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0. INTRODUCTION

This paper is concerned with a type of cohomology manifold which is of impor-
tance in the theory of topological transformation groups. These spaces have been
studied by C. T. Yang, D. Montgomery, P. A. Smith, E. E. Floyd, A. Borel, and
others.

The paper actually consists of two rather disjointed parts. The first consists of
Sections 2 through 6 and deals with orientable coverings, and the second consists of
Sections 7 through 11 and deals with the theory of transformations of prime period.
These parts have a few points of contact in Section 7, and both use the preliminary
material of Section 1, which contains some general facts about generalized manifolds.

In Section 2 we define the orientable covering of a cohomology manifold. The
definition follows classical lines closely, except that the orientable covering has, in
general, more than two sheets. The special case in which the group of coefficients
is the integers is studied in Section 4, along with the relationship of this case to the
general case. In this case, as in the classical case, the orientable covering has two
sheets.

In Section 5 we apply our methods to study the lifting of transformation groups to
the orientable covering, and we find that a group may be lifted in a unique manner to
be a group of orientation-preserving transformations on the orientable covering. In
Section 6 we study conditions under which the lifted group is a topological transforma-
tion group of the orientable covering if it is a topological transformation group of the
original space.

In Section 7 we study groups of transformations of prime order p on a cohomology
manifold over Zj, that is, P. A. Smith’s theory. We obtain, in a modern form, Smith’s
theorems that the fixed point set is a cohomology manifold over Z; and is orientable
if the space M is orientable; we also obtain a partial converse: If M is paracompact,
and if the fixed point set is orientable, then it has an orientable neighborhood in M.
We also obtain a new dimensional parity theorem which asserts that if the prime p
is odd, then the dimensions of M and of each nonempty component of the fixed point
set are of the same parity. Analogous dimensional parity theorems for spaces pos-
sessing the homology groups of a sphere have been given by P. A. Smith [10], E. E.
Floyd [4], and A. Borel[2]. (See also Section 11 of the present paper.) The analogue
of the refinement of the theorem necessary for the case p = 2, given by Liao [7], is
also proved, and in the course of its proof we find the local groups in the orbit space
about a fixed point. The results of this section are mainly obtained by studying the
relationships between the orientations “in the small” of the fixed point set and of M.

In Section 9 we give another proof of the dimensional parity theorem of Section 7,
under slightly more restrictive assumptions; it is based on entirely different tech-
niques and has the advantage of being somewhat shorter than the preceding proof.
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In Section 10 we apply a result from Section 7 to prove a result for transformation
groups of prime order (and for toral groups) which act on orientable generalized
manifolds; it says essentially that the set of stationary points, regarded as a sub-
space of the orbit space, is homologous to zero in the orbit space.

In Section 11 we indicate briefly how the global theorems of Smith on transforma-
tions of prime order on cohomology spheres can be obtained in a way analogous to
our derivations of the local theorems.

The dimensional parity theorems of Section 7 have subsequently been obtained by
A. Borel, by different methods; Borel’s proofs will appear in a published version of
the notes of the Seminar on Transformation Groups being held at the Institute for
Advanced Study.

The author wishes to express his gratitude to E. E. Floyd and D. Montgomery for
their encouragement and interest in this work.

1. PRELIMINARIES

L will denote any module over a ring with unit. Z denotes the ring of integers,
and Zp denotes the field of integers modulo the prime number p.

The cohomology of locally compact Hausdorff spaces we use is the Alexander-
Spanier_cohomology with compact supports; it is well-known to give the same groups
as the Cech theory of the one-point compactifications modulo the point at infinity.

Definition 1.1 below is our working definition in this paper. Definition 1.2 is one
of several possible definitions of an n-gm over L, and it is easily seen to be equiva-
lent to the definition in the seminar notes mentioned in Section 0. It is given only for
a principal ideal ring L. In the case of a principal ideal ring L, we show below that
these two definitions are equivalent. This equivalence is not used until Section 7.

DEFINITION 1.1. A connected, finite-dimensional, locally compact Hausdovff
space M is said to be an (L, n)-manifold if there exists a collection B of open sets
of M, called fundamental sets, such that:

(1) If Ue 8, then H*(U; L) ~ L.

(2) If Ue B, and V < U is open, then the natural map H*(V; L) — H™(U; L) is
onto. If Ve B also, then this is an isomorphism,

(3) If V is open and y € V, then theve is a set W e B with y € W C V, such that
the natural map HE(W; L) — HK(V; L) és trivial for all k # n.

(4) If B8' is a collection of open sets satisfying (1), (2), and (3) with B' replac-
ing B, then B' C B.

DEFINITION 1.2. A connected, finite-dimensional, locally compact Hausdovff
space M is said to be an n-gm over the principal ideal ring L if for each point X
theve is a neighborhood N such that for each open set U C N, each point y € U, has
a neighborhood V < U such that for all open W C V we have

4] (k # n),
Im(EX(W; L) — HY(U; L)) = Im(BX(V; L) — H5(U; L)) =
L (k = n).

We shall now indicate the proof of the equivalence of these two definitions for a
principal ideal ring L. Every (L, n)-manifold is clearly an n-gm over L. Let M
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be an n-gm over L. Then M is locally connected; for in the definition, we may take
N to be compact, and V then is contained in a single component of U. (A more de-
tailed proof of a similar statement can be found in the proof of Theorem 7.4.) More-
over, we see easily that if U is connected, then Im(H®(V; L) — H®(U; L)) is inde-
pendent of V and y, where V and y are as in the definition.

Lemma 1.3 and Corollary 1.4 below will show that H”(U; L) ~ L and that
H™(V; L) — H™U; L) is onto, for U connected and as in Definition 1.2, and for all
open V C U. Since L is a principal ideal ring, it now follows that if U' C U and if
U' and U are both open, connected, and contained in N, then the map

H*(U'; L) —» HY(U; L)

is an isomorphism.

Thus it will follow that the collection B' of connected sets U that are as in
Definition 1.2 satisfies conditions (1), (2) and (3) of Definition 1.1. Zorn’s Lemma
now implies easily that there is a unique maximal such collection, and hence M is
an (L, n)-manifold.

The collection of fundamental sets will be characterized in Corollary 1.7.

_+LEMMA 1.3. Let U be a connected, locally compact Hausdovff space such that
HY"(Y) = 0 for every open set Y < U; suppose also that each point X in U has a
neighborvhood V such that if WC V is open, then Im(H (W) — HI(U)) = G; then
H)(U) = G.

Proof. By Zorn’s Lemma and the fact that we use compact supports, there exists
a maximal open subset WC U such that Im(H)(W) — HI(U)) = G. We shall show that
W =T.

Let x€ (W - W), and let N be an open neighborhood of x such that
Im(H (N) — HI(U)) = G.

Consider the diagram

£, . . g
HWNN) — HI(W)@® H({N) —» H(WUN) — 0
lhl f, th e 1h3

HI(U) Hi(U) ® HI(U) — HiU) 0,

in which each row is part of a Mayer-Vietoris sequence (see [1]).

Now Im hy; = Im hyg, = Im g, h, = g,(Im h,) = g,(G® G). Since g, is the sum of
the natural projection maps, it follows that g,(G® G) = G, a contradiction which
shows that W = U; this completes the proof.

COROLLARY 1.4. Let X be a locally compact, locally connected, finite-
dimensional Hausdorff space; suppose moveover that for every connected open set
U C X, each point x € U has a neighbovhood V such that if W C V is open, then
Im(H{(W) — HY(U)) = Gy, where Gy = 0 or Gy~ L according as i>j or i=j; then
H(Y) is isomovphic to 0 or to L according as i > j or i = j, for every connected
open subset Y C X.

_ Proof. The property “Hi(Y) = 0 for every open subset Y of X” is equivalent to
“H(Y) = 0 for every connected open subset Y of X”, since X is locally connected.
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Thus, decreasing induction on the hypothesis Hit!(Y) = 0 in Lemma 1.3 is possible,
and the corollary follows without difficulty.

COROLLARY 1.5. If M is an (L, n)-manifold, then HX(U) = 0 for all k > n and
all open subsets U of M.

DEFINITION 1.6. An open subset U of an (L, n)-manifold is said to be orient-
able if for every component V of U and every fundamental set W C V, the homo-
morvphism H*(W) — H™(V) is an isomorphism onto.

COROLLARY 1.7. If U is a connected open subset of an (L, n)- manifold and
V c U is open, then the map H*(V) — H™(U) is onto. A subset of M is a fundamental
set if and only if it is open, connected, and ovientable, and every open subset of an
ovientable sel is ovientable. Also, H*(C) = 0 for every proper closed subset of U.

Proof. Let W C U be a fundamental set, and let G = Im(H?*(W) — H2(U)). Then
if WCWor WDW and W' is also a fundamental set, then clearly

G = Im(H*(W') — H*(U)).

Since U is connected, it is clear that G = Im(H®(V) — H?(U)) for all fundamental sets
V c U, and by Lemma 1.3 and Corollary 1.5, H*(U) = G. The first statement of the
corollary follows immediately, and the second follows directly from the first. The
last statement follows from the exact cohomology sequence

H*(U-C) — H*(U) — H*(C) — 0.

Remark. Ker(H™W) — H™(U)) will be calculated in Theorem 1.10.

THEOREM 1.8. M is a (Z, n)-manifold [ respectively, a (Zp, n)-manifold, for a
prime p) if and only if M is a (K, n) [respectively, (Zp, n)] (homology) manifold in
the sense of [11], where K is the group of reals modulo one. Movreovey, every (Z, n)-
manifold is also an (L, n)-manifold for every abelian group L.

Pyoof. The proof of the first statement follows from the proof of Lemma 11 of
[11] and, for the case in brackets, from the relation HYU; Zp) ~ Hom(Hq(U; Zp), Z,).
Also the last statement can be shown exactly as in the proof of this lemma of Yang,
where we must of course use the universal coefficient theorem for cohomology, which
says that the following sequence is exact (see [3]):

0 - HYU; 2@ L — BHYU; L) - Tor@¥'(U; 2, L) — 0.

DEFINITION 1.9. If M is an (L, n)-manifold and {f{; Ue B} is a collection of
z'som%rphisms fy: HYU; L) — L, then M is said to be locally oviented by the collec-
tion {f.}.

U

NOTATION. (a) If U and V (U D V) are fundamental sets of the (L, n)-manifold
M, then (U, V);, denotes the natural isomorphism H®™(V; L) — H®(U; L). We also put
(V, U), = (U, V);! and

(U1, ) Um)L = (U1, Uz)L (Uz, U3)L (Um-lx Um)L ’

when these are defined. Where no confusion can arise, we drop the subscript L.

If VcUor UcV, where U and V are fundamental sets, then the pair U, V is
said to be a step, and U;, Uy, ---, U, is called a patk if each pair U;, U;,; is a
step.
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(b) If M is a (Z, n)-manifold locally oriented by the maps f;, we denote by Mj,
the corresponding (L, n)-manifold locally oriented by the maps fU® L, where we
identify H™(U; L) with H™(U; Z2) Q¥ L.

(c) We denote by % = %, the automorphism group of L.

(@) If M is an (L n)-manifold locally oriented by the maps fy, then we put
<U, V> = £ (U, V)fV € %, when this is defined. We also use the notation

<Ujy, Uz, «-+, Upy> = <Uj, Up> <Up, Uz>:- <Upp.1, Up>.

(e) If U is a fundamental set of the (L, n)-manifold M, then we denote by
A (U, M) the subgroup of the automorphism group of H*(U; L) consisting of auto-
morphisms of the form (U, Uy, ---, Uy, U).

THEOREM 1.10. If U is a fundamental set of the (L, n)-manifold M, then
Ker(H*(U) — H*(M)) is the subgroup K(U, M) of H™(U) generated by the subset
(1 - 4 (U, M)) H®(U) of H™U). Thus H*(M)~ H™(U)/K(U, M).

Proof. Denote by jx,y the natural homomorphism H™(Y) — H™(X) for an open
subset Y of X. If P is a path from W to W' in V, then for convenience we shall
also denote by P the homomorphism H™(W) — H®(W') induced by P. It is clear that
v, w = v, w' P, and it follows easily that K(U, V) c Ker(H®*(U) — H™(V)) for each
fundamental set U of V. Clearly, by Zorn’s lemma and the fact that we are using
compact supports, there exists a maximal connected open set V suchthat Uc Vc M
and such that

Ker(H*(U) — H™(V)) = K(U, V).
We shall show that V = M. If not, then let pe V - V, and let W be a fundamental set
containing p. Let g € Ker ]VUW u - Ker JV u» and put g'= =]Jv, uy(g). By the Mayer-
Vietoris sequence
H*(V NW) —» HY V) ® H*W) — H(VUW),
there exists an element g" € H*(V NW) such that iv,vnw(e") = g', and
jw,vnw(g") =0.

Since VN W is a disjoint union of fundamental sets, there exist a finite number of
components X; (i=0,1, ---, k) of VN'W and elements g € H*X;) such that

Zivaw,x, () = g"

Let P; be a path from X; to U in V, and let P} be the path X;, W. Put
gr=DP,g € H™(U), and consider the element

g*= 2 (1-P,Py PP H)(eh e K(U, VUW).
We see immediately that

-1 1,
g*= 2. P;g; - PyP (Z Pigi) = 22 Pig; - PoPy? Gw,vawl(e™) = 22 Pig;.

However, jy, y(g - ZPigi) = g' - jv,u(Z Pigi), and from the definition of P; we see
that jV,U(Pigi) = jV,Xi(gi)' Thus
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- dv,ue-egM =g - Ly x,@) =g -iv,vnwE") =g -g' =0,

Therefore (g - g*) € K(U, V), and hence g € K(U, V) + K(U, VU W) = K(U, VUW),
which implies that Ker jyvyw,u < K(U, VUW). However, we have already remarked
that the reverse inclusion holds, and this contradicts the maximality of V and com-
pletes the proofi.

COROLLARY 1.11. A (Z,, n)-manifold is always orientable, and a (Z, n)- mani-
fold M is orientable or not accovding as H*(M) =~ Z or H*(M) ~ Z,.

COROLLARY 1.12. An (L, n)-manifold M is orvientable if and only if %A(U, M)
is trivial.

Remark. The condition in Corollary 1.12 is Yang’s definition of orientability in
[11].

DEFINITION 1.13. If M is arn (L, n)-manifold locally orviented by the maps fy,
then M is said to be consistently oviented by the fyy if <U, V> is the identity ele-
ment of U whenevey it is defined.

Remarks: (a) Every consistently oriented (L, n)-manifold is orientable, and
every orientable (L, n)-manifold can be consistently oriented.

(b) If the maps fy are defined for U in a collection 8' ¢ 8 forming a base for
the topology of M, and if <U, V> is the identity element of % when it is defined,
then the collection {fU} can be uniquely extended to be defined for all Ue B in
such a manner that the new collection gives a consistent orientation of M. Thus we
shall use the term “consistently oriented” in this case also.

2. THE FULL ORIENTABLE COVERING AND THE
CONNECTED ORIENTABLE COVERING

We assume throughout this section that M is an (L, n)-manifold locally oriented
by the maps fy. Let M be the set consisting of elements of the form (p, U, a),
where p € U, U is a fundamental set of M, and @ € %. We say that

(p’ U, a) ~ (p’ v, B)

if VC U and 8 = a<U, V>. (Notice that (p, U, a) ~ (p, V, ) if and only if
(p, U, ya) ~ (p, V, ¥B8).) Now let E be the equivalence relation generated by the re-
lation ~, and define M* = M/E with the obvious topology.

We now show that M* is a k-fold orientable covering space of M, where
k = order % (possibly infinite). In order to show that M* is a k-fold covering space
of M, it is clearly sufficient to show that if Uy, Uy, -+, Uy, U; is a path in M with
p € U; for all i, then <U;, U,, -+, U, U;> is e, the identity element of «.

To prove this, let V be a fundamental set with p € V C U;, for all i. Then
<V, Ui> <Uj, Uj> = <V, U;> for all i, j for which <Uj, U;> is defined. Hence
<V, U;> <U;, Uy, -+, Uy, U;> =<V, U;>, from which the assertion follows.

If U is a fundamental set of M and o € %, let (U, o) denote the fundamental set
of M* which is the image in M* of the subset UpEU (p, U, &) of M.

Note that the action of @ € % on the left of M induces an action of ¢ on the left
of M*, and that this action permutes the sheets of M*. We also denote this action by
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o, and we call it the deck transformation induced by «. Also, we denote the cover-
ing projection of M* onto M by 7.

We shall consider U, to be a fixed fundamental set of M, for the remainder of
this section. Let U¥ = (U,, e), and let M° be the component of M* containing U}.
We shall exhibit a consistent orientation of M°.

If U* is a fundamental set of M° such that #(U*) = U is a fundamental set of M,
then let f, = fU(TT*)_l, where 7*: H*(U) — H®(U*) is the isomorphism induced by 7.

Note that the deck transformations must preserve this collection of local orientations.
Let U*, V* be a step in M° such that #(U¥) = U and #(V*) =V are fundamental sets
of M. Then

(1) S mk-l = <V, U>£ (U, V) m*~l = <V, U £, (U, VH).
Let U}, U}, ---, U* be a path in M° such that the 7(U¥) = U; are fundamental
sets of M. Then from (1) we obtain

(2) toa =<V oy U0>ng (U, -, U*).
m

We now define
(3) g = fU* (U;’ "ty U*m) = <U0’ "ty Um>f

* * 2
U 0 U

where the latter equality follows from (2). We must show that this definition is con-
sistent.

Now suppose that V¥, ---, V¥ 1is a path in M°® such that the #(V¥) = V. are funda-
mental sets of M, and suppose further that w(V’f) = w(V’l‘j) = V.

Since fv* is also the orientation induced from f
T

mation a(V:, V;‘) which takes V¥ onto V:, we see that

* -
v on V1 by the deck transfor

(4) fV* = fv* a*(V’;, V:) s
r 1
where oz*(VI‘, V:): Hn(V:j) — Hn(V’l") is the isomorphism induced by a(V’l'_‘, V’i‘).

Now let Ug, U¥, -*, V¥ be a path from U¥ to V¥ such that the #(U¥) = U, are
fundamental sets of M. We set

(5) fp = (U%, U, -, VH) and p=<U, U, -, V>.

We then see from (3) that fV* = B'lgv*. Moreover, by (3) and (4),
1 1

*x = )8<Vl, VZ’ Ty Vr>fV; = 6<Vl, %y Vr>f

By LV, V)

A\
1

-1
=B<V1a Tty Vr>B gvra*(vf, V:)-

Notice that since U¥ = (U,, e), we have V¥ = (V,, 8) = (V, 8) and also
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V: = (Vr, B<V1) Tty Vr>) = (V7 B<V y °°% Vr>) .

However, (V, B<V, *++, V.>) = B<V, -, V1.>B‘1 (V, B). Therefore the deck trans-
formation taking V¥ onto VX* is

(6) a (VX V¥ = B<Vy, ==+, V. >p" L.
Thus we have

= * %k % %k %k
(7) g x = a(VE Vg ,a*(VE, VH).
r 1
Equation (6) shows, in particular, that <Vj, -+, V.> = e if and only if Vy=V%
which implies that the By x are well-defined.

We can now extend the local orientation given by the By * to all of M* by use of

(7). Note that with this local orientation of M*, the orientations on a fundamental set
U* induced by the deck transformations give every possible orientation of U* exactly
once. Clearly, by their definition, the gv* give a consistent orientation of M*.

DEFINITION 2.1. M* with the orientation defined by the gy is called the full

oviented covering of M with vespect to L.. The connected component M° with the
induced ovientation is called the connected oviented covering of M with rvespect to
L. If M is a (Z, n)-manifold, then we put M} = (M; )* and M? = (ML)O.

Remark. We leave to the reade~r the straightforward task of verifying that M¥*
and the maps gU* are essentially independent of the choice of the £ w and also that

if 8'c ¥ is a base for the topology of M, then M* can be constructed with refer-
ence only to sets in 3'.

DEFINITION 2.2. We define A(M) to be the subgroup of U consisting of the
automorphisms <U,, U;, -, Uj, Uy>.

Remark. %(M) depends on the choice of the basic set U,. However, if we change
basic sets, then %A(M) changes by an inner automorphism of %. Note also that the
set of deck transformations induced by elements of %(M) consists exactly of the
deck transformations of M? and thus that %(M) actually depends only on the choice
of the component M° of M*.

3. AN ALTERNATE DEFINITION OF M°

For an (L, n)-manifold M which admits a simply connected covering space M/,
we can define M° as follows.

First, we orient M' as we oriented MP° in Section 2. (This is a consistent meth-
od, since M' is simply connected.) Next, we let ® be the set of deck transforma-
tions of M' which preserve orientation. Then MP° is seen to be canonically isomor-
phic with M'/® . We leave the details to the reader, since we shall not be concerned
with this fact in the rest of this paper.



GENERALIZED MANIFOLDS 43
4. THE ORIENTABLE DOUBLE COVERING

Let M be a (Z, n)-manifold. Then, by Section 1, M is also an (L, n)-manifold
denoted by M;. The full orientable covering M* of M with respect to Z has two
sheets, since the automorphism group of Z is of order two.

DEFINITION 4.1. If M is a (Z, n)- manifold, then we say that M* is the oriented
double covering of M, and we denote it by M4, Md = (Md)L is called the oriented

double covering of M;,.

Example. Let M be the projective plane. Then the full orientable covering of M
with respect to Zp is a collection of (p - 1)/2 2-spheres if p is odd, and it is the
projective plane 1f p = 2. The orientable double covering Md of M is the 2-sphere.

LEMMA 4.2. If the (Z, n)-manifold M is consistently oriented by the maps gy,
then My, is counsistently orviented by the maps
gy @ L: HMU; L) = HXU; Z2)®L — ZQ® L = L,
where, to simplify notation, we consideyr the isomoyvphisms on the ends to be identi-
ties.

Proof. The condition on the gy is that the diagram

H™(V; Z) G, V), H™(U; Z)

gy y

A

is commutative, when it is defined. The lemma follows on tensoring this diagram
with L.
THEOREM 4.3. If M is a (Z, n)-manifold, then MO has either one or two

sheets. Furthermove, M0 is canonically isomorphic to M; or fo md 1, according
as M;, is ovientable (wz‘tk respect to L) ov not,
Proof, Let fy: HU; Z) — Z be given isomorphisms for fundamental sets U.

Then, tensoring with L (see Notation (b) of Section 1), we calculate immediately that
<U, V>;, =<U, V>, ® L. Let U, -+, U,,, Uy be a path in M. Then we see that

<Ugs ***y Upy Up>p, = <Ug, =+, U, Up>, @ L.

It follows that ML(M) is of order at most two. Moreover, if %A; (M) is of order two,
then the above canonical correspondence between A; (M) and A, (M) clearly yields
a canonical isomorphism between ML and ML The theorem follows

Remark. It is unknown to the author whether or not MP° is always a single or
double covering of M for general (L, n)-manifolds.
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5. LIFTING OF HOMEOMORPHISMS AND OF
TRANSFORMATION GROUPS

In this section, M is an (L, n)-manifold, and M* is its full oriented covering.

DEFINITION 5.1. If X is an (L, n)- manifold, then we denote by G(X) the semi-
grvoup of all local homeomorphisms of X into itself. If X is consistently oriented,
then we denote by G+(X) the subsemigroup of G(X) consisting of orientation-
presevving local homeomorphisms,

THEOREM 5.2. There is a unique map g — g* of G(M) into G+(M*) such that
ng* = gn. This map is an isomovphism of G(M) onto the subsemigroup of G+(M*)
consisting of local homeomorphisms h with the property that n(x) = u(y) implies that
7h(x) = 7h(y). Moveover, if g € G(M), then ag* = g*¥a for all deck transformations
Q.

Proof. Let g be a member of G(M), and let U* be a fundamental set of M* such
that 7(U*) = U is a fundamental set of M and is so small that g is a homeomorphism
on U. We shall define g* on U*. Note that g(U) is a fundamental set of M. Let
{V*} be the collection of fundamental sets of M* such that 7(V%) = g(U). There
exists a unique homeomorphism 7g: g(U) — V¥ such that 7mg is the identity. Let
gs = s g7. These homeomorphisms of U* onto the Vg differ by deck transforma-
tions of M*, and hence there is exactly one (call it g,) which is orientation-preserv-
ing. We let g* be g, on U*. These definitions are clearly consistent with one
another, and they define g* on all of M*.

The fact that g — g* is a homomorphism on G(M) follows from the unicity of the
transformations g* and the fact that g¥h* preserves orientation when g* and h* do.
That the map is onto the indicated set follows from the fact that any such local homeo-
morphism h defines by projection a homeomorphism h7 of M and we must have
(h™)* = h by unicity. The last statement in the theorem follows from the fact that
ag*a~! preserves orientation.

DEFINITION 5.3. If G is a group of homeomorphisms of M onto itself, then we
denote by G* the group of homeomorphisms {g*;, g€ G} of M*. The map g — g*
then gives an isomovrphism of G onto G*.

THEOREM 5.4. If g is an orientation-preserving local homeomorphism of a
locally oviented (Z, n)- manifold M into itself, then g is ovientation-preserving on
M;. (Note that we do not requive M to be orvientable, but only that maps
fy: HYU) — Z be given.)

Proof, The proof follows on tensoring the following commutative diagram with
L:

HY(gU; 2) > H™(U; Z)

N

14

Z

DEFINITION 5.5. If M is a (Z, n)-manifold and if g € G(M), then the induced
map g* on M4 is denoted by gd.

COROLLARY 5.6. If M is a (Z, n)-manifold and if g € G(M), then g9 is ovienta-
tion-preserving on M$ .
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COROLLARY 5.7. If M is a (Z, n)- manifold and M, is not orientable, then the
connected oriented covering M% of M, is invariant under g* for each ge G(M).

Pyroof. In this case, M% is canonically isomorphic to ME. Thus, since the ac-
tion of g9 on Mi is orientation-preserving, this action is equivalent to that of g*
on M(l);

6. PRESERVATION OF TOPOLOGY

Let G be a topological transformation group on M. Then G* is a transforma-
tion group on M*, and we should like to know whether or not the topology induced on
G* by that on G will make G* into a topological transformation group. We shall
establish the following partial answer:

THEOREM 6.1. If k = order U is finite, then each of the following conditions is
sufficient to insure that G* is a topological transformation group with the topology
tnduced from G.

(1) G is a Lie group.

(2) Each neighborhood N of e in G, contains a neighbovhood N' of e in G such
that for every element g € N', theve exists an element h such that hk = g and hi € N
for i=1, 2, .-, k. '

(3) M is locally euclidean.

Proof. The sufficiency of (1) follows from that of (2). To prove the sufficiency of
(2), 1et V = 7(V*) be a fundamental set of M, and let y € V*. Let y € U* C V* and
e € NC G be such that N(U) € V and ﬂteN t(U) # @, where U = 7(U¥). We shall

show that if N' is as in (2), then (N')*(U*) C V*, which will give our result. Let

g € N' and h € N, as hypothesized in (2). Then, since h(U) C V, there exists exactly
one deck transformation a € %4 such that o h*(U*) ¢ V*, Put h*'= ah*. Since

Un h(U) is not empty, we see that U¥* 0 h*'(U*) is not empty, and thus also

B¥(U%) N (0% 1)2(U%)

is not empty, and therefore (h*")?(U*) c V*. Continuing in this way, we see finally
that

g*(U*) = (W)X (U¥) = aX (h¥X (U*) = (h*")X(U%) c V*,

which was our assertion.

The sufficiency of (3) follows from the fact that every sufficiently small homeo-
morphism of a locally euclidean space is locally homotopic to the identity and,
therefore, must preserve orientation locally.

Remark. It is not known to the author whether G* is always a topological trans-
formation group with the topology induced from G; but it seems likely that this is
the case.
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7. GROUPS OF PRIME ORDER

We concern ourselves, in this section, with groups G of prime order p acting on
a (Zp, n)-manifold M. First of all we give a proof, in modern terminology, of
Smith’s theorem that every component F of the set F' of fixed points of G is open
in F' and is a (Zp, r)-manifold for some r < n. From this proof we also obtain that
the orientation maps fyy on M induce, in a natural way, orientation maps fyny for
F, at least for a base of fundamental sets UN F of F. It then follows that the full
orientable covering of F is the subset 7~!(F) ¢ M*, and this result is applied to get
a generalization of Smith’s theorem that F is orientable whenever M is orientable.
We also obtain by our technique the result that if p is odd then n - r is even, which,
of course, is analogous but not equivalent to known theorems of Smith [10], Floyd [4],
and Borel [2]. We also obtain an analogue of Liao’s theorem ([7]) which states that
if M is a (Z, n)-manifold on which a transformation T of period two acts, then n - r
is even or odd according as T preserves orientation near F or not. We use,
throughout this section, the notation G, M, ¥, and F' as described above.

We shall assume, without giving proofs, the following facts about the Smith theory
of transformations of prime period. (Proofs have been obtained by E. E. Floyd, and
they will appear in a book by him and P. E, Conner. In the book, the theory will
probably be phrased in the language of sheaves; but this is immaterial here. The
present author is deeply indebted to Professor Floyd for allowing him to read some
preliminary material for this book.) There are the exact sequences of cochain com-
plexes for an open invariant subset V of M:

0— A~ A— A;®B— 0,
0> A, A— A ®B— 0,

which induce the exact cohomology sequences

i* Sk 5 *
C = HYV) — HY(Y) D HW) @ BV N FY) — HEPHV) o

where p denotes one of 0 and 7 while p denotes the other. The letter 7 stands for
the cochain map 1 - g*, where g is a fixed generator of G, and

o= TP"]‘ =1+ g*+ g*2+ oo g*(p—l) = Z h*,
he G

Ap is the group of cochains of the form px for x€ A, and thus A; C A C A. The
maps Ap — A in the cochain sequences are inclusions, and the maps A — A, (®H B
are the direct sums of operation by p and restriction to F'. Also,

HY(V) =~ HS((V - F1)/G),

where (V - F')/G is the orbit space of V - F! under the action of G, so that it is a
(Z p, n)-manifold. Except for the proofs of Lemmas 7.1 and 7.11 and of Theorems 7.7
and 7.8, the only part of the information above which we shall use is the existence of
the Smith sequences. We shall use 1 to denote p or p when the information which
we have is not sufficient to determine which it should be. Usually, n will depend on
the parity of n or of n - r.

LEMMA 7.1. If V is a fundamental set, then the homomovrphism H™(V) — HD(V)
is an isomovphism onto for both p = ¢ and p = 7. (The author is indebted to E. %
Floyd for pointing out this fact to him.)
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Proof. Since H(V) = HY(V - F1)/G) = 0 for k > n, it follows from the Smith
sequence that HI—F(V) = 0 also for k > n. Thus H™V) — Hp(V) — 0 is exact. Thus it

suffices to show that Hj (V) — H (V) is trivial, and hence it also suffices to show that
the composition H*(V) — Hi (V) H™(V) is trivial, since the first map is onto But

this composition is operatmn by p on H™V), and this is a power of 7=1 -

Hence it suffices to show that g induces the identity automorphism of Hn(V) = Zp;
but there are exactly p - 1 automorphisms of Zp, while g is of order p. Thus g
cannot be a nontrivial automorphism of Zp, and this completes the proof.

LEMMA 17.2. Lel UyD U; D --- D U,y be open invariant subsets of M such that
the maps HI(U;) — HXU;_y) are trivial for all i and for all j + n. Then, for
0<k<n,

Im(Hp(Uy) — Hy(Up) © Im(HS™'(U) @ HH(UNF) —

ng-l(Uo)(D B Uy nFY) — H,l.f(Uo)).

Proof, This is clear from the following commutative diagram, in which the rows
are exact:

K K
Hp(Uyyp)) — H (Uyyy)

1 o

(Uk)@ H YU, NF) — HY(U,) — H Ky

l I

) @ BN U, N FY) — HyU,).

LEMMA 7.3. Let Up D Ul D --- D U, be open invariant subsets of M such that
the maps HYU;) — B (U;i_1) arve trivial for all i and for all j + n. Then, for
0< k<n,

Ker(HN(U, NF') ® HNU,) — Hy' (U — Hy' " (Ugy1))

< Ker(HNU, N F') @ HA(U,) — HSUy NF) @ HyUY).

Proof. This is clear from the following commutative diagram, in which the rows
are exact:

HYU,NF) @ HpU,) — Hy H(U,)
I

HYUy, ) — BYU  NF) @ Hy(Uy, ) — H U

10

HYU)—— HNU, N F) @ HUY).

THEOREM 17.4. F' is locally connected, and every component F of F' is a

(Z_, r)-manifold for some r < n.

P’
Proof. 1t is impossible to choose the sequence Uy D -:- D Uy, of fundamental
sets as in Lemma 7.2 such that the maps H(U; NF') — H(U;_; N F') are trivial for
all i and j, since, by Lemma 7.1 and by inductive use of Lemma 7.2, this would

imply that
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0 # Im(HR(U,,,;) — Hj(Up)) € Im(Hy(Uy) — Hp(Ug) — HR(Uo)),

where H%(UO) — HB(UO) is a composition of the coonnecting homomorphisms of the
Smith sequences, and therefore we would have Hp(U,) # 0. However, U; cannot be
compact, s1nce otherw1se Uy would not be connected; thus HO(UI) = 0, and the se-
quence 0 — H,,}(Ul) —H° (U;) yields a contradiction.

Thus, if x € F', then there exists a sequence Uy D - O U, of fundamental sets
which are neighborhoods of x in M, as in Lemma 7.3, and also such that for some
r < n and for all open sets W c U, with WNF' # f, the map H'(WNF') - H(UyNF")
is nontrivial. By inductive use of Lemma 7.3, we then have

Ker(H* (U, NF) @ H5(Uy) — Hp(Up))
C Ker(H" (U, NF) @ H;(Un) — H'(Uz NF) @ Hp(Uy)
< H'(U;N F') ® Hp(Uy),
it fol-

where < stands for strict inclusion. However, since Hpy(Up,) = H™(U,) = Zy,
lows that both of the kernels above are of deficiency one, and therefore that

Im(H(WNF) — H' (U, N F) = Im(E* (U, NF') - H (U, NF) = Z,

and that Im(H (U,) — H (Ur)) = 0. Moreover, this, together with Lemma 7.3, shows
that Im(H (U, ) — Hp(Uk)) # 0 for r <k < n, which implies that the r satisfying our
demands is unique.

Summing up, we see that for every sufficiently small fundamental set U of M
and every point x € UN¥F' there exists a neighborhood V of x in M and an integer
r, such that if W is an open subset of V with W NF' # 9, then

0 if k+r,
ImHXWNF) > BYUNF)) ~
Zp if k =1,

Clearly, the integer r is uniquely associated with the point x and does not depend
on U and V. It is also clear that the resulting function r = r(x) is constant on

V O F', Thus, by Corollary 1.4, if we can show that F' is locally connected, it will
follow that the component F of ¥' containing x is a (Zp, r)-manifold, and the proof
of our theorem will be complete.

We may assume that N = U is compact and that W C U, where U and W are as
above. We claim that WNF' is contained in a single component of N NF'. If not,
then, since a component of a compact set is the intersection of its open-closed
neighborhoods, there exist two relatively open, disjoint subsets N, and N, of N, with
(NJUN )N F'= NNF!', such that the N;N W NF' are both nonempty. Thus, putting
W; = WN N;, we see that, since the N; NUN F!' are disjoint open sets with union
UNF!,

N
R

Im(H*(WN F') — HY(UN F))

R

Im(H*(W;NF) — HYUNF)) @ Im(H*(W,NF') — H*(U NF))

Zp @ Zp,

4
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which is a contradiction and completes the proof.

THEOREM 7.5. If we let B' be the collection of fundamental sets U of M such
that eitheyr FNU =@ or U is invariant and UNF = UNF' is connected,then B' is
a base for the topology of M, and {UNTF; U € B'} is a base for the topology of F.
Moveover, if Ue B' with UNF # @, then the homomovphism Ay: HF(U NF) — HX(U),
given by Ay = j*-1 Ay, is an isomorphism; heve i* denotes the isomorphism
H™U) — H,’7‘(U), and Ay is the composition

H(UNF) » H5HY(U) - HE*Z(U) — e — HA(U)

of connecting homomovrphisms in the Smilth sequences.

Proof. The first statement, easily verified, is left to the reader. Let
V=0 DU DD Up4i
be as in Lemma 7.2, such that U; € 8' and Upy+; NF #@ and such that
H(U; NF) —» H(U;_; N F)

is trivial for k # r. If V is sufficiently small, then the U;j N F are fundamental sets
of F, and the inductive use of Lemma 7.2 gives the relations

n r Av n
Hp(V) = Im(Hp(Un41) = Hy(V)) € Im(H (VNF)— Hy(V)),

and thus Ay is onto. However, H'(VNF) = Zp, and therefore Ay is an isomorphism
for V sufficiently small. The conclusion follows for arbitrary Ue 8' by considera-
tion of the diagram

Ay
H (VN F)— H:;(V)

o

H'(UNF) — H,‘;(U) .
Remark. There are two homomorphisms Ay, obtained by starting with either
p =0 or 7. These will be shown to be identical in Theorem 7.7.
We collect some important properties of the A
COROLLARY 17.6. If VC U are bothin 8B', with VOF + @, then

Thus, if we define fy = funFAﬁlfor Ue B'" and UNF # P, and arbitrarily for
Ue-B' and UNF = P, where the fyny are given local ovientation maps of F, then
the induced automovphisms <U, V> and <UN F, VNF> of Z, are identical.

THEOREM 17.7. The isomorphism Ay is independent of the choice of p. Move-
oveyv,if p> 2 and F + f, then n - r is even,

Proof. The theorem is trivial for p = 2, since 0 = 7 in this case. Thus we as-
sume that p > 2.
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Denote by s the inclusion maps A; — Ay, A — A, B — B, and by t the maps
A;r — Ay, A — A, B — B induced by operation by -2, We shall also use s and t
for the induced maps in cohomology. The following diagram is commutative:

0 —-A; = A— A @B — 0
ls Js lt+s

0 —A, - A— A ®B =0
[t [t s+t

0 >Ay - A— A.®B — 0.

Thus we have the commutative cohomology diagram

-+ — Hy(U) — HY{U) — HX(U)® H(FNU) - B (U) —

o(0)
ls ls lt+s ls

— HA(U) — HY(U) —» HY(W) @ H(FN V) - B (U) -

[t [t [s+t | |t

. — Hy(U) - HYU) — HL (0@ H(Fnv) - B @O - -

The homomorphism s is the identity on Hl(U) and Hi(FN U), and t is trivial on
HYU) and H{(FNU) (since t=7P-%, 7=1 - g* and g*, being an automorphism of
Z,, of period p, must be the identity).

Thus we have the commutative diagram

H°(FNU) — H:'NU) — HEP4(U) - HIP3(U) — - — HO(U) & HY(U)

ls ls lt js lf lf

H*(FNU) — HIPL(U) — HET2(U) —» HITXU) — - — E(U) E H™NU),

where f=s or f=1t according as n - r is even or odd, and where the compositions
in the rows are the isomorpbisms Ay. Thus f cannot be trivial, and it follows that
n - r is even, as claimed. The first statement of the theorem also follows directly
from this diagram.

The following theorem proves the analogue of Liao’s theorem. We also obtain, in
the proof, the local groups in the orbit space, and this result is incorporated in the
statement of the theorem. The last statement of the theorem is due to Yang [11].

For any invariant subspace S of M, we denote by S' the orbit space S/G of S.

THEOREM 17.8. Let M be a (Z, n)-manifold. If x€ ¥ and NC M is a neighbor-
hood of x, then there are open neighborvhoods V.C UC N of x in M such that if
W c V is an open neighborvhood of x, then

Zp Jor j=r+2k+1<n, k>1,

() & = Im(EBW'; 2) - B@U; 2)~ {Z for j

n and n - r even,

0 otherwise.
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. . . Zp Jor r+ 2<j<n,
(ii) H) = Im(B (W'; Z,) — HY(UY Zp)) =
0 oltherwise.

(iii) The sequence --- — G2 gl - H — Git! > ..., induced by the coefficient se-
quence 0 — Z LA Z — Zp — 0, is exact.

If p=2, then n - r is even orv odd accovrding as the genevator T of G preserves
oy revevses ovientation.

Ifp=2and r=n-1, then ¥ is a (Z, n - 1)-manifold.

Proof. We first deal with the case r =n - 1, and thus also p=2. Let UC YV be
in B' (for coefficients in Z,) and such that the map H)(V; L) — HJ)(U; L) is trivial for
j¥nand L=27 or L =7Z,. The diagram

H*-l1(v; L) - H*-}Y(FNV; L) - HV - F; L) — H®V; L) — 0

Lo l l l

- iu; L) - e (FNU; L) - HN(U - F; L) - HYU; L) — 0

implies that for L = Z, the sequence 0 — Z2 — H™(U - F; Z2) — Z2 — 0 is exact and
hence that HY(U - F; Z;) ~ Z, ® Z,. Thus U - F consists of exactly two components
U, and U,. Now T must interchange these two components, since otherwise T could
be altered on U to give an involution with fixed point set U,, which would clearly be
contrary to our general facts about fixed point sets of transformations of prime
period.

If we now take coefficients in L = Z, the diagram above becomes

v, z) - B4 FNV;2) - Z®Z -2 - 0

lo | - -

v z) - BN FNV; Z) > Z2@Z — Z — 0.
If we put G = Im(H*"{(FNV; Z) » H* }(FNU; Z)), then this diagram clearly implies
that 0 -G —-Z(® Z — Z — 0 is exact, and therefore that G = Z. It is also easy to
see that under our conditions G depends only on U. Thus, by Lemma 1.3,

H*Y(FNU;2)=G=~Z.

The isomorphisms H™(U;; Z) — Z may be chosen so that the map Z@® Z — Z in
this sequence becomes (j, k) — j + k, and the isomorphism H*-1(FNU; Z) — Z may
therefore be chosen so that the map HR-1(FNU; Z) - Z @ Z becomes j — (j, -j).
Since T* is trivial on H*-1(FNU; Z), we see that on H*(U3; Z) ® H™U2; Z) it must
take (j, -j) into (j, -j), and therefore it takes (j, k) into (-k, -j); therefore on

H"(U; Z) it becomes j — -j, which shows that T reverses orientation.

Assertion (ii) now follows in this case from the fact that the orbit space U' is
represented by U; U (F NU), which we shall denote by Uj;, and from the Mayer-
Vietoris sequence with coefficients in Z,:

H(V) —» H({T ) ® BT, — H(EFENV)

l l l

Hi(U) — BT, ® H(T,) — B(FNU).
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Assertion (i) follows from this, formula 216) (to be proved later), and the cohomology
diagram induced by the sequence 0 — Z — Z — Z, — 0. The details are similar to
those used later in this proof, and thus we omit them here. Assertion (iii) is trivial,
since all the groups are trivial. The last statement in the theorem follows now from
the Mayer-Vietoris sequence for coefficients in Z.

We assume now that r< n - 2, for the remainder of the proof. If Voe ®B' isa
neighborhood of x € F, then we can find neighborhoods V,, V, € 8' of x such that
V,cV,c Vg, and

(8) ImE(V;; L) > B(V; ;L) =0 for j#nand L=% or L=Z,
(9) Im(H(V; N F; z.) — H(V; 1NF;Z) = 0 for j#r.
We can also assume that

j j 0 for j<r or j>n,
(10) Im(Hp(Vi; Zp) — Hp(vi-l; ZP)) ~

Zp for r<j<n,

which follows from the proof of Theorem 7.4, in which it was shown that for V;_;
sufficiently small this image is nonzero for r < j < n and zero otherwise, and from
Lemma 7.2, which implies that for r < j < n this image is contained in the image of
the r-th cohomology of a fundamental set of F under some homomorphism, if V;_j
is small.

For the same reason we may also assume that

(11) Im(HS (V) — H; TN (V) ¢ Im(H" (Vo N F) — Hy (Vo).
We know that HY(V,; Z ) = H(V! - F; Z;) and thus, using the diagram

C = BV, - F2) — B(VY; Z2)) > B(VRNF Z2) — -

1 | 1

e — HJ(Vlr - F; Zp) — Hj(vll; ZP) — Hj(V'lﬂF; ZP) — e

1 l l

N Hj(Vb - F; Z,) — H(V'; Z,) — W) NF; Z,) — -,

we see immediately that

. . 0 for j<r+1lor j>n,
(12) Im(H(VY; Z) — BV 2,) =~ <
Zp forr+1<j<n,

where the case j = r follows from the well-known fact that the connecting homo-
morphisms H’(_V,’iﬂ F) — HJ+1(Vi' - F) are the same as the corresponding maps
HI(V;N F) — H&+ (V;) in the Smith sequence (the proof of this lies outside the scope
of this paper, but is not difficult), and where the case j = r + 1 follows from (11),
which in the other notation reads:

Im(H™ (V! - F) —» H*"Y(V) - F)) ¢ ImH*(V{NF) - H* (v} - F)).
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It follows from the above that we can find a sequence Uy, D U, D U, D ---, in which
each U belongs to %' and is a neighborhood of x, such that the U; satisfy the three
conditions

(13) Im(Hj(Ui; L)— Hj(Ui_l; L) =0 for j#n and L=27 or L =12,,
(14) Im(H(U;N F; Z,) — H(U; jNF;Z)) =0 forj#r,

. R 0 for j<r+1or j>n,
(15) Im(H(Uj; Z ) — B (Uy; Z))) =~ - for all i> k.
Z, forr+1<j<n,

We shall use, without proof, the well-known fact that if Ay is the Alexander-
. . . . T . .
Spanier cochain group of an invariant set U and AU is the subgroup of elements in-

variant under T, then Hj(Ag) = I (U'). Inclusion induces s: 5L (U'; Z2) — Hj(U; Z).
(This is the same as the homomorphism induced by the projection of U onto U', but
we shall not use this fact.) Operation by 1 + T* + --- + T¥P-1) induces

o: Hj(U; Z) — Hj(U s 2),

and we clearly see that os(a) = pa for a€ Hj(U > Z). Consider the diagram

- - 0‘ .
HI(U}; 2) S BiU; 2) > B(UY; 2)
R
H)(Uy; Z) — HY U Z2) — B(U}; 2).

The center vertical map is trivial for j #n and i > k, and thus it follows immediately
that

(16) Im(Hj(U;; 7) — Hj(Ul'(; 7)) € Kerp for j#n and i> k.

Now Ui' - F is a (Z, n)-manifold (with Z, used as coefficients, it follows from the
cohomology sequence that U; - F is connected, since r < n - 2), and from Theorem
1.10 it is easy to see that ‘

Z if T preserves orientation,
(17) HY(U} - F; Z) =
Z, if T reverses orientation (and, necessarily, p = 2),

and, by Corollary 1.7, H*(U; - F; Z) — H'(U;_ - F; Z) is always onto, and thus, in
this case, is an isomorphism.

By Corollary 1.7, H(U; - F; Z) — H™(U;; Z) is onto, and hence
H*-Y{(FnU;; Z2) —» HYU; - F; 2)
is trivial. It now follows easily from the conomology sequence and from Lemma 1.3

that Hn'l(FﬂUi; Z) = 0. Consequently we also see that H*-}(FN U{; Z) = 0, and
thus the map H*(U{ - F; Z) — H™U{; Z) is an isomorphism. Thus by (17) we have
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z if T preserves orientation,
(18) HMU; Z) ~

Z> if T reverses orientation (and p = 2),
and also H"(U}; Z) — H"(U;}; Z) is an isomorphism for all i > k.

Consider the coefficient sequence 0 — Z LA Z — Zp — 0 and the induced diagram

- = BTN 7)) — By 2) B UL 2) - B 2y -

! l I l

. . p " .
= BT 2) - B(U; 2) © BU; 2) - By 2p) - -

By (15) and (16) we have immediately

(19 Gl = ImE(U}; 2) - B(U}; Z)) ~ 0 or Z,, for j#n and i >k + 2.

i
It is therefore clearly permissible to assume for the Uj that

G%c+1,k = Im(Hj(W'; Z) — Hj(U]L; Z)) for all j, k and all open neighborhoods

(20)
W of x such that W C Uy, .

Let k(j) = min(k; ch+1 K= ZP), with the understanding that k(j) = O for any j such
that {k; Gy, ) ~ Z,} = . We define

(21) k, = max k(j) .

We now have, in particular, the relation
(22) Gk +1% = Ghszie = Gh 120 415

o o o o o' 7o

in which the isomorphism is induced by the natural map. We put d = Gf{o +1,k0" We
also define similarly
(23) H \ = Im(B(U}; 2 ) — H(U; Z)).
Then by (15) we see that ch«:-l,k = Im(Hj(W i Zp) — Hj(U1'<; ZP)) for all open neighbor-
hoods W C Ug,; of x. Weput Hi=Hy .

Consider the sequence --+ — HI-1 — GJ P Gi i @it - .-+, which is of
order two. We claim that this sequence is exact. (This is assertion (iii) of the
theorem.) This follows from the following general fact. Say that we have a commuta-

tive diagram

A, — A o A
Lo
B, —» B, — B,
!
C

[

1 — G = G
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in which the rows are exact and in which the vertical maps induce isomorphisms:
Im(A; — B;) = Im(A; — C;) = Im(B; — C;). Then the subsequence

Im(B, — C,) — Im(B, — C,) — Im(B,; — C,)
1 1

is exact. To prove this, say that a € A, and that a becomes zero in C;. Then a
already becomes zero in B, since Im(A; — B;) maps isomorphically into C;. Thus
the image of a in B, comes from B,. Hence also the image of a in C, comes from
Im(B, — C,) = Im(A, — C,), and this completes the proof.

Now, since GJ P G is trivial for j # n, we have
(24) Hi-lzGI-1®GI for j<n.

Hence, by (15),

(25) G =0 for j<r+2.
From (15), (24) and (25) it follows quite easily that

) Zp for j=r+2q+1<n, q>1,
(26) Gl ~

0 otherwise for j# n.

Clearly, we will have finished if we can prove the next-to-the last statement of
the theorem. To do this, note that if T preserves orientation, then the exact sequence

0—>Gn'1—>Hn'1—’Gn—>Gn—>Hn—>0
is
n-1 2
0'—’G —“’ZZ—*Z‘—’Z'—"Zz‘-’O,

and it follows that G-l » Z,. If T reverses orientation, then this sequence is

0-a6*loz, 2,22, 52,0,

and it follows that G®-1 = 0. Thus, immediately from (26), we see that n - 1 - r is
odd or even according as T preserves or reverses orientation; this completes the
proof of our theorem.

THEOREM 7.9. Let M* be the full ovientable covering of M, and let G* be the
transformation group on M* induced by G. Then n-'(F) is left pointwise stationary
by G*, and n~(F) is the full ovientable covering of F (with vespect to Zp).

Proof. That 7-1(F) is the full orientable covering of F follows directly from
Corollary 7.6. Let g € G, and assume that G*(x) # x, where 7(x) € F. Then, since
G* is cyclic of prime order p, G*(x) contains p distinct points all mapping into
7(x) by m. This is impossible, since there are only p - 1 points of M* lying over
any point of M.

The following theorem generalizes a well-known result. (See [9], [11].)

THEOREM 7.10. If F has an orientable neighborhood in M, then F is ovient-
able. If F is orientable and M is paracompact (that is, o -compact), then ¥ has an
orientable neighbovhood in M.
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Proof, If F is orientable, then 7~}(F) consists of p - 1 disjoint copies

Fils’ “eel F;-l
of F. If M is paracompact, then so is M*, and hence M* is normal (see [6], p. 159).
Thus the F¥ have neighborhoods N¥ in M* which are mutually disjoint, and, more-
over, the N;" may be assumed to be permuted by the deck transformations. Thus

N = 7(N¥) is a neighborhood of F for which the full orientable covering consists of

p - 1 copies of N. It follows that N is orientable. The converse is proved by going
through this procedure backwards.

Remark., “Coefficients in Z,” is understood in Theorem 7.10, so that this result
is vacuous in case p = 2. That it is not true if interpreted in the classical sense
(when possible), even for the differentiable case, is shown in the following two exam-
ples.

Example A. Let M be the open Moebius strip, and let T be the reflection across
the center circle. Then F is the center circle, and it has no neighborhood which is
orientable (with respect to Z).

Example B. Let M be the space obtained from S% X (-, «) by identifying the
points (x, k) and (-x, -k). Then M is orientable, since the identification map
(x, k) — (-x, -Kk) is orientation-preserving on S? X (-, ©). Let T be the map taking
the point { (x, k), (-x, -k)} of M into {(x, -k), (-x, k)} . Then F is the set of points
{(x, 0), (-x, 0)} , which is the projective plane.

Remark. The examples above can be altered so that T preserves orientation
near the fixed point set, as follows. Let M, = M X (-, «), and let T, = (T, k — -Kk).
Then the fixed point set of T, is F X {0}, and T, preserves orientation near this
set.

LEMMA 7.11. If M'=M - (F'- F), then M' is connected.
Proof. If p> 2, then dim; F'<n - 2, and if M is orientable, then also

H (M - F') = H'(M) = Zy, whichpimplies that M - F' is connected. Thus by Theorem
7.9 we have in general that 7-!(M - F') is connected for p > 2, and hence

M-F =77-YM - F) is also connected. This proof is also valid when p = 2 and
dimZz F' <n - 2; therefore we shall assume that p = 2 and dimz2 F'=n- 1.

Let F" be the union of some components of F' of dimension n - 1, and put
M" = M - (F' - F"). Then the orbit space (M - F')/G = (M" - F")/G is connected,
since HY((M - F')/G) ~ H}(M) ~ H*(M) ~ Z,, and hence (M - ¥")/G must also be
connected, since it has a dense connected subspace (M" - F")/G. If none of the pos-
sible F" separate M, then we have finished. Thus we shall assume that F" separates
M; but if F(3) is a component of F" then F" - F(3) does not separate M. Put
M®3 = M- (F" - F(3)) and consider

H*-YrG) - a3 - rG) - gru(3)) — o,
which is
z, - B*M3) - F@) - z, - 0.
It follows that M(3) - F(3) = M - F" has exactly two components, and the nonzero ele-
ment of G must interchange these components, since (M - F")/G is connected. It

follows that F" = F!, and thus the component F is a candidate for F'3/, and the lemma
follows.
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In case M is orientable, it is desirable to have a natural global isomorphism
*(F) — H(M) ’
H*(F) — H'(M). In fact, we have:

THEOREM 7.12. If M is ovientable and M' = M - (F' - F), then the composition

j*-l
A: HY(F) — HEFI(M) — HIT(MY) — o — HYMY) —— H'(M) — H(M)

is an isomovrphism,

Pyroof, By Lemma 7.11, orientability, and Corollary 1.7, we see that M'e B,
and thus by Theorem 7.5 the homomorphism Ay H'(F) — H”(M" is an isomorph-

ism. That the last map is also an isomorphism follows from the fact that M' is con-
nected (Lemma 7.11).

Remavrk., The proof of Theorem 7.12 is independent of Theorem 7.10, and thus it
gives another proof of the first part of that theorem.

An interesting fact noticed by G. D. Mostow and communicated to the author by
E. E. Floyd is that P. A. Smith’s proof of the orientability of F when M is orient-
able actually also shows that if M is compact and orientable, then F' can not consist
of exactly one point. It seems desirable to include a proof of this fact here.

COROLLARY 7.13. If M is orientable and compact, then the set of fixed points
of G can not consist of exactly one point,

Proof, Suppose that the corollary is false. Then H°(M) — H%(F) is onto, and by
the exact sequence

0 — Hp(M) — H'(M) — Hz(M) @ HF)
it follows that H%(M) = 0. Thus the sequence

HM) — HYF) — HL

L)

is exact, and thus the second map is trivial, contrary to Theorem 7.12.

Remark. An obvious generalization of Corollary 7.13 is that
Im(H"(M') — H (M) ® H'(F))NH"(F) = 0

whenever M is orientable. Another generalization will be found in Section 10.

8. A REMARK

All the results of Section 7, with the exception of Theorem 7.8 and Corollary
7.13, can be generalized to arbitrary transformation groups of order p?, where p is
a prime. The method of proving this statement is due to E. E. Floyd and, in a less
general form, to P. A, Smith. In fact, since such a group G is solvable, there exists
a sequence G= Gg D G; D ** D G,_1 D G = 0 such that Gj431 is normal in G; and
G;/Gj,; is of order p. Let F = F, be, as usual, a component of the set of stationary
points of G = G, and let F; be the component of the set of stationary points of G;
which contains F. Then G,_; is a group of order p on M, so that the theorems are
true for F,_; and G, _; in place of F and G. Now, G,_, leaves invariant the set of
points stationary under G ,_j, and since F_,_; contains a point which is stationary
under all of G, G,_2 leaves F,_; invariant. Thus the theorems are true with
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F,_», F,_1, and G, _ in place of F, M, and G, since G,_; is effectively of order p
on F_, ;. Continuing in this way we get, for example, isomorphisms

. r- -
Al H ¥FNnU) - H YYF, 0D).

(Of course, U must be chosen so that it works at all stages, but this is not hard to
do.) Thus, we find that Ay = AU' AUA8~ is an isomorphism of H*(FN U) onto

H™U). The rest of the results are generalized in the same way.

Corollary 7.13 does not remain true in this more general context, since Z, acts
on P? with only one fixed point and, of course, P? is orientable mod 2. The author
does not know whether it would remain true for odd p or for p=2 and M an orient-
able (Z, n)-manifold. In this connection, see also Section 10, in which this corollary
is generalized in a different way.

9. ANOTHER PROOF OF DIMENSIONAL PARITY

In this section we give an independent proof of the dimensional parity part of our
Theorem 7.7. The proof is more restrictive than the previous “local” proof, since
we shall have to make the global assumptions of paracompactness, orientability, and
of finitely generated cohomology.

We say that a space X is of finite type over Zj if T dim(H(X; Zp) <e.

THEOREM 9.1. Let G be a group of prime ovder p > 2 acting on a paracompact,
orientable (Zp, n)-manifold M of finite type. Then, if ¥ is a component of the set F'
of stationary points and is of dimension r oveyr Z,, F is of finite type and n - r is
even,

Proof. Let H;(X) denote the direct limit of the Cech homology groups of compact
subsets of X with respect to inclusion. (Note that this is the group used in [4].) We
shall use the notation

x¥X) = 2 (-D)'dim H(X), x(X) = Z (-1)'dim K(X),

when these are defined. Note that if X is a (Zp, m)-manifold and is orientable and
paracompact, then we have, by Theorem 7.2 of [1] and Section 7.4 of [1], the Poincaré
duality

H'(X)~ H,_;(X),
and hence also
x*(X) = (-1)™ x(X).

It follows from Theorem 4.4 of [4] that F' is of finite type. Hence also F and
F' - F are of finite type. From the exact sequence

o — Hi-YF' - F) - H(M - (F' - F)) - HM) — -

it follows that M - (F' - F) is of finite type. Thus it suffices to prove the theorem
for the case in which F = F' is connected.

Consider the exact sequence --- — Hi(M - F) — Hi(M) — Hi(F) — --.. It follows
easily that x*(M) = x*(F) + x*(M - F). This shows, through the Poincaré duality, that
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x(M) = (-1)*"F x(F) + x(M - F). However, it follows from Theorem 4.2 of [4] that
x(M - F) = 0 (mod p) and that x(M) = X(F) (mod p). Thus we see that

X(F) = (-1~ x(F) (mod p) .

If x(F) # 0 (mod p), then n - r is even and we have finished. If x(F) = 0 (mod p),
let x € F. (If F = 9, the theorem must be regarded as vacuous.) G acts on the space
M - {x} with fixed point set F - {x}. Moreover, the sequence

0 — HOF - {x}) —» BF) — B°({x}) - H'F - {x}) — -
shows that x*(F - {x}) = x*(¥) - 1, and hence that
X(F - {x}) = x(F) - (-1 = (-1)™*! (mod p).

Thus the result above applied to M - {x} shows that n - r is even in this case,
also; this concludes the proof.

Remark, Using the orientable covering, one can extend the proof above to the
nonorientable case by applying the results of Section 5 and the fact that points of M¥*
lying above a point of F are left fixed by G* (see Theorem 7.9). However, the as-
sumption of finite type must be made for M*.

10. THE POSITION OF THE FIXED POINT SET

In this section we again consider the situation of Section 7, and use Theorem 7.12
to derive a result which, in the language of homology, says that in some sense the
fixed point set is homologous fo zero in the orbit space M/G of M, if M is orient-
able; we also derive some consequences of this. The result is, of course, a general-
ization of Corollary 7.13. Some examples are given which show that it does not hold
in general, if we replace M /G by M in the statement. We also use this theorem to
prove the analogous result for a toral group acting on a compact orientable manifold.

As usual, we shall state and prove our results by means of the language of co-
homology. We shall, however, state the analogous results for homology, since it is
not immediately clear how these results should read, and we shall only indicate the
proofs. The reader should have no trouble filling in the proofs for homology; but it
requires the establishment of the analogues of some of the results in Section 7. The
homology theory which we use in this section is the Cech theory of the one-point
compactifications modulo the point at infinity.

THEOREM 10.1. If G is a group of prinie order p acting on the ovientable
(Zp-n)- manifold M with ovbit space M/G, and if ¥i1, ---, Fx are the components of
dimension r of the fixed point set ¥, wheve r is some definite integevr, then theve
exist elements 0 # y; € H*(Fi) Such that if aj € Zp and T ajyi € Im(H*(M/G) — H*(F)),
then Z a; = 0.

Proof. Let 0+ xe H*(M), and put y; = A{l X, where A; is the isomorphism
HT(F;) — H*(M) given by Theorem 7.12. Then the homomorphism A: H*(F) — H®*(M)
given by A = j*-1A, where j* is the isomorphism H®™(M) — Hp(M), and where A is
the composition

HY(F) — HJ T V) — -+ — Hy(M)

of connecting homomorphisms in the Smith sequences, carries the element Z a;y;
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into Z a;x. As remarked before, the homomorghlsm H*(F) — HUH(M) is the same
as the connecting homomorphism H*(F) — H*t!(M/G - ¥) in the sequence

. — H*(M/G - F) — Hr(M/G) — HY(F) — Hr+1(M/G S F) o e,
and therefore it follows that if = a;y; € Im(H*(M/G) — H*(F)), then

and consequently Z a; = 0, as claimed.
We now formulate the corresponding result in homology.

THEOREM 10.2. With the notation of Theovem 10.1, there exist elements
0 # z; € H.(F;) and an element z € H (F - UFi) (perhaps zero such that

z + 22 z; € Ker(H.(F) —» H.(M/G)).

Pyoof. In analogy to the results in Section 7, there exists an isomorphism
Ag H (M) — H.(F;) given by A; = A;j3', where j4 is the isomorphism

HP(M) — H_(M),
and where A; is the composition
BO(M) — HD_;(M) — - — HY4 (M) — HL(F)

of connecting homomorphisms in the Smith homology sequences. There exists a cor-
responding homomorphism A': H (M) — H(F - U F;) which may be trivial.

We let 0 # x € Ho(M), and we define z = A'x and z; = Ajx. Thus, if A is the.
combined homomorphism H_ (M) — H_(F), then z + £ z; =A x. In particular,
z+ Zz; € Im(HZ,;(M) — H.(F)). However, HZ;1(M) = H;4+1(M /G - F), and the homo-
morphism HZ, ;(M) — H.(F) is the same as the connecting homomorphism
H.,1(M/G = F) — H,(F) in the exact sequence

© — H,.;(M/G - F) - H(F) » H{M/G) — H(M/G - F) — -,

and the conclusion follows directly.

FRemark. The author does not know whether these theorems are true for trans-
formations of prime power period, or indeed whether Corollary 7.13, which is an im-
mediate consequence of these theorems, holds in the general case.

Before going on to the corollaries of these theorems, we shall give two examples
showing that the corresponding statements with M replacing M/G are not valid. The
first example is due to T. T. Frankel.

Example A. Let M be the complex projective plane; that is, if C denotes the
complex number field, then M is the space obtained from C X C X C through the
equivalence relation (z,, z,, z3) ~ (22,, 22,, 22;) for all 0 # z€ C. We regard Z; as
a subgroup of the circle group T, and T as the group of complex numbers of abso-
lute value one. We let T act on M by t(z,, z,, z;) = (z,, z,, tz;). Clearly, the fixed
point set of T and of all Z, is the point P = {(0, 0, z)}, together with the complex
projective line L = {(z,, zg, 0)}, which is a two-sphere. It is well known that
H,(L) — H,y(M) is an isomorphism, and thus L is “not homologous to zero” in M.
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The corresponding statement in cohomology is that H3(M) — H?(L) is onto. Clearly,
the orbit space M/T is a closed 3-cell with boundary corresponding to L. Thus L
is homologous to zero in M/T, and the analogue of our theorem for toral groups is
valid in this example. Later, this will be shown to be true in general.

We shall now alter Example A so that F has two components of dimension two.

Example B. Let M be as in Example A, let E be a small invariant cell around
the isolated fixed point P, and denote by S the 3-sphere boundary of E. Let M' be
the space obtained by pasting two copies M; and M, of M - Int(E) along the sets
corresponding to S. We see that if F; is the set corresponding to the 2-sphere L
in M;, then H(F;) — Hp(M;) is an isomorphism and HZ2(M;) — H%F;) is onto. How-
ever, by the Mayer-Vietoris sequences

H,(S) — H,(M;) ® H,(M,) — H,(M") — H,(S),
HY(S) — H3(M') — H3(M,) ® H*(M,) — H?(S),
it follows that H,(M,) ® Hy(M,) — H,(M') is an isomorphism into and
H}(M') — H3(M,) ® H*}(M,)

is onto, since S is a 3-sphere. Thus H,(¥) — H,(M') is an isomorphism into and
H2(M') — H3(F) is onto, and thus the analogues of our theorems with M' replacing
M'/G do not hold in this example.

We now prove the corresponding results for toral groups.

COROLLARY 10.3. If T is a toral group acting on the ovientable (Z, n)-manifold
M, and if T has only a finite number of isotvopy subgrvoups (for example, if M is
compact), then Theorems 10.1 and 10.2 hold with T in place of G and coefficients in
Zyp for all sufficiently large primes p.

Proof. Since the subgroups of T of prime order are dense in T, the condition
on isotropy subgroups implies that there is a subgroup G of T of order p for all
sufficiently large primes p, such that the fixed point set F of G is the same as that
of T. Thus, since we have the factorizations

HY(M/T) — H*(M/G) — H*(F) and H.(F) — H.(M/G) — H_(M/T),

the results follow immediately.

Remark. It is unknown to the author whether Corollary 10.3 is true for all primes
p.

For coefficients in Z, we can prove the following partial analogue of Theorem
10.1 for toral groups.

COROLLARY 10.4. If, in the situation of Corollary 10.3, F' is a component of
dimension r of the set ¥ of stationary points of T, then

Im(HY(M/T; Z) — HY(F; Z)) N H¥(F%; Z) = 0.

Thus, if ¥ =TF',then H*(M/T; Z) — HY(F; Z) is trivial.

Pyroof. We shall use the fact that F' is an orientable (Z, n)-manifold, which fol-
lows from some results of Floyd and Conner. First note that for sufficiently large
p, the conclusion of the corollary is true for coefficients in Zp instead of Z. Let y
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be a generator of H*(F';Z),and let x = my, me€ Z. Let p> |m| be large, and con-

sider the element z € H*(F'; Zp) which is the image of x under the homomorphism

H*(F'; Z) — HY(F; ZP). We see that z # 0, since p > |m| Thus it follows immedi-
ately from Corollary 10.3 that z # Im(H*(M/T; Z,) — HY(F; Zp)). Hence we see im-
mediately from the diagram

HY(M/T; Z) — H"(M/T; Zp)

| 1

H*(F; Z) —— H*(F; Zp)

that x¢ Im(H*(M/T; Z) — H*(F; Z)), and this completes the proof.

COROLLARY 10.5. Let G be a group of prime ovder p [respectively a toral
group] acting on a compact ovientable (Zp, n)-manifold [vespectively on a compact
ovientable (Z, n)-manifold| with fixed point set F, and let F' be the union of the
components of ¥ of highest dimension. Then F' is not a vetvact of M/G.

Proof. The only nontrivial case is that for which F' is connected. Thus
H"(M/G) — H*(F") is trivial, where coefficients are in Z [respectively, in Z].
However, if F' is a retract of M/G, then there is a homomorphism

H*(F'") — H*(M/QG)

such that the composition HY(F') —» H*(M/G) — H*(F') is the identity, from which it
follows that HT(F') = 0, contrary to the fact that F' is orientable modulo Z [respec-
tively, modulo Z].

COROLLARY 10.6. If M is*a compact (Z,, n)-manifold with an involution
g: M — M (g? = identity) suckh that theve exist only a finite number k of fixed points
of g, then k is even, Also, the Euler characteristic of M is even, when it is defined,

Proof. Let G be the group consisting of g and the identity, and let {Pi}
(i=1, -+, k) be the fixed points of g. If y; is the nonzero element of HO(P;; Z )
and x is the nonzero element of H°(M/G; Z,), then the map H°(M/G; Z,) — H%F; Z,)
carries x onto Zyj. Thus, by Theorem 10.1, k = Zi(:l 1 =0 in Z,, which implies
that k is even. The last statement follows from the formula x(M) = x(F) (mod 2),
proved in [4]. The analogous proof for homology is obvious.

11. THE GLOBAL SMITH THEOREMS

In this section we shall give a method for deriving the global Smith theorems.
The procedure is well known, and our only justification for including it here is to
point out the fact that if the procedure is based on spaces with the cohomology groups
of euclidean spaces rather than of spheres, the proofs become analogous to (though
considerably simpler than) our derivation of the local theorems. We regard p to be
a fixed prime, in this section, and we always regard coefficients to be in Z.

For convenience, we shall say that a locally compact, finite-dimensional space X
is a CM™ if HY(X) ~ HS(M™) for all k, where M™ is some definite n-manifold. (M™
will always be either S™ or E™, here.) If X is compact, then we denote by cX the
open cone over X. Clearly, X is a CS? if and only if ¢X is a CER*1,

If X is a CE™ on which a group G of order p operates with fixed point set F,
then it is clear from the Smith sequences and from finite-dimensionality that Hg(X)
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and HXF) are trivial for k > n. Thus H*X) — HS(X) ® H™(F) is onto. If H*(F) # 0,
then Hp(X) = 0 and this map is an isomorphism. If H™(F) = 0, then the proof of

Lemma 7.1 applies to show that this map is again an isomorphism. Thus, in place of
Lemma 7.1, we have

LEMMA 11.1. With the above notation, H*(X) — B(X) ® HY(F) is an isomorph-
ism,

By the method of Section 7 (with considerable simplification, since we do not have
to resort to subspaces), it is now easy to verify that the following theorem holds.

THEOREM 11.2. If X is a CE™ on which a group G of ovder p acts wilh fixed
point set F, then F is a CET for some 0 <r < n, and furthermore the map
A: HY(F) — HXX) given by A = j*-1A is an isomovphism, where j* is the isomovph-
ism H™(X) — HI,‘](X) @ H™(F) and A is the composition

HY(F) — Hy"'(X) — HIP4(X) — - — Hp(X)

of connecting homomovrphisms of the Smith sequences.

From this result we see that the proof of Theorem 7.7 goes over word for word
and gives

THEOREM 11.3. The isomovphism A of Theorem 11.2 is independent of the
choice of p. Moveover, if p > 2, then n - r is even.

In order to apply these results to a space which is a CS?, we merely have to
pass to the cone over the space. Thus if G, of order p, acts on X whichis a cs?
with fixed point set F, then G acts naturally on c¢X which is a CEntl with fixed
point set ¢F. Thus cF isa CE**l, for some -1 < r < n, and it follows that F is a
CST. The dimensional parity also holds. Note that if F = 9, then cF reduces to one
point and is thus a CE°, and if p is odd, then n must also be odd. Hence, with the
convention that the empty set is a CS™?, the dimensional parity holds in this case
also. Summing up, we have the well-known

THEOREM 11.4. If X is a CS™ on which a group G of order p acts with fixed
point set ¥, then ¥ is a CST for some -1 <r <n. If p> 2,then n - r is even.

REFERENCES
1. A. Borel, The Poincaré duality in genevalized manifolds, Michigan Math. J. 4
(1957), 227-239.

, Nouvelle demonsiration d'un theoveme de P, A, Smith, Comment. Math.
Helv. 29 (1955), 27-309.

3. H. Cartan and S. Eilenberg, Homological algebra, Princeton University Press,
1956.

4. E. E. Floyd, On periodic maps and the Eulev charvactevistics of associated
spaces, Trans. Amer. Math. Soc. 72 (1952), 138-147.

, Orbits of torus groups operating on manifolds, Ann. of Math. (2) 65
(1957), 505-512.

6. J. L. Kelley, General topology, Van Nostrand, 1955.

7. S. D. Liao, A theovem on periodic transformations of homology spheves, Ann.
of Math. (2) 56 (1952), 68-83.



64 GLEN E. BREDON

8. G. D. Mostow, On a conjecture of Monigomery, Ann. of Math. (2) 65 (1957), 513-
516.

9. P. A. Smith, Transformations of finite period, II, Ann. of Math. (2) 40 (1939),
690-711.

10. , Transformations of finite perviod, IV. Dimensional parity, Ann. of Math.
(2) 46 (1945), 357-364.

11. C. T. Yang, Transformation groups on a homological manifold, Trans. Amer.
Math. Soc. 87 (1958), 261-283.

The Institute for Advanced Study



