DIFFERENTIATION ON MANIFOLDS WITHOUT A CONNECTION
B. L. Foster

This note treats higher differentiations on a manifold in an invariant manner,
without using any sort of connection. This is accomplished by considering a straight-
forward generalization of the ordinary Jacobian, which gives rise to new types of
tensors. Some decomposition theorems are given, and speculations are made re-
garding other possible uses of the new tensors. For the sake of simplicity,.only
cases of lower order are treated.

Other work somewhat along these lines has been done by C. Ehresmann [1], [2]
and A. Weil [3]; but their definitions and results are not required in what follows.

I thank B. Kostant, C. Allendoerfer, K. Yano, A. H. Forrester and A. Nijenhuis
for advice and encouragement.

The following conventions and notations will be observed. The manifolds con—/
sidered allow at least three differentiations (real manifolds of class C3). Sets of lo-
cal coordinate variables are distinguished by different types of indices; for example,

x2, x& x® stand for the coordinate functions of different coordinate systems. The
symbols 0a, O0ab, Oy, 08y *°* stand for the partial derivative operators 0 /0x%,
9%/9x2 oxP, 3/9x, 82/ 9x® 9xB, .-.. However, differentiation of the coordinate vari-
ables themselves will be denoted by capital D’s, for example, Da = 0x /8xa
Daﬁ - 3% %/0x® 9xB, -+-. To avoid ambiguity, a symbol such as D! will never be

used. Finally, repeated indices imply contraction, that is, summatmn over the re-
peated index: D”C‘,Dﬁ = By (3x2/0x¥) (ax% /axP) = ax2/oxA = D% .

Consider a generalized gradient (9,, d,,). This pair of differential operators has
the transformation rule
DS DS
o o B b
( o’ aB) (a’ ab) a b =(aaD3’ aaDg!B'i'aabD?lIB)-
0 D, DB
As the indices indicate, the “multiplication” of the entries of the two “matrices”
means contraction. The transformation rule given by this generalized Jacobian

a a
Dy Dag 1 "
operator b is linear, homogeneous, and transitive; the last means that
0 DyDg
a a o a a
D, Dgy B8 D% D AB D, Djp
b - ’
o DyDg/\0o DYDE 0 D;DY
which implies, in particular, that
a a (8.4 o a
Da DaB Dc Dcd 6. 0
= b |
o Dpipg/\0o DYDY 0 6265

Received November 20, 1957,

183



184 B. L. FOSTER

where 02 =1 if a = c, and 62 = 0 if a# ¢ (Kronecker delta). With the notation

Dy DaB
K(aa a) = b y °°%
0 DZ DB

these formulae may be written as follows:
K(a; Ci)K(C!, A) = K(a—s A) ’
K(a, a)K(a, a) = identity.

It is then natural to call (9,, d51) the components of a tensorial operator of type K,
and to define a tensor (field) of type K as an equivalence class of sets of real, dif-
ferentiable, locally defined functions on the manifold (T,, Tap), (T, Tepg), ***, re-
lated by the transformation rules exemplified by

a

a
Dy DaB
(TC‘!’ Taﬁ) = (Tay Tab) a.b
0 Dy Dp

If the functions and derivatives are evaluated at a point of the manifold, the tensors
of type K form a vector space over the real numbers.

Ordinary covariant vectors are said to be of type J, where J(a, @) = Dj; (the
usual Jacobian matrix), and contravariant vectors are of type J~!, where
JYa, a) = J(a, a) = D¥. More generally,

J-2-p?Df, J°=D3DEDS, J2y%=D] DgD;Dg,

For instance, a Riemann metric is a tensor of type J~2, and the curvature tensor is
of type J~1J3,

Dual to the generalized gradient is the pair formed by the acceleration vector and

d%x?/dt
the matrix of squared velocity components, , since the following
(dx 2/dt)(dx"/db)
transformation rule is valid:
2 o 2 ' o o 2_a 2
d'x /dt ) D, D_, d"x"/dt
(dx%/ at)(axP/ at) 0 D¥DP/\ (ax*/dt)(dx"/at)
More generally, a tensor (field) of type K™! is an eqléxlivalence class of sets of real,
T? T
differentiable, locally defined functions , ,*-* connected by the trans-
formation formulae: '
o a o a a
T -l T D, D3 T
- = , e
TP T3P o p¥pf/\ T

The tensors of type K~!, evaluated at a point, form a real vector space which is dual
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to the space of tensors of type K evaluated at the same point; the duality is given by
the pairing

S a
(Ta, Tap) e T,S®+ T, S?® is a real number.
Sa

This pairing is independent of the coordinate system; in other words, it is a well-
defined pairing of equivalence classes, because K-!(a, o) = K(a, a) and
K(a, a)K(a, a) = identity.

If T, is a tensor of type J, then (T, 9, T,) is a tensor of type K. Dléally, if a
dS® /dt
curve in the space of tensors of type J~! is given by S2 = S3(t), then is
: SadxP /dt
a tensor of type K-1, since

ds®/dt = d(S2D2)/dt = (dS?/dt)DY + S DY, (dxP/dt) .

If a manifold is given, together with a distinguished tensor of type K, (Gs, Gap),

a metric generalization of Riemann space is obtained from the invariant
(dS)Z_G d’* o dx®dx”
at) =Gz * Cavat at

(where x(t) is a curve in M and (G,, G,p) is chosen so that the expression on the
right is nonnegative) which reduces to the Riemann metric when G, =0 (G5=0 is
an invariant property, since Gy = GaDg). If G, could be identified with an eleciro-
magnetic potential, and G, with a gravitational potential, then it might be argued
that an electromagnetic “shield” is conceivable (since G, = 0 is an invariant prop-
erty), while a gravitational “shield” is inconceivable (since G_;, = 0 is not an invari-
ant property).

If the Riemann metric is regarded as the special tensor (0, G,;) of type K, then

Ha
its counterpart in the space of tensors of type K-! is the special tensor ); for

0
H2b = 0 is an invariant property, because H®B = Hang‘ DE; and (0, G,;,) is “ortho-
Ha
gonal” to ( ) under the “inner product” given by
0
Ha
(Gs, Gap) = G,H? + G, H?P.
Hab

It thus appears that the class of Riemann manifolds is dual to the class of manifolds
in which a contravariant vector field is distinguished.

The tensors of type K™! may also be used to give an invariant definition of a
linear, second-order, partial differential equation on a manifold. For if this equation
is written as
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Ta
T23,u+ T3 pu=(3,, d,,) () = F
Tab

where F is an invariant real function on the manifold, then requiring the equation to
Ta.

constitute a tensor of type K-1.
Tab

be invariant is equivalent to requiring that (

The usual classification of such equations into the parabolic, elliptic and hyperbolic
cases according to the sign of the determinant of T2b jg likely to be insufficient for
an invariant study, since it 1gnores the term T?2, whose transformatmn formula in-
volves the second derivative, Da B whereas the term T2P uses only the first deriva-

tives Da DE in its transformation law.

How are ordinary vectors to be identified within the framework of tensors of type
K and K™'? It turns out that an ordinary contravariant vector may be identified with
a special kind of tensor of type K™!, while an ordinary covariant vector may be identi-
fied with a coset of tensors of type K. This is implied by the following decomposition
theorem.

THEOREM 1. Let
T = space of tensors of type K,
T* = space of tensors of type K™%,
V = space of covariant vectors,
V* = space of contravariant vectors,
M = space of tensors of type J?,
M* = space of tensors of type J2,
H = space of tensors of iype K which have the form (0,/Sab) ’
H* = space of tensors of type K~' which have the form (82, 0).
Then the following isomorphisms are valid:
H~ M, H*=V*  T/H=V, T*/H¥~ M*,
Pyoof. ¥ (Sa, Sab) is of type K, and Sz = 0 in one coordmate system x2, then

Sq = 0 in every other coordinate system x¥ since Sy = S, D Hence the space H

is well—defmed Moreover, if S, = 0, the transformation rule of S,p reduces to

Sa,e = bDa DB’ so that S, is in M. Hence #[(0, S b)] = S,p defines an isomorph-
Sa

ism of H onto M. If is of type K-1, then S®B = s2P D¢ DB, so that the van-
Sab b

ishing of is a property independent of the coordinate system, and the space H*

is well-defined. Moreover, if S2P = 0, the transformation rule of S2 becomes

Sa

Sab

) = S defines an isomorphism of

S = $2DY, so that S* is in V*. Hence ¢ (
0
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H* onto V*. Finally, ¢[(S,, S,1)] = S, defines a linear mapping of T onto V with

Sa
kernel H, and l:(

nel H*, so that T/H= V and T*/H* = M*,

) = 2P defines a linear mapping of T* onto M* with ker-
S ab

The study of arbitrary tensors of types K and K™! may be reduced to the study
of symmetric tensors of types K and K~! and antisymmetric tensors of types J2
and J-2 by the following theorem.

THEOREM 2. If
T = space of tensors of type K,
A =space of antisymmetric tensors of type J?,

S = space of symmelric tensors of type K,

T* = space of tensors of type K-1,
A* = space of antisymmetric tensors of type J™2,
S* = space of symmetvric tensors of type K™,

then T=A ® S and T* = A¥ @ S*.

Proof. It suffices to show that the following sums are invariant, that is, do not
depend on the coordinate system.

1 1
(P,, Pab) = (0’ E(Pab - Pba) ) + (Pa’ E(Pab + Pba) ) ’
Pa 0 / p?2

pab _%(Pab - Pba) _;_(Pab+ Pba)

That (0, -;—(Pab - Pba)) is well-defined and may be identified with a tensor in A fol-

lows from
1 1 b b 1 a_b
5(Pgg - Pgy) =% (P, D3 DB + P, Dgg - Ppa DEDy - PyDpg) =35 (Pap, - Ppa)Da Dg -

Note that antisymmetry in the second component requires the vanishing of the first
component, so that antisymmetry in the second component is not in general an invar-
iant property. Since

a

1 1 a _b b __a b

1 a_b a
=5 (P,p + Py,) Do Dg + P, Dag),

it follows that the second term in the first sum is well-defined and in S. In fact,
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symmetry in the second component of any (P, , P,;) is an invariant property. For
the second sum, notice that P% = p? Dg + pab ng, so that the vanishing of the first
component is not an invariant property unless the second component is antisymmet-

0
ric, which is the case, however, in the tensor 1 b_ pb Since antisymmetry
. - a
5 (P %
0

is an invariant property of every tensor of type K-!, it follows that

_]: (Pa.b - Pba)

2

is well-defined and may be identified with %(P ab_ pba) which is in A*. Finally, the

second term is well-defined, since

1

b b
5 (P2 + P°%)DY;, .

p® = p*DY + P*P DY = P2 DY +
In fact, symmetry is an invariant property of every tensor of type K~1. Therefore
the reduction theorems are established.

The only natural way of combining the ordinary Jacobians so as to yield new
linear, homogeneous, transitive transformation operators seems to be through iter-
ated tensor multiplication of J and J-1, for example, J2J-3 = Da DB DZ Dng There
are of course more possibilities if K and K-! are considered along with J and J™%.
Some of these are illustrated below. :

If 6 is the Kronecker tensor and I'gb is an affine connection, that is,
B D BD +I"CbDaDBD then

a a
Yoy e Dy DY DggDY
(67, 7, 5) = (8, ’
ap Fay 0 D?DYDY
o "B c

so that (6;, I';,) is a tensor whose type is the tensor product of K and J-!

k3-l=| ¢ DY =

a b Y
0 DDB 0 DaDDc

a a ' ‘na
Dy Dag Dg DY DggDY

Since 6; is a constant tensor, it is natural to identify the affine connection I"gb with
the pair (67, T';,). Then the affine connections clearly form a convex subset of the
vector space of all tensors of type KJ-1.
It is convenient to consider transposition about the secondary d1ag0na1 in the
DD} Dig
iransformation operators K and K-!. With the notation K*(a, o) = ,
0 D2
a
it is immediate that K*(a, A) = [K(a, a)K(a, A)]* = K¥(a, A)K*(a, a).
If T2 is a tensor of type J-!, then dg T = TangDE + &, T?>DY DE, so that
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p? D% D}
(Ta’ aBTa) = (Ta! abTa) bB ’
0 Dg DB

and it is easily verified that this operator is transitive, in other words, that

@ .a b A _A _BY A _A _b A
D) Dg,Dg\ /Dy DggDh D, D,,Dp
b
o Dyp,/\0 Dy pf o Db}
Hence (T?, 3, T°) is a tensor of type
b
oA o o a _b
D, Dy Dyy b Do Dy DB
K'l* «J = o . DB = o1
0 D 0 D, DB

a

Finally, the partial derivative of any ordinary tensor is a generalized tensor
whose type is compounded of the simple types that have been illustrated. More pre-
cisely, the following theorem holds.

abeeem a Tab-..m)

THEOREM 3. If T2D.1\ is a tensor of type I I%, then (T30, 0, Ta i 2

is a tensor of type D(I-hJK), where
D@ PN = D@ 1) gt gk 4 oo 4 JBFLpI-)gk 4 JoPD@) KL 4 .

Jh gk 0

+ 3B IR1pW) - (k+h) ,
0 J-h Jk+1

and wheve D(J) = K and D(J'l) = K-1*.J. Note that the expansion of D(J-hJK) is
quite like the product rule for ordinary differentiations, and that each term in the ex-
pansion is itself a linear, homogeneous, transitive transformation operator.

Pyroof. Since
n T

aB...u _ abeeem o n n T abseemn a s u
9% Tygesp = Tnpewuy Dy =Dy Dy, e Dp+ s Thpeeer (Das Dy Dy D, "'DP

(84 33 S I T o hn r o Hon r
+ eee Da '"Drns D(IDV"'Dp + D, "'DmDVO'"'Dp + «ee + Dy '”DmDV'"DpO’) ,

it follows that

QB 3 TO!B...p,) - (Tab---m, 3 Tab---;n) times

(TVﬂ’"'p’ (02 V'n’...p npeesr S Tnpese

o H \n r (84 s 0 \n
Da '"DmD "'Dp’ Das Dp’"'DmDv ...Dp+ .

o i) s . _n
+D_ -++D  D;D, D,

+ Dg ees DII.IL'l D;o_ ) D; 4 eos

I

(84 n .\n
+ Da cee DmDV-.. DpO'

(83 ® n r S
0 , D, --D,_ D, ---D,Dy
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The transformation operator on the right is equal to the following sum, where the
symbol © denotes omission.

(s 4 (s s
Di DasDs) , . pf DL.DS o .
a2 ocoD + ess + a oo-Dm ..D
0o D¥D° P o D*p° p
a o m -
D. D. D- D
4 Vo o Dn r p pa o Al
+ a s Da ese V..- Dp + see 4 r s Da “ee p
0 DpDj 0 D,D,
s r
D, -+ D 0
- (k+ h) o .
0 D, -+ Dy D, \

=D V) g-htlgk, w4 g-btlpg-ly gk 4 g-hp@y gkl 4 o4 3R gR-1D@)

J-h gk 0
- (k + h) =D JN),
0 J—h Jk‘f‘l

The transitivity of D(J 'th) clearly reduces to the transitivity of each term in the
sum. Since the tensor product of transitive operators is transitive, and since it has
already been verified that D(J) = K and D(J"') = K-1*.J are transitive, the iransi-
tivity of D(J -h Jk) follows. Thus the theorem is proved.

I shall later extend these considerations and, in particular, give a reduction of
covariant differentiation to tensor contractions, and construct differential cohomology
rings which are not equivalent to the de Rham cohomology rings.
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