ON FIBERINGS WITH SINGULARITIES
Sze-T'sen Hu

1. INTRODUCTION

The original treatment of fiberings goes back to H. Seifert [5} who permitted a
certain type of singularity: namely, the case where neighboring fibers wind them-
selves around a particular fiber. About a dozen years later, in 1945, Montgomery
and Samelson [4] studied a different type of singularity which may be roughly de-
scribed by saying that certain fibers are pinched to points.

In the present paper, we shall first introduce a general definition of fiberings
with singularities which includes all of the known fiberings as special cases. Then,
by identifying the singular fibers to points, we shall prove that every fibering p with
singularities can be decomposed into the composition p,op, of two fiberings p, and
P,, Where every singular fiber of p, is a singleton and every regular fiber of p, is a
singleton. Furthermore, p, is the natural projection of some topological identifica-
tion. Therefore, after that point, we shall be concerned only with fiberings whose
singular fibers are singletons.

As an important and useful fibering with only one singular fiber, we shall intro-
duce and study the extended tangent space E(X, x,) of a given space X at a given
point x, and the natural projection p: E(X, x,) — X. The invariants of the regular
fibers of this fibering are closely related with the invariants of the residual space
X \X, and the local invariants of X at x,.

Our main interest is to investigate the local property of any given fibering
f: X — Y at an isolated singular fiber x,. For this purpose, we may assume without
loss of generality that x, is the only singular fiber of f. If y, = f(x,), then the map
f: X, x) — (Y, yo) induces homomorphisms on the local homology groups and the
local homotopy groups defined in [2]. To stud)r these induced homomorphisms,
we shall investigate the derived continuous map f: E(X, x,) — E(Y, y,). Under a
mild condition on f, this map fisa fibering with only one singular fiber. We
shall say that f is normal at x, if and only if f isa fibering with only one
singular fiber. We shall prove that the fibering axiom of the local homotopy
gri)ups holds for every fibering with a single normal singular fiber [2, Section
16].

The invariants of the regular fibers F of the derived fibering f are closely re-
lated to the local invariants of the spaces X and Y at the points x, and y,, respec-
tively. If Y is locally euclidean, then we have a local version of Wang’s exact se-
quence [ 7] which w111 help determme the homology groups of F.

Finally, by a cone construction, it will be shown that the usual global theory of
fiberings without singularities may be deduced from a special case of the local theory
of fiberings at an isolated singularity.
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2. DEFINITIONS

Let E, B be topological spaces, and let A be a subspace of B. A continuous
map

p:E— B

from E onio B will be called a fibering over B with A as singularities, if the re-
striction of p on p~}(B\ A) is a fibering over B\ A in the sense of Serre [6, p. 443].
In other words, p is a fibering over B with A as singularities if and only if, for
every continuous map g: X — E from a finitely triangulable space X into E such
that the composed map f = peg carries X into B\A and, for every homotopy

f,: X— B\A (0 <t< 1) such that f; = £, there exists a homotopy g;: X — E

(0 <t< 1) such that g, =g and pog, = f; for every t.

This definition of fiberings with singularities includes as special cases those
studied by H. Seifert [5] as well as those investigated by Montgomery and Samelson
[4]. Furthermore, if p is a fibering over B in the sense of Serre, and A is any
subspace of B, then the condition in our definition is obviously satisfied.

Now, let p be a fibering over B with A as singularities. Then the space E is
called a fibev space over the base space B with A as singularities. The points of
the subspace A are called the singular points, and those of B\ A are called the
regulay points. For each point b of the base space B, the inverse image p~(b) is
called the fiber over b. If b is a singular point, then p~!(b) is said to be a singular
fiber; otherwise, p~1(b) is said to be a regular fiber.

As examples of fiberings with singularities, let us first consider the continuous
map

p: St —J

of the unit n-sphere S™ in the euclidean (n + 1)-space onto the closed interval

J = [-1,1] of real numbers defined by p(xg, X1, *=+, X;) = X for every point

(xqg, X1, *** X,) of S™. One can easily see that p is a fibering over J with the end
points of J as singularities. The regular fibers are (n - 1)-spheres; and the two
singular fibers are singletons, namely, the south pole (-1, 0, +«+, 0) and the north
pole (1, 0, «-+, 0). :

Next, let us consider the local Hopf map
p: R* — R?

of the euclidean 4-space R*? onto the euclidean 3-space R3 defined as follows. Con-
sider R? = R2XR? as the space of all pairs (x, y) of complex numbers x and y. Let
S' denote the unit circle in R? consisting of the complex numbers z with [z | = 1.
Then S! is a topological transformation group of R* by the operation z(x, y) = (zx, z.y)
The orbit space may be identified with R3, and the natural projection p: R* — R? is
the local Hopf map, [2, Section 18]. One can easily see that p is a fibering over R3
with the origin of R® as the only singularjity. The regular fibers are circles; and the
unique singular fiber is a singleton, namely, the origin of R% By using quaternions
and Cayley numbers, one can also define the local Hopf maps of R® onto R®, and of
R!¢ onto R®. They are fiberings with the origin as the only singular fiber. Their
regular fibers are 3-spheres and 7-spheres respectively.
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3. SPECIAL FIBERINGS

Consider a given fibering p: E — B over the base space B with the subspace A
as singularities. The fibering p is said to be special of the first type if every singu-
lar fiber is a singleton, that is to say, p~*(b) consists of a single point for every
singular point b € A. Thus the fiberings studied by Montgomery and Samelson [4] be-
long to this type. On the other hand, the fibering p is said to be special of the second
type if every regular fiber is a singleton.

PROPOSITION 3.1. If the subspace A of B is closed, then every fibering
p: E — B over B with A as singularities can be factorized into the composition
p = p,°p, of a special fibering p, of the first type and a special fibering p, of the
second type.

Pyoof. ldentifying every singular fiber of the fibering p into a single point, we
obtain a quotient space D of the space E. Precisely, D is constructed as follows.
Introduce an equivalence relation ~ in E by saying that, for any two points x, y of
E, x ~y if and only if either x = y or they belong to the same singular fiber. This
equivalence relation divides the points of E into disjoint equivalence classes. Let D
denote the set of these classes, and let

p,: E—D

denote the natural projection which sends each point x of E to the class containing
X. The topology of D is defined by saying that a set U in D is open if and only if
the inverse image p;'(U) .in E is open. Then the natural projection p, is a contin-
uous map.

Let C denote the subspace of D which consists of all singular fibers of the fiber-
ing p. Since p;(C) = p~*(A) and A is assumed to be closed, it follows that C is
closed in D. Then one can easily prove that p, maps p;*(D\ C) homeomorphically
onto D\ C. This proves that p, is a fibering over D with C as singularities. Since
every regular fiber of p, is a singleton, p, is a special fibering of the second type.

On the other hand, since the given fibering p sends each equivalence class of E
into a single point of B, there is a unique function

p;:D—B

such that p,op, = p. For an arbitrary open set V in B, the inverse image U = p7*(V)
is open in D because p;!(U) = p~*(V) is open in E. Hence p, is a continuous map.
On the open subspace DN\C = p;*(B\A), p, is equal to the composition pop;!. This
implies that p, is a fibering over B with A as singularities. Since every singular
fiber of p, is a singleton, p, is a special fibering of the first type.

Since p = p, ©p,, the proof of (3.1) is complete.

The fibering p, constructed above is merely the natural projection of a topologi-
cal identification, and we may therefore focus our effort on the special fiberings of
the first type. Throughout the remainder of the paper, we are concerned only with
the special fiberings of the first type. For ecocnomy of language, hereafter when we
say fiberings, we shall always mean special fiberings of the first type.
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4, THE EXTENDED TANGENT SPACE

Let X be a given topological space, and x, any given point in X, In defining the
local algebraic invariants of the space X at the point x,, the notion of the fangent
space T(X, x,) of X at x, was introduced in [2, Section 2]. We recall the definition
as follows.

By a patk in X, we mean a continuous map 0: 1 — X of the closed unit interval
I=[0, 1] into X. The set W(X) of all paths in X forms a topological space with the
usual compact-open topology. Then, T(X, x,) is the subspace of W(X) defined by the
formula

T(X, x,) = {0 € W(X): o(t) = x, if and only if t=0}.

Let e, € W(X) denote the degenerate path e,(I) = x,. Then, by definition, e, is not
contained in the tangent space T(X, x,). If we adjoin this degenerate path e, to
T(X, x,), we obtain a subspace

E = E(X, %) = e, UT(X, x,)

of W(X) which will be called the extended tangent space of X at the point x,.
PROPOSITION 4.1. The space E is contractible to the point e,.
Proof. Define a homotopy hi: E — E (0 < t< 1) by the following formula:

[hi(0)] (s) =a(st) (0€E, sel, tel),

Then hy(E) = e,, h, is the identity map on E, and h¢(eg) = e¢ for every t. This
proves that E is contractible to the point e,.

Now let us consider the continuous map
p:E—-X

defined by p(o) = 0(1) for every o € E. This map o will be called the natural projec-
tion.

THEOREM 4.2. If X is a pathwise connected T,-space, then the natural projec-
tion p: E — X is a fibering over X with the point e, as the only singular fiber.

Proof. First, let us prove that p carries E onto X. For this purpose, let x,
be any point of X different from x,. Since X is pathwise connected, there exists a
path £: I — X such that £(0) = x, and £(1) = x,. Since X is a T,-space and ¢ is con-
tinuous, the inverse image £~!(x,) is a closed set of the unit interval 1. Let k denote
the least upper bound of £~!(x,). Then 0< k< 1, since £(1) = x,. Also, £(k) = x, and
£(t) # x, whenever k< t < 1. Define a path 5: I — X by setting

n(t) = &k + t - kt) (te D).
Then 7(0) = x,, n(1) = x,, and 7n(t) # x, whenever 0 < t< 1. Hence n € T(X, x,) C E
and p(n) = x,. This proves that p carries E onto X,

By the definition of the space E, it is clear that the inverse image p~!(x,) con-
sists of a single point e,. Hence the restriction of p on the tangent space
T = T(X, X,) is a continuous map
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7m: T—B

of the tangent space T onto the residual subspace B = X\ x, of X. It remains to
prove that 7 is a fibering without singularity, in other words, that 7 is a fibering in
the sense of Serre.

In fact, we shall prove that 7 has a stronger property, namely, the path-lifting
property (abbreviated PLP hereafter) defined as follows. Let Z denote the sub-
space of the topological product TXB! of the space T and the space B! of all paths
in B defined by

Z = {(o, 7) € TxBL: 7(0) = 7(0)}.

Define a continuous map f: T!— Z of the space T! of all paths in T into the space
Z by setting 1(£) = (£(0), mo%) for each €: 1 — T in the space TL Then the map

m: T — B is said to have the PLP if and only if there exists a continuous map

g:7Z — T1 such that the composed map fog is the identity map on Z. According to
a result of Hurewicz [3], the PLP is equivalent to the absolute covering homotopy
property, and hence it follows that 7 is a fibering without singularity.

To establish the PLP of 7, wé have to construct a continuous map g: Z — TI
such that fo g is the identity map on Z. For this purpose, let us consider the unit
square Q = IXI in the euclidean 2-space and its closed subspace

P=(Ix0)u (1xI) c Q.

Let p: Q — P denote the retraction of Q onto P constructed as follows: For an
arbitrary point q of the unit square Q, consider the straight line determined by q
and the point (0, 2) in the euclidean 2-space R2, Then p(q) is defined to be the
unique point of intersection of this line and the set P. It follows that the inverse
image p~(0, 0) is the set 0XI.

Next, consider the space XPF of all continuous maps from P into X with the
usual compact-open topology. Let M denote the subspace of XP defined by the
formula:

M ={ue XP: uly) = x, if and only if y = (0, 0)} .
For each p: P — X in M, define two paths 0: I — X and 7: I — B by taking
U(t) = [J.(t, 0)) T(t) = 11(1, t)

for every t € I. Then o € T, 7 € B', and 7(0) = 7(0). Hence the assignment
i — h(p) = (0, 7) determines a function h: M — Z. One can verify that h is a home-
omorphism of M onto Z.

Using the inverse of the homeomorphism h, we can construct a continuous map
g: Z — T! by taking
{{g@)] ®}(s) = [h~2(2)] p(s, t)
for every z€ Z, se€ I and t € I. Since p is a retraction, it follows immediately that
flg(z)] = z for every z € Z. This completes the proof of (4.2).

COROLLARY 4.3. If X is a pathwise connected T,-space, then the natural pro-
jection )
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1 T(X, x5) — X \x,

is a fibering over X\ x, without singularity.

If X is a T,-space but fails to be pathwise connected, then the image of the na-
tural projection p: E(X, x,) — X is the path-component X, of X which contains x,.
It follows from the proof of (4.2) that T(X, x,) is a fiber space over X\ x, without
singularity, and hence E(X, x,) is a fiber space over X, with e, as its only singular
fiber. ‘

5. LOCAL INVARIANTS OF E(X, x,) AT e,

In a previous paper of the author [2], local homology groups and local homotopy
groups of X at x, are defined by mears of the tangent space T(X, X,). Since

E = E(X, x,) = e, U T(X, x),

it is natural to inquire about the local invariants of the space E at the point e,. It
turns out that the local invariants of E at e, are the same as those of X at x,. In
fact, we shall prove that the tangent spaces T(X, x,) and T(E, e,) are of the same
homotopy type.

For this purpose, let us begin with the natural projection
p: (E, ep — (X, x,)

defined in the preceding section. Since p~*(x,) = e,, p is an admissible map in the
sense of [2, Section 4]. Therefore, p induces a continuous map

p: T(E, e — T(X, x,)

of the corresponding tangent spaces defined by p(o) = p oo for each o: I — E in the
T(E, e,).

PROPOSITION 5.1. The map D is a homotopy equivalence.

Proof. Consider the unit square Q = IXI and its closed subspace
L =(Ix0) u(0xD.

Every path o0: 1 — E gives rise {o a continuous map ¢,: Q — X defined by

pols, t) =[o®](s) (seI, teI).
One can easily verify that o € T(E, ey if and only if ¢3;'(x,) = L, and that the assign-
ment ¢ — ¢5 determines a homeomorphism of T(E, e,) onto a subspace of the space
X2 of all continuous maps from Q into X, Thus, we may identify o with ¢4, and
consider T(E, e,) as the subspace of XQ defined by

T(E, e) = {6 € X2 ¢~1(x,) = L} .

After this identification, the induced map p reduces to the map given by

Bl =61, t) (e T(E, e, te D.
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Next, let us define a homotopy h,: Q — Q (0 <t< 1) by setting
(x, 2tx - 2ty +y)  if x<y and 0<t< 1/2,
(2x - 2tx+ 2t - 1, x) if x<y and 1/2<t< 1,

ht(X1 Y) =<
(%, y) if x>y and 0<t<1/2,

(2x - 2tx+ 2t-1,y) if x>y and 1/2<t< 1.
Then one can verify that h, is the identity map on Q, h, is a retraction of Q onto its
subspace K = 1xI, hy{L) c L, and ht| K is the inclusion map for every t€ I.

Using the retraction h;: Q — K, we define a continuous map
a: T(X, x;) — T(E, e,

as follows. For each o:1— X in T(X, x,), let o* K — X denote the map given by
o*(1, t) = oft) for every t € I. Then q(o) is defined to be the continuous map of Q
into X given by

[4(@)] %, y) = o*[h(x, )] (%, ¥) €Q).

It remains to prove that § is a two-sided homotopy inverse of P.
First, the composition p oq is the identity map on T(X, x,). In fact, for every
0:1— X in T(X, x,), we have
b 0§(0)] () =[3(0)] (1, t) = o¥[h,(1, )] = oK1, t) = o(t)
for every t€ E. Hence poq(o) = 0. This proves the assertion that p oq is the
identity map.

Second, the composition qop is homotopic to the identity map on T(E, e,).
prove this assertion, let us consider the homotopy k;: T(E, e)) — T(E, ey (0< t< 1)
defined as follows: For each ¢: Q — X in T(E, e;), ki(¢) is taken to be the composed
map ¢ ohy for each t € I. Then k, is the identity map and k, = qu. This proves the
assertion and also completes the proof of (5.1).

For the use in the sequel, we are going to establish the following
PROPOSITION 5.2. The map p is a fibering over T(X, x,) without singularity,

Proof. First, let us prove that p sends T(E, e, onto T(X, x,). For this pur-
pose, let 0: I — X be any point in the tangent space T(X, x,). Let 7: I — E denote
the path defined by

[T()](s) =o(st) (sel, tel.

Then one can easily verify that 7 € T(E, e,) and p(7) = po7 = 0. This proves that
is onto.

Next, let us prove that p has the PLP. For this purpose, let
X=T(X,x,), £E=T(E,ey.

z = {(0, 7)€ ExXL: (o) = 7(0)} .
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Let f: 1131 — 7 denote the continuous map defined by f(£) = (£(0), po &) for each
£: I — E in the space E-. Then it suffices to prove the existence of a continuous map
. g: Z — EI such that fog is the identity map on Z.

Consider the unit cube @ = IXIXI in the euclidean 3-space and its closed sub-
space

P=(IxIx0) Uu(lxIXI cQ.

Let p: Q — P denote the retraction of Q onto P constructed as follows: For an
arbitrary point (x, y, z) of Q, consider the straight line joining the points (0, y, 2)
and (x, y, z) in the euclidean 3-space. Then p(x, y, z) is defined to be the unique
point of intersection of this line and the set P.

Now, let us consider the space XF of all continuous maps from P into X with
the usual compact-open topology. Let M denote the subspace of XP defined by the
formula:

M={pe XP: u-1(x) = (0XIx0) U (IX0x0) U (1X0XD} .
For each p: P — X in M, define two paths.o: I —E and 7: I — X by taking
[o(®] (s) = u(s, t, 0),
[7(®] (s) = p(1, s, 1)

for every s€ I and te I. Then g€ E, 7€ XI, and f)(g) = 7(0). Hence, the assign-
ment p — h(u) = (0, 7) determines a function h: M — Z. One can verify that h is a
homeomorphism of M onto Z.

Using the inverse of the homeomorphism h, we can construct a continuous map
g: Z — El by taking

{lgz)(®) 1(s)} (r) = [h~*(z)] p(r, s, t)

for every z€ Z and r, s, t in I. Since p is a retraction, it follows immediately
that f[g(z)] = z for every z € Z. Hence fog is the identity map on Z. This implies
that p has PLP, and it completes the proof of (5.2).

6. REGULAR FIBERS IN E(X, x,)
Let x;, be any point of X different from x,, and write
F = p~x,) C E(X, x,),

where p: E(X, x,) — X stands for the natyral projection. Then F is a regular fiber
in E(X, x,) of the fibering p. The homotopy properties of F depend on both the
global properties of X and the local properties at x,; however, they are independent
of the choice of x, if X\x, is pathwise connected. As a subspace of the space W(X)
of all paths in X, F is defined by the following formula:

F={ocewX:oQ) = x, and 0~(x)) = 0}.
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Since the tangent space T = T(X, x,) is a fiber space over the residual space
B = X\ x, without singularity, and since F is the fiber over the point x, € B, the in-
variants of F are related to those of T and B. For example, let e, € F. Then the
homotopy sequence of a fibering without singularity gives an exact sequence:

T
cee — 'n'n(F, el) — ﬂ’n(T’ el) — Wn(B’ xl) — ﬂn—l(F’ e 1) — oo,

where ¢ is induced by the inclusion F C T, ¢ is induced by the projection, and 7 is
the transgression. For the case where X is pathwise connected around the point x,
in the sense of [2, Section 12], 7,(T, e;1) was defined to be the n-th local homotopy
group of X at x, [2, Section 13]; in symbols,

A (X, %) =7 (T, e 1) .

In some cases, the exact sequence helps to determine the invariants of F. For
example, let X be the m-sphere S™ with m > 1. Then the residual space B is con-
tractible to the point x,, and hence ¢ is an isomorphism of n,(F, e}) onto 7 (T, e;)
for every n> 1. According to[2, Section 7 ], T has the same homotopy type as the
(m - 1)-sphere. Hence, the homotopy groups and the homology groups of the space
F are isomorphic to the corresponding groups of the (m - 1)-sphere sm-1 Thig
example shows that the invariants of F are in general different from those of the
space

G= {0 e W(X): g(0) = X, and o(1) = xl}.

For in the case of X = S™, it is a well-known result of Morse that H_(G) is infinite
cyclic if n is a multiple of m - 1, and that H,(G) = 0 otherwise.

Next, let X be the euclidean m-space R™ with m > 1, and let x, be the origin
of R™. In this case, we may define a continuous map q: X— E(X, x,) by setting
[a(x)](t) = tx for every x € X and t € E. Then the composition poq is the identity
map on X. By the method used in [2, Section 7], one can construct a homotopy

such that h, is the identity map, h; = qop, and h{l(eo) = eg for every t € E. This
implies that ¢ is an isomorphism of 7,(T, e;) onto #,(B, x;). It follows from the
exactness of the sequence that n,(F, e;) = 0 for every n> 1, and hence H (F) = 0
for every n> 1.

Finally, let X be the real projective space P™ of dimension m > 1. If m > 2,
then T and B are homotopically equivalent to S™-! and P ™-! respectively. Fur-
thermore, it can also be seen that the natural projection of T onto B is homotopi-
cally equivalent to the universal covering map of s™-1 onto P™-L Hence Y is an
isomorphism of 7,(T, e;) onto 7,(B, x;), for every n> 1. Since 7, (T, e;) = 0, it
follows from the exactness of the sequence that #,(F, e;) = 0 for every n> 0. If
m = 2, then both T and B are of the same homotopy type as the circle S, and the
natural projection of T onto B is of degree 2, This implies also that n,(F, e;) =0
for every n > 0. Hence, for every m > 1, we have 7,(F, e;) = 0 and H,(F) = 0 for
every n > 0. By means of the exact sequence, we can also deduce that F has two
path-components.
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7. THE DERIVED FIBERING

Let f: X — Y be a given fibering over the base space Y and with a set Y,C Y as
singularities. Consider an isolated point y, of Y,. Then there is an open neighbor-
hood N of y, in Y which contains no singular point other than y,. According to our
assumption made at the end of Section 3, the singular fiber f~!(y,) consists of a
single point x, of X. Let M ={"!(N). Then M is an open neighborhood of x, in X,
and the restriction of f on M is a fibering over N with x, as the only singular fiber.
In the remainder of this paper, we are concerned with the local properties of the
fibering f at an isolated singular fiber x,. Hence we may assume that x, is the only
singular fiber of the given fibering f: X — Y.

Throughout the remainder of this section, let f: X — Y be a given fibering over
the base space Y and with a point x, € X as the only singular fiber. Let
Vo = f(xy) € Y. Then £~(y,) = x,, and therefore the continuous map

f: (X, x9) — (Y, vy,

is admissible in the sense of [2, Section 4]. Consider the extended tangent spaces
E(X, x,) and E(Y, y,). Then the admissible map f induces a continuous map

f: B(X, x) — E(Y, y,)

defined by (& =fo £ for every £: I — X in E(X, X,). Let us denote by &, and 7,
the degenerate paths £4(I) = x, and n,(I) = y,. Then we have

E(X’ xo) = go U T(Xy xo) ’
E(Y, yc) =MNo U T(Y’ yo) ’
f—l(no) = goo

Hence, f is an admissible map of (E(X, x,), &) into (E(Y, y,), 7o)

It is natural to inquire whether f is a fibering. For this purpose, let us intro-
duce the following notion. The given fibering f: X — Y is said to be convergent at
the singular fiber x, if, for every open neighborhood U of x, in X, there exists an
open neighborhood V of y, in Y such that £~(V) ¢ U. Intuitively, f is convergent
at the singular fiber x, if and only if the fibers over points near to y, are to be
near X,.

PROPOSITION 7.1. If the fibering f: X — Y is convergent at its only singular
fiber x,, then the induced map f: E(X, x,) — E(Y, y,) sends E(X, x,) onto E(Y, y,).

Proof. Let n be an arbitrary point in E(Y, yy). We shall construct a point ¢ in
E(X, x,) such that f(&) =n. Since f(¢,) = n,, we may assume that 7 is in T(Y, y,).
Hence 7 is a path n: I — Y such that #~(y,) = 0. Let y, = n(1), and pick a point x,
in X with f(x,) = y,. For each positive integer n, let I,, denote the subspace of the
unit interval I defined by

={tel: /n< t< 1} .

We shall construct inductively a sequence of continuous maps £,: I, — X
(n=1, 2, ---) satisfying the following three conditions for every positive integer n:
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(1) ‘E]_(Il) =X
(2) gn+1‘1n= gn;
(3 fot =n|I,.

In fact, £, is determined by the condition (1). Assume that n> 1 and that £, has al-
ready been constructed. Let J, denote the subspace of I defined by

J ={tel:1/(n+ 1)< t< 1/n}.

Since the restriction of f on X\x, is a fibering over Y\y, without singularity,
there exists a continuous map ¢,: J,, — X such that

(4) ¢, (1/n) = £ (1/n),
(5) fop =n|Jd_.
The condition (4) enables us to define a continuous map §,,,:L,,; — X by taking

E(® iftel,
Enp1 () =
@ if ted,.

Then we have (2) and f0§ n| ~+1+ This completes the inductive construction of
the sequence {&_}.

Because of the condition (2), we can define a function £: I — X by taking

XO if t = 0,
£(t) =
£ if tel,.

By the convergence of f at x,, it follows that £ is continuous. By the condition (3),
we have fo& =17. Hence £ € T(X, x,) and £(£) = 1. This completes the proof of (7.1).

If f is not convergent at x,, then f might fail to be onto. For example, let X be
the subspace of the euclidean plane R2? consisting of a point x, = (s,, 0), where
So < 0, and the totality of points (s, t) satisfying 0 <s <1 and 0 <t < 1. Take the
unit 1nterva1 I1=[0, 1] to be the base space Y with y, = 0. Consider the map
f: X — Y defined by

0 if s=s,and t=0,
i(s, t) =
.8 H0<s<tand 0t 1.

Then { is a fibering over Y with x, as the only singular fiber. In the case s, <0,
X, is an isolated point of X, and hence E(X, x;) = &, Since T(Y, y,) is not empty,
this shows that f is not onto if s, < 0. For the remaining case s, = 0, one can
easily see that f is onto. Since f is obviously not convergent at Xos thlS example
shows also that the condition in (7.1) is by no means necessary.

THEOREM 7.2, If the fibering £: X — Y is convergent at its only singular fiber
X,, then the induced map f: E(X, x;) — E(Y, y,) is a fibering over E(Y, y,) with &,
as its only singular fiber.
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Proof. By (1.1), f maps E(X, x, onto E(Y, y,). Hence, it remains to prove that
the restriction

f: T(X, x) — T(Y, ¥,

of f has the covering homotopy property for every given finitely triangulable space

K. For this purpose, let us consider any given continuous map ¢: K — T(X, x,). Let
Y = fo ¢, and let ¥ K — T(Y, y,) (0 <t < 1) be a given homotopy with ¥, =y. We

have to construct a homotopy ¢¢: K — T(X x,) (0 < t<1) such that ¢, =¢ and

fcupt = Y, for every t €1.

Define a continuous map ¥: KXIXI — Y by setting
¥k, s, t) =[P s) (keK,sel, tel.
Then it suffices to construct a continuous map &: KXIXI — X such that fo ® = ¥ and
@k, s, 0)=[sk)](s) (keK, sel).
To construct such a map &, we shall make use of the subspaces I, and Jn of the
unit interval I defined in the proof of (7.1). We shall construct inductively a se-

quence of continuous maps ®,: KXI;XI— X (n=1, 2, «++) satisfying the following
three conditions for every positive integer n:

(1) A Pntl lKXInXI = &p;
(2) fod, = U|KXI,XI;
(3) s,k s, 0) = [pMs) (keK, sely).

Since the restriction of f on X\x, is a fibering over Y\y, without singularity,
the existence of a map &, satisfying (2) and (3) follows from the covering homotopy
property of f. Assume that n > 1 and that &, has already been constructed. Since
the closed subspace

(KxJ,x0) U (KX1/nXI)
of the space KXJ,XI is a strong deformation retract of the latter, it is. a well-
known result of the covering homotopy property of f over Y\y, that there exists a
continuous map

Fo: KXJ,xI — X

satisfying the following three conditions:

(4) Fu(k, s, 0) = [¢(K)](s) (ke€K, se Jy,),
(5) Folk, 1/n, t) = &,(k, 1/n, 1) (ke K, tel),
(6) foF, = ¥|KxJ, XI. |

The condition (5) enables us to define a continuous map &, ;: KXI ,XI —X by
taking
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&, (k, s, t) keK, sel,, tel),
¢n+1 (k, s, t) =
F,(k, s, t) (keK, sed,, tel).
This completes the inductive construction of the sequence {rlsn}.

Because of the condition (1), we can define a function ®: KXIXI — X by taking

X, if s=0,
&k, s, t) =

&,(k, s, t) if xeI,.

By the convergence of f at x,, it follows that & is continuous. By the condition (2),
we have fo® = ¥, By the condition (3), ®(k, s, 0) = [¢(k)] (s) for every ke K and
s € I. This completes the proof of (7.2).

The converse of (7.2) is false. For example, if
X =E(Y, yo, Xo(I) = Yo,

and if the given fibering f: X — Y is the natural projection defined in Section 4, then
the induced map f: E(X, x,) — E(Y, y,) is a fibering over E(Y, y,) with x, as its only
singularity according to Proposition 5.2. On the other hand, if Y is a pathwise con-
nected T,-space and has more than one point, then it is easy to see that the natural
projection f: X — Y as a fibering with only one singular fiber x, is by no means con-
vergent at x,.

The example given above shows that the condition that a fibering f: X — Y  be
convergent at x, is rather unsatisfactory. Therefore, we suggest the following arti-
ficial notion of a normal singularity. A fibering f: X — Y with only one singular
fiber x, is said to be normal at x, if and only if the induced map

f: E(X, x) — E(Y, y,)
is a fibering over E(Y, y,) with &, as the only singular fiber. If this is the case, _
then y, is called a normal singularity, X, is called a novrmal singular fiber, and {
is called the derived fibering.
8. THE INDUCED HOMOMORPHISMS

Consider two triplets (X, A, x), (Y, B, y,) in the sense of [1, p. 491], and a con-
tinuous map

f: (X, A, x,) — (Y, B, y,

which is admissible in the sense that £~ (y,) = X, or, equivalently, £f(X\x,) c Y \y,.
Let

X=T(X, %), A=T@A,x), Y=T,y,), B=T(B,y,.

Then the admissible map f induces a continuous map

f: (%, &) — (¥, B)
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defined by f(6) = foo for every 0: I — X in X. According to [2, Section 4], the map
f gives rise to the induced homomorphisms

fao: L(X, A, x5 G) — L (Y, B, y,; G),
fo: LY, B, yo; G) — L(X, A, x,; G)

of the local homology and cohomology groups for any abelian coefficient group G.
Let o: I — A be any point in A and let 7 = foo € B, Then, by [2, Section 13], the
map f also gives rise to the 1nduced homomorphisms

f4: 0, (X, A, X5 0) = A (Y, B, y; 7)

of the local homotopy groups.

Now let us assume that f is a fibering over Y with x, as the only singular fiber,
and that A = £7(B). If f is normal at x, in sense of the preceding section, then the
induced map fisa flbermg over Y without singularity. Furthermore, the condition
A = f~1(B) implies that A = f~4(B). Hence, the fibering theorem for the global homo-
topy groups, [1, p. 495], gives the following fibering theorems for the local homotopy
groups:

THEOREM 8.1. If f: X — Y is a fibering over Y normal at its only singular
fiber x,, if B is a subspace of Y containing the point y, = £(x,), and if A = i~1(B),
then

f4: 2, (X, A, x5 0) = A, (Y, B, y,; £00)

Jor every 0:1— A in T(A, x,) and every n> 0.

On the other hand, for every o: I — X in X = T(X, x,) and 7=foo €Y = (Y, Vo),
the induced map f also gives the induced homomorphisms

£4: An (X, X5 0) = An(Y, yoi T)
for every n > 0. Write
F=1(n)cTX x).
If £ is a fibering over Y normal at its only singular fiber, then it follows that f is a
fibering over Y without singularity and with F as the fiber over the point 7 € Y.
Hence, the homotopy sequence of the fibering £ gives the exact sequence
ces —p ’\'n+1 (Y, Yo; T) — ﬂn(f‘, o‘) — ),n(x, X5 0') — An(Y, Yo T) — s00 —p WO(f", 0'),

which will be called the local homotopy sequence of the fibering f at the normal
singular fiber x,.

For the given fibering f: X — Y, the induced transformations
£ L,(X, x9; G) — L, (Y, yg; G),
£ L™(Y, yo; G) — L(X, x5 G),

f4: 2 (X, xg; 0) = A, (Y, yg; £00)
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are the main local invariants of f at the isolated singular fiber x,. In the study of
these local invariants, it turns out that the global homology and homotopy structure of
the subspace F of the tangent space T(X, x,) will play an important role.

9. THE SPECTRAL SEQUENCE
Consider a given fibering
f: X—-Y

over Y with x, as its only singular fiber which is normal in the sense of Section 7.
Let

Vo = f(xo), 5{ = T(X, Xg), § = T(Y, YO) .

Then the induced map f: X - Y isa fibering over Y without singularity. Pick a
point 7 in Y and denote by F the fiber f-1(7) over 7.

For the sake of simplicity, we assume that the space Y is simply connected
around the point y, in the sense of [2, Section 15]; in other words, we assume that
the tangent space Y is simply connected in the usual global sense.

Applying Leray’s theory of spectral sequence to the singular homology groups
by means of the fibering f, we obtain a spectral sequence
{E”:n=1, 2,3, -}
of bigraded groups as in[6], where Er?;.q is isomorphic with the local homology group
LAY, yo; Hq(F))

of the base space Y at the point y, with the (global) homology group Hq(f‘) as coef-
ficient group. Let E® denote the bigraded limit group of this spectral sequence.

Then the total local homology group L(X, x,) of the space X at the point x, is filtered
with E® as its associated graded group; precisely, we have a natural sequence of
subgroups of L (X, x,) satisfying the relations

Lm(X’ x0) = Gm,O 2 Gm-l,l 2D G(),mD G-l,m-}-l = 0’

o0
Gp.q/Gp-l.q+l ”Ep.q'

Just as in the global theory, one can deduce various consequences and applica-
tions from this spectral sequence. For example, if we assume that Y is locally
euclidean of dimension r + 1 (r> 2) at the point y,, then Y is a homology r-sphere,
and hence we obtain an exact sequence

e Hn,-r-i—l(i‘) - I'Im(ﬁ‘) - Lm(x, XO) - Hm-r(i‘) e

analogous to Wang’s sequence [7] in the global theory. In Jmany cases, this exact se-
quence can be used toc determine the homology groups of F. A few examples of these
cases are given as follows.

First, consider the case where x, is a boundary point of X in the sense of [2,
Section 19], that is to say, where the tangent space T(X, x,) is contractible. In this
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case, Ly(X, x,) ~ Z and L, (X, xg) = 0 for every m # 0. Then the exactness of the
sequence implies that

Hy(F) = Lo(X, X)) =~ Z
H (F)~H_ . (m>1).

Hence, for any m > 0, Hm(F) is infinite cyclic if m is a multiple of r - 1, and
H,(F) = 0 otherwise.

Next, consider the case where r > 2 and X is locally euclidean of dimension
q+ 1 with

q=k(r-1) (k>1).

In this case, L (X, xg) = 0 if m(m - q) # 0, and Ly(X, xg) ~ Z = Lq(X Xg). Then the
exactness of the sequence implies that

Hy(F) = Ly(X, xo) = Z
Hm(f’) = Hm_r+1(f‘) 0<m<q-1or g<m).

Hence, if 0 <m<q-1, H ) is infinite cyclic in case m is a multiple of r - 1,
and H,(F) =0 otherw1se To determine Hy._ 1(F), consider the following part of the
exact sequence:

Hy (F) = H _;(®) — L, (X, xp).

Smce g-r=(k-1(-1-1and r> 2, q-r is not a multiple of r - 1, and hence
(F) = 0. On the other hand, L _I(X xo) 0. Hence we obtain H _I(F) =0, To
de%ermme the group H (F), con51der the following part of the exact sequence

L1 (X, %) = Hy_p 1 () = H(F) — L (X, xo) — H_,(F).

Since L g;+1(X, x0) = 0= Hy_ r(F) and Hg._ 1)~ 2=~ L q(X, x), it follows that
H (F) = Z + Z. Thus, for each m> 0, the homology group H (F) is as follows:

0 if m£0(modr - 1),
Hm(F)z Z if m=0(modr-1), m<gq,
Z+Z if m=0(modr-1), m>q.

Next, consider the case where r > 3 and X is locally euclidean of dimension
q + 1 with

g=k(r-1)+j &>1, 1<j<r-1).

By methods similar to those used in the previous case, the homology groups H m(F)
can be computed. The result is as follows: H F) is infinite cyclic if m = p(r - 1)
or m=q+p(r-1) (p>0), and H, (F) = 0 otherwise.

Finally, consider the case where r > 2 and X is locally euclidean of dimension
q + 1 with
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q=k(r-1+1 (k> 1).

For this case, the following part of the exact sequence is crucial:

0 = Hg () — Lq(X, %) & H, () —H, () -0,

where we have Lq(X, x0)~Z and H _r(F) ~ Z. The homomorph.lsm ¢ determines a
nonnegative integer h such that, if a € LyX, x0) and g € r(F) are generators,
then ¢(@) = +hB. This integer h will be called the local Hop} itnvariant of the map £
at x,, The homology groups H,(F) depend on this integer h as follows:

(1) If h=0, then H _1(F) ~ 7 and Hq(F) ~ Z. Hence, m(]?‘) is infinite cyeclic if
m=p(r-1) or m=q+ p(r -1) (p>0),and H (F) = 0 otherwise.

(2) f h=1, then H _1(F) =0 and H (F) = 0. Hence, Hm(F) is infinite cyclic if
m=p(r - 1) w1th p= 0 1, e, k-1, and H (F) = 0 otherwise.

(3) If h#0 and h #1, then H -1(F) ~ Zh and Hq(F) = 0. Hence Hm(F) is in-,
finite cyclic if m = p(r - 1) with p 0, 1, - 1; Hp(F) is cyclic of finite order
h if m = p(r - 1) with p> k; and H (F) = 0 otherw1se.

10. THE CONE CONSTRUCTION
Consider a giving fibering
p:E—B
over B without singularity. Define a continuous map
¢: EXI— BXI
by setting ¢(e, t) = (p(e), t) for every e € E and t € I. Then ¢ is a fibering over
BX1I without singularity. If we identify the subset EX1 of the space EXI to a single
point x,, we obtain a quotient space X of EXI known as the coneover E with x, as
its vertex. Similarly, we identify the subset BX1 of the space BXI to a single point
yo and obtain the cone Y over B with y, as vertex. Let

EEXI— X, 1n:BXI-—-Y

denote the natural projections. Then the map ¢ induces a unique map f: X — Y such
that the rectangle

EXI ¢ BxI

3 n

X — Y

is commutative. It is obvious that f is a fibering over Y with x, = f~}(y,) as its
only singular fiber. Furthermore, one can easily see that f is convergent at x,, and
hence that x, is a normal singular fiber.
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Let X = T(X, x,) and Y = T(Y, y,). Then the normality of X, implies that the in-
duced map
. f:XoY

) N

-~ ) ~
is a fibering over Y without singularity. We shall see that this fibering f is essen-
tially the given fibering p: E — B.

For this purpose, define two continuous maps t: E — X and x: B— Y as follows.
For each e € E and be B, let t(e) and k(b) denote the paths in X and Y respec-
tively given by

[l@]® = &e, 1 -1, [k®]®) =n0b,1-t (teD.

k/j ~ -~
It is clear that t(e) € X and k(b) € Y. One can also verify that t and kK are homeo-
morphisms of E and B into the tangent spaces X and Y. Furthermore, the rectangle

E p B

X f

Y

is commutative. Hence, we may consider E, B as subspaces of f(, S?, respectively,
and then p becomes the restriction of f.

is said to be a

Now, let us introduce a notion as follows. The ma i
, p={|E, and if

E —
strong deformation retract of the map f: X—-Yif EC f(, BC
there exist two homotopies

S
¢

h:X-X ka2 ¥—-¥ (0<Lt<])
satisfying the following conditions:
(SDR1) h, and k, are identity maps;
(SDR2) h, and k, are retractions of X and Y onto E and B respectively;

(SDR3) h¢E and k;|B are the inclusion maps for each t €I
(SDR4) commutativity holds in the rectangle

X f '
hy k¢
X f LY

. . THEOREM 10.1. The given fibering p: E — B is a stvong deformation retract. of
f: X—-Y.

Proof. We have to construct the homotopies hy and k. satisfying (SDR 1-4).

We first define a continuous real function X: X — I by setting




ON FIBERINGS WITH SINGULARITIES 149
xx) =qtt(x) (xeX),

where £: EXI— X and q: EXI — I denote the natural projections. Then we define a
homotopy hy: X—-X 0Lt 1) as follows. Let ¢: I — X be any point in X = T(X, x,).
If 0<t<1/2, h(o) € X is obtained by replacing the part of the path o up to the para-
metric value 2t by the line-segment joining x, to o(2t); in particular, h, ,(0) is the
line-segment joining x, to o(1). I 1/2 <t< 1, then hy0o) € X is obtained by extend-
ing the line-segment h; /2(0) to a position where the value of the function X is 2a - 2at,
where a = x[o(1)]. Similarly, one can define the homotopy k¢ Y—-Y (0 <t <L1).

Then the conditions (SDR 1) through (SDR 4) can be verified without difficulty. Hence
(10.1) has been proved.

Now, let b € B be a given point. Write
F=plb), 7=kbde¥, F=i.
Since k¢(7) = 7 by (SDR 3), it follows from (SDR 4) that h; maps F into itself. Hence
we get the following

COROLLARY 10.2. The spaces E, B, F ave strong deformation vetracts of the
spaces X, Y, F respectively.

The significance of (10.1) and (10.2) is that the theory of fiberings with a single
normal singularity includes the classical theory of fiberings without singularity as a
special case.
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