an ex-
tension p of p to a positive linear functional on V satisfying |p(v)| < P(v) for v in

V.

To prove («), we take V = S(B), P = P,, V = S(B), and we let p be the linear ex-
tension of ¢ to S(B). For V in V and v > 0, there exist 2, > 0 and e, such that

Py V) + € _>_ Z)ak @(ek) Z Eaka(ek) = p(v)
and p(v) < P,(v). Clearly V is a subvector lattice, p is positive, and therefore
15| = |p(,) - | < |96, + 7)) = (¥ < Py (|7]) = P, ®).

The required ¢ is the extension p restricted to B.

To prove (8), we take V = S(B), P=P,, V= C - C, where C is the cone gener-
ated by & in S(B), and p(c, - c3) = Py(c,) - P,(c,). Then p is well-defined, linear,
and positive on V, since P, is additive on C. Moreover,

|§(Cl - cz)l = IP(C1) - P(cz)l SP(CI - Cz) .

Once again, the required ¢ is the extension p restricted to B.

THEOREM 4. If B is a 0-Boolean ving and p is a strictly positive measure on
B, then a strictly positive function & on B satisfies the condition ® = ¢* for some
admissible measuve ¢ if and only if

(i) & is increasing,

(ii) & is concave,
(iii) ®(e) depends only on u(e) and is finite wheve u is finite,
(iv) if en is nested and |(ey) — O then ®(e,) — 0, and

(v) if pn(e) = +=, then ®(e) = sup &(e'), e' C e, and u(e') < +=,

Proof. The necessity of the conditions follows easily from (6), Lemma 1, and
the full-valuedness of p. For example, (ii) follows from (6) when we note that for
reals 0 <h<a<b, min(u, a - h) + min(u, b + h) < min (u, a) + min (u, b). While (6)
implies continuify of ¢* at all e, we need hypothesize it only at 0 and +e«; continuity
elsewhere is then implied by (i) to (iii).

Conversely, suppose that & satisfies (i) to (v). Let B be the Boolean ring of fi-
finite elements of B, and ¥ a maximal nested family in B. By (i) to (iii), Theorem
3 applies and there exists a finitely additive measure ¢ on B such that ¢ = & on &
and ¢ < & on B. Then, by (iii), ¢ is finite on B, and by (iv), ¢ is countably additive
on B. Thus ¢ may be extended to a measure ¢ on B', and ¢ is an admissible
measure. Moreover, ®(e) = ®(e') if p(e') = u(e), e' € B' by (iii), and therefore
¢ < & implies that ¢* < &. For p(e) < +«, there exists an f in & such that
ple) = p(f) (n is full-valued and & is maximal) and ¢*(e) = ¢*(f) > ¢(f) = &(f) = &(e).
This reverse inequality then follows from (v) for p(e) = +o. o

In the problem of representation of Banach lattices, we are given the o-Boolean
ring B and a function & defined on B, but not the measure p. We are interested in
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whether there exists a strictly positive full-valued measure p on B which allows
the representation & = ¢* for some p-admissible measure ¢. Clearly, by Theorem
4, we need consider this question only for those & which are increasing and concave.
We have the following theorem.

THEOREM 5. If & is a strictly positive, increasing, concave function on a non-
atomic o-Boolean ving B, then a stvictly positive full-valued measure 1. on B such
that (iii) holds, exists if and only if

(vi) If e,Ne, =0, then (e, Ue,) depends only on &(e,;) and ®(e,);

(vii) if e, | 0 and ®(e,) < sup @(e) = M, then ®(e,) — &(07) = inf ®(e);
e#0

(viii) if e+ 0, &(e) > ®(0"); if ®(e) = M and ®(f) < M, then there exists an
e' c e such that &(f) < ®(e') < M.

Proof. If (iii) holds, then &(e) = F(u(e)) where F is defined on some closed in-
terval [0, 8] (0< B <+). F is real on the real part of its domain and is a positive,
increasing, concave function. If z < 4w, and 0 <x <z < B, then

F(z) ZF(x-i~ z) > F(x) + F(z)

2 2 ’

X+ 7
2

and F(x) = F(z) if F(x) = F( ) Therefore if x € F~(r),

F~i(r) = { x} or F-i{r)> [x, +w)nf[0, g].

(vi) now follows immediately. The first part of (viii) also follows, since & is as-
sumed to take on more than three values. (vii) is a restatement of the theorem that
p(e;) < + and e, | 0 imply p(e,) — 0. The last part of (viii) is a consequence of
the assumption that p is full-valued.

Suppose that & satisfies (vi), (vii), and (viii). Since B is non-atomic, for any
0 # e there exists a sequence e, C e such that e, | 0.

(@) If eg 20, e, T eg (e, | eg) and &(e,) <M, then &(e,) — ®(ey). For there
exists f, | 0 such that f, c e; (f, cey). Since & is increasing and concave,
®(eg) > @®(e,) and

d(e,) + ®((eg - ey)) UL > d(ey) + &(f,)

(®(en) > ®(ep)) and ®(eg) + ®((en - eo) Ufn) > &(en) + &(fn)). The conclusion follows
from (vii), since (eg - enl) Uf, 1 0 ((e, - eg)Uf, | 0).

(b) If e # 0, ®(e) <M, and &(0")< 6 < &(e), there exists f C e such that

®(f) = 6. Let G={gce| ®(g) <b6}. G is partially ordered by inclusion, and by
Zorn’s lemma there exists a maximal chain { ga} in G. There exists an increas-
ing sequence g, which is cofinal with the chain {ga}, for otherwise there would
exist an uncountable number of non-zero disjoint subelements of e and this contra-
dicts (vii) and the first part of (viii). Putting f = U°f gn = Ua gy, We have &(f) < 6
by (a). If &(f) <6, then f+ e and there exist £, C e such that f ] f, and by (a),
once again, the maximality of {g «t would be contradicted.

(c) If ec f and ®(e) = &(f) < &(g) < M, then e = f. Suppose first that fc g.
Then if f - e # 0, there exists a finite sequence f=iyC f; c --- c £, = g such that
@(fjﬂ -~ fj) < &(f - e), by (b) and (vii). By (b) there exists f'c f - e such that
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®(f, - ) = ®(f'), and &(f) > ®(eyf’) = @(fU({, - 1)) = ®(f,)). Thus &) = &(f,), and
continuing, we see that &(f) = #(g). But ®(f) < &(g) and therefore e = f. The case
f ¢ g may be reduced to this one. First &(g - fng) > &(f - £ng); for otherwise
®(g) < ®(f) by (b) and (vi). Then there exists g' C g - fNg such that
&(g')=®(f-fng) and g" =fU(g-g') D f and

2N =@((f-fng)u (fNg) U(g-g' -fNg)) =& U (fNg) U (g - g' - fNg)) = &(g).

If we define e ~ f when ®(e) = &(f), the theorem follows from the theorem of
Maharam [9, Section 19]; for the existence of the unit is not essential and the count-
able chain condition is needed only for subelements of e where &(e) < M. This last
is implied by (vii) and (viii). The measure constructed in [9] is obtained by the tech-
niques developed in [10]. We give a simpler construction for our case, using the
special properties of ®. Choose 0 # e c f such that &(e) < &(f) < M. Then for
®(0) < 8 < &(f - e), define Y(8) = &(eye') - &(e), where e' c £ - e and &(e') = d.
If G=(e1, *--, en), where the e; are disjoint and ®(e;) < ®(f - €), let
Y(G) = ZY(®(e;)). Then p(e) is defined to be sup Y(G) over all G such that
ei€ G implies e; C e. The proof that y is indeed the desired measure follows
reasonably easily and is not given. )

By modifying (vii) and (viii) somewhat and combining Theorems 4 and 5, we get

THEOREM 6. If & is a strictly positive function on a non-atomic o-Boolean
ving B, then a stlyvictly positive full-valued measuve L on B and a p-admissible
measure ¢ such that ® = ¢* exist if and only if

(i) ® is increasing,

(il) ® is concave,

(vi) if e,ne, =0, then ®(e,Ue,) depends only on ®(e,) and ®(e,),
(ix) ¢f en 1 0 and &(e,) < M, then &(e,) — 0, and

(x) if ®(e) =M, then ®(e) = sup ® (e'), for e' C e and d(e') < M.

Proof. If the required p and ¢ exist, then (i) and (ii) follow from Theorem 4,
and (vi) from Theorem 5. Since ®(e;) < M implies that p(e,) <+, the countable
additivity of p and (iv) imply (ix). Condition (x) follows from (6), Lemma 1, and the
full-valuedness of .

Conversely, (x) implies the second part of (viii). Moreover, since & is strictly
positive, there exists an e in B such that &(e) > 0. Thus M > 0, and by (x), there
exists an e in B such that 0 < &(e) < M. Then there exists a sequence satisfying
the hypothesis and therefore the conclusion of (ix), so that ®(0*) = 0 and (ix) implies
(vii). Moreover, the first part of (viii) follows since & is strictly positive. By
Theorem 4 we have the existence of the required p satisfying (iii). Then (ix) im-
plies (iv), (x) and (iii) imply (v), and by Theorem 4 there exists a p-admissible ¢
for which & = ¢¥*.

4. SPECIAL SPACES A

The space Y of all real functions y =y, - y_ (v, and y_ positive and disjoint),
forms in a natural way a relatively o-complete vector lattice in which the o-Boolean
ring B is embedded [1].

If & is a function on B to [0, +«], we define
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400
(9) llyl] = S'O 2@y, (@VUy_(@)do .

The set X =1 y! |l¥|| < +«} forms a subvector lattice in which ||y|| is a lattice

norm on X if and only if ® is strictly positive, increasing, and concave. X isa
Banach lattice (complete) if and only if & satisfies (ix) as well. The space X to-
gether with the above norm is then called a Ag-space. These results together with
a Banach lattice characterization of Ag-spaces are discussed in [3].

If u is a strictly positive, locally finite measure on B and ¢ is a p-admissible
measure, we may define

+o0
10) | 1511 = sup § w0, @Uy_(@)da,

where the supremum is taken over all measures ¥/ which are rearrangements of ¢.
We denote the set of elements for which (10) is finite by A(p, p- By Lemma 2, (with

a slight modification of y, if necessary as in the proof of Lemma 3), we have

+o00 +o0
(1) sw { y@uy_@de={ " swyr@uy @) d
0 0

+00
- fo $*(y, (@)U y_(0)) dor .

Thus Theorem 6 implies
THEOREM 7. Every A¢, " space is a Ag-space. A Ag -space is a A¢, u—space
for some p and ¢ if and only if & in addition satisfies (vi) and (x).

In [8] Lorentz considered the space A gL of real-valued measurable functions
on a measure space (Z, S, u) for which

(12) [In]] = S;‘Pg g'|hldp <+,

where g is a locally integrable function on Z and g' is any rearrangement of g
[6]. (Functions which differ on sets of measure zero are identified.)

THEOREM 8. Every Ag’ “—space is a A¢ u—space, and conversely.
b4

Proof. To go from (Z, S, p) to B, u, we take B to be S, modulo sets of mea-
sure zero. Conversely, any o-Boolean ring is equivalent to a o-field S of subsets
of a set Z modulo a o-ideal [7]. The point-function h corresponds to the function
yi(@) = {z| h(z)> o}, y_(@) ={ z| h(z) < -a} . The abstract operations are defined
just to correspond with this representation of point functions. The correspondence

between ¢ and g is that of (3). Then ¢g(s) = S gdy, and it follows that the norms
S

given by (10) and (12) are identical.
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The final theorem relates these results to an abstract relatively o-complete
Banach lattice X with a unit (that is, an element 1 > 0 such that 1Ny = 0 implies
y = 0). Then B(1) ={e in X|0< e < 1 and enl - e = 0} is a 0-Boolean algebra,
and the mapping

Yy — ¥, -Y_, and for x> 0, x — x(a) =U{n(x -al),n1}
n

is a representation X(1) of X as a Banach lattice of functions [4]. Combining these
results with those of [3] and Theorems 7 and 8, we have

THEOREM 9. If X is a relatively o-complete Banach lattice, then X(1) is a
Ag-space if and only if the novm is additive on positive covariant elements, or,
equivalently, if and only if the norm is concave on B(l) and is the maximal extension
to a norm on the finite step functions. If B(1) is non-atomic, then X(1) is a Ag
space if and only if it is a A g space and the novm satisfies (vi) and (x) on B(l)
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