THE EMBEDDING OF CERTAIN METRIC FIELDS
Silvio Aurora

1. INTRODUCTION

Mazur’s Theorem, first stated in [5], can be formulated for the commutative
case in the following way: If K is a metvric field which contains the veal numbers
and is such that the norm of x equals the ovdinary absolute value of x whenever x
is a veal number, then K is the veal field or the complex field. In Section 4 of this
paper, some results are obtained in which K is no longer assumed to contain the
real field, and the condition on the norm is assumed only for a portion of the prime
field of K; when K does not contain the real field, it might be one of the subfields of
the complex field other than the reals or complexes; therefore our results show only
that K is some subfield of the complex field.

For instance, Corollary 2 of Theorem 5 asserts that if K is a metric field such
that the norm of n-e equals n, for every natural number n which is sufficiently
large, then K is isomorphic to a subfield of the complex field. (Here e denotes the
unit element of K, and n-e is the n-fold sum e + --- + e.) Similarly, Theorem 7
asserts that if K is a metric field of characteristic zero, such that the norm of x
equals the ordinary absolute value of x whenever x is a positive rational number in
K that is sufficiently small, then K is a subfield of the complex field.

In order to obtain these results, we develop in Section 3 some generalizations of
Theorem 1 of [2]. These generalizations allow us to obtain, from a pseudonorm N
which is sufficiently well-behaved on a semigroup A, a pseudonorm N' closely re-
lated to N, having the same desirable properties as N, and such that

N'(ex) = N'(e) N'(x)

for all ¢ in A and for all x (in this paper, a semigroup is understood to be a non-
empty set, contained in a ring, which is closed under the ring multiplication).

2. PSEUDONORMS AND SUBORDINATE PSEUDONORMS

The terminology and notation employed in [2] are assumed known. See also [1]
and [4] for further remarks about norms and metric rings.

A pseudonorm N is said to be stable at an element ¢, and ¢ is said to be N-
stable,if N(---cx---) = N(---xc---) for all x; if N is stable at every element of a set
A, then A is said to be N-sfable, and we say that N is sfable on A. Pseudo absolute
values are stable on the entire ring, and every pseudonorm is stable on the center.

If N is a pseudonorm of a ring R and c is an element of R such that
N(c*) = N(¢)* for r = 1, 2, ---, then we say that N is power multiplicative at c and
that ¢ is N-power multiplicative. A pseudo absolute value is power multiplicative
at all elements, for instance.

Under certain circumstances it is possible to replace a pseudonorm by a sub-
ordinate pseudonorm having special properties. First, we note that if N is a
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pseudonorm of a ring R and c is an element of R which is not N-null, then, for each
X in R,

N(x) > N(xc)/N(c) > N(xc?)/N(c)* > --- > 0,

so that N(x) = lim N(xc")/N(c)* = inf N(xc")/N(c)* exists for each x.
 of

r —>» o0

We indicate next the main results concerning the function N.. Proofs are left to
the reader.

LEMMA 1. Let N be a pseudonovm of a ving R, and let ¢ be an element of R
which is N-stable and not N-null. Then N, is a pseudonorm subovdinate to N, and
it is distinct from the zevo pseudonovym if and only if ¢ is N-power multiplicative.

LEMMA 2. Let N be a pseudonovm of a ving R, and let ¢ be an element of R
which is N-stable and N-power multiplicative, but not N-null. Then N, is a non-
zevo pseudonorm subovdinate to N such that

(1) N.(c) = N(c),
(2) Nc(ex) = No(e)No(x) for all x in R,
(3) if N is stable at d, then N is stable at d.

3. STRUCTURE THEOREMS FOR PSEUDONORMS

In this section we show that certain pseudonorms have subordinate pseudonorms
with special multiplicative properties.

A pseudonorm N of a ring R is said to be multiplicative (power multiplicative)
on a subset A if N(xy) = N(x) N(y) for all x and y in A (if N is power multiplica-
tive at x for each x in A); in this case A is said to be N-multiplicative (N-power
multiplicative). A pseudonorm N is said to be komogeneous on a set A if
N(ax) = N(a) N(x) for all x whenever a is in A. The results below permit us to
replace a pseudonorm which is multiplicative or power multiplicative on a semigroup
by a subordinate pseudonorm which equals the original pseudonorm over a portion of
the semigroup but is homogeneous on the semigroup. We first obtain some simple
criteria for a pseudonorm to be power multiplicative on an element or a semigroup.

LEMMA 3. Let N be a pseudonorm for a ving R, and let x be an element of R.
If N(xT) = N(x)* for some natural number r, then N(xS) = N(x)s for every natural
number s less than r. In particular,N is power multiplicative at an element x if
and only if theve exist infinitely many natural numbers r such that N(xT) = N(x)*.

Pyroof, If N(x¥) = N(x)* and s < r, then
N(x)" = N(x¥) = N(x%-x""%) < N(x°) N(x)* %,

whence N(x)° < N(x°) and therefore N(x%) = N(x)°. The final statement in the lemma
follows immediately.

THEOREM 1. Let N be a pseudonorm forv a ving R, and let A be a semigroup in
R. Then N is power multiplicative on A if and only if N(x2) = N(x)2 for all x in A.

Proof. Iterated application of the condition N(x2) = N(x)? yields N(x5) = N(x)°
for x in A, whenever s is a power of 2. The final statement in Lemma 3 then shows
that N is power multiplicative at x for each x in A, hence A is N-power multiplica-
tive if N(x®) = N(x)? for all x in A. The converse is obvious.
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We note that if Nx*™) = N(x)*™®) for some integer r(x) greater than 1, then
N(x%) = N(x)2. This leads to the following corollary.

COROLLARY. Let N be a pseudonovym of a ving R, and let A be a semigroup
in R. Then N is power multiplicative on A if and only if for each x in A there
exists an integer r(x) greatey than 1, with N(xr(x)) = N(x r(x),

If A is a nonempty set in a ring R and .# is a nonempty set of pseudonorms of
R such that each N in .# is stable and power multiplicative on A, then 4 is said
to be A-hereditary if, whenever N is in 4 and c¢ is in A but not N-null, then N,
isin .

LEMMA 4. Let A be a nonempty set in a ving R, and let & be an A-heveditary
system of pseudonoyms for R. If 4 has a minimal element N, then N is homo-
geneous on A.

Proof. Suppose that N is a minimal element of .#. Let ¢ be in A, and let x
be any element of R. If N(c) = 0, then N(cx) = N(c) N(x), since the right side and
hence both sides of the equation are zero. On the other hand, if N(c) # 0, then the
pseudonorm N exists and is such that N(cx) = No(¢) No(x). But N, is subordinate
to N and belongs to #, since 4 is A-hereditary. Since N is a minimal element
of .#, we have N, = N. Thus, N(cx) = N(c) N(x). This shows that N is homogeneous
on A.

LEMMA 5. Let N be a pseudonovm on a ving R, and let A be an N-stable, N-
power multiplicative semigrvoup in R. Let B be an N-multiplicative semigroup
contained in A. Then theve exists a pseudonorm N'of R subovdinate to N, and

equal to N on B, such that N' is stable and power multiplicative on A and homo-
geneous on B.

Proof. Let .+ be the set of all pseudonorms subordinate to N, equal to N on B,
stable on A, and power multiplicative on A. Then .# is not empty, since it contains
N. It is readily proved that .# is B-hereditary. Zorn’s Lemma is used as in the
proof of Lemma 4 of [2] to show that .# has a minimal element N'. Then Lemma 4
shows that N' is homogeneous on B, and the result is proved.

THEOREM 2. Let N be a pseudonorm of a rving R, and lef A be an N-stable,
N-multiplicative semigroup in R. Then theve exists a pseudonorm N' of R, subordi-
nate to N, and equal to N on A, such that N' is stable and homogeneous on A.

Proof. Use Lemma 5 with A and B identical.

THEOREM 3. Let N be a pseudonorm of a ving R, and let A be an N-stable,
N-power multiplicative semigrvoup in R. Let B be an N-multiplicative semigroup
contained in A. Then theve exists a pseudonorm N' of R, subordinate to N, equal
lo N on B, and such that N' is stable and homogeneous on A.

Proof, Let .# be the set of all pseudonorms subordinate to N, equal to N on B,
stable and power multiplicative on A, and homogeneous on B. Then .# is not empty,
by Lemma 5. It is easily verified that .# is A-hereditary and contains a minimal
element N'. Then N' is homogeneous on A, by Lemma 4. This completes the proof.

COROLLARY. Let N be a pseudonorm of a ving R, and let A be an N-stable,
N-power multiplicative semigroup in R. If ¢ is an element of A, then theve exists
a pseudonorm N', subovdinate to N, with N'(c) = N(c), such that N' is stable and
homogeneous on A.

Proof. Use the theorem, with B taken as the semigroup generated by c.
This result, with A = R, quickly yields Theorem 1 of [2].
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4., EMBEDDING THEOREMS FOR METRIC FIELDS

We can now show that metric fields can be embedded in the field € of all com-
plex numbers, provided that the norm acts as the ordinary absolute value over a suf-
ficiently large portion of the prime field. First, Mazur’s Theorem is recast in a
slightly different form.

THEOREM 4. Let K be a metric field which contains the field P of all vational
numbers. If N(x) = |x‘ for all x in P, then K is algebraically isomovrphic to a sub-
field of G.

Pyroof. K may easily be shown to be a commutative normed algebra over P in
the sense of [3], hence, if R is the completion of K, then R is a complete normed
algebra over the real field, according to [3; Chap. IX, Section 3, No. 7, p. 51]. It is
clear that R is commutative and has a unit element e (the same unit element as for
K, if K is identified with a subset of R).

Then there exists a maximal ideal I among all the ideals of R distinct from R.
Since R is complete and is a metric ring, it is a Q-ring [4; p. 155], and therefore
the maximal ideal I is closed [4; Theorem 2]. Then R/I is a normed algebra over
the real field [3; Chap. IX, Section 3, No. 7, p. 51], and R/I is a field, since I is a
maximal ideal. But Mazur’s Theorem tells us that a normed division algebra over
the real field is isomorphic to the real field, the complex field, or the division ring
of real quaternions. Thus, there exists an isomorphism of R/I with the real field
or the complex field, hence there exists an isomorphism ¢ of R/I into the complex
field ¢. If n if the natural homomorphism of R onto R/I, then n followed by ¢ is
a homomorphism of R into €, and it carries e into 1. The restriction to K of this
homomorphism is thus a nonzero homomorphism of the field K into €, and it is
therefore an isomorphism of K into €.

THEOREM 5. Let K be a metvic field such that for some integer k > 1,
N(ke) = k and ke is N-power multiplicative. Then K is algebraically isomovrphic
to a subfield of €.

Proof. Let A be the semigroup generated by ke, so that N is multiplicative on
A. Theorem 2 shows that there exists a pseudonorm N' subordinate to N, equal to
N on A, and homogeneous on A. Thus, N'(ke) = N(ke) = k, and

N'(kx) = N'((ke)x) = N*(ke) N'(x) = kN'(x)

for all x. If se set x = e in this last equation, we get N'(ke) = kN'(e), hence N'(e) = 1,
since N'(ke) = k. For x in R and r a natural number, we have

rN'(x) + (k¥ - r)N'(x) = k'N'(x) = N'(k"x) = N'(rx + (k¥ - r)x) < N'(rx) + (k" - r)N'(x),

whence rN'(x) < N'(rx). But N'(rx) < rN'(x) always, so that N'(rx) = rN'(x). If in
this last statement we set x = e, we get N'(re) = rN'(e) = r, for every natural number
r. It follows that K is of characteristic zero, since re can never be zero.

If m and n are natural numbers and c is the element of the prime field of K
identified with the rational number m/n, then nc = me, so that

nN'(c) = N'(nc) = N'(me) =

whence N'(c).= m/n. Thus, N' reduces to the ordinary absolute value for “positive
rational numbers” in K and consequently for all “rational numbers” in K. To com-
plete the proof, we apply Theorem 4.
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COROLLARY 1. Let K be a metric field such that N(ke) = k for some integer
k > 1, and such that N(x2) = N(x)? whenever x is of the form ne with n a natural
numbev, n > k. Then K is algebraically isomovphic to a subfield of G.

Proof. Theorem 1 shows that N is power multiplicative on the semigroup A gen-
erated by ke, and the theorem may then be applied.

COROLLARY 2. Lelt XK be a metric field such that N(ne) = n for all natural num-

bers n which ave sufficiently lavge. Then K is algebraically isomovphic to a sub-
field of G.

Proof. If k is a natural number (k > 1) such that N(ne) = n whenever n >k,
then k clearly satisfies the hypothesis of the theorem.

THEOREM 6. Let K be a metvic field such that N(ne) = nN(e) for infinitely
many natuval numbers n. Then K is algebraically isomovphic to a subfield of €.

Proof. Let N'(x) = sup {N(xa)/N(a) | N(a) # 0} for each x. Then N' is a norm
for K such that N'(e) = 1. Thus, N'(ne) < nN'(e) = n for every natural number n.
On the other hand, N'(ne) > N(ne)/N(e) = n for infinitely many natural numbers n, so
that N'(ne) = n for infinitay many natural numbers n.

Corresponding to any natural number r, let n be a natural number greater than
r such that N'(ne) = n. Then

r+ (n-r)=n=N'(ne) = N(re + (n - r)e) < N'(re) + (n - r),

so that r < N'(re). But N'(re) < rN'(e) = r, so that N'(re) = r. We may now apply
Corollary 2 of the preceding theorem to K with the norm N', to obtain the desired
result.

THEOREM 7. Let K be a metvic field which contains the field P of rational
numbers, and such that N(x) = |x| Jor all positive vational numbers x which are
sufficiently small, Then K is algebraically isomovphic to a subfield of G.

Proof. Let ¢ be a real number, with 0 < ¢ < 1, such that N(x) = |x| whenever
X is a rational number with 0 < x < g. If A is the set of all rational numbers x
with 0 <x < ¢, then A is a semigroup on which N is multiplicative. By Theorem 2,
there exists a pseudonorm N' subordinate to N, equal to N on A, and homogeneous
on A.

Since N' is nonzero on the field K, I{N') is an ideal in K distinct from K, and
it is therefore the zero ideal, so that N' is a norm for K. If n is any natural num-
ber greater than €-1, then 1/n < g, so that N'(1/n) = N(1/n) = 1/n. Since N! is
homogeneous on A,

N'(1) = N(1/n-n) = N'(1/n). N'(n) = 1/n. N'(n),

and therefore N'(n) = nN'(1) whenever n is a natural number with n > g-1. Applica-
tion of Theorem 6 completes the proof, if N' is used as the norm of K.
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