DENSE INVERSE LIMIT RINGS
Richard Arens

We are concerned here with certain ideals with finitely many generators, in
linear algebras of a type studied in [1] and [8] and named & -algebras by Michael [8].
Our main result is this: Let A be an &-algebra with a unit element 1, and let J be -
a proper right ideal with finitely many generators, in A. Then there is a continuous
homomorphism T of A into a Banach algebra B’ with unit such that T(J) lies in
some proper right ideal of B. This is 4.2 below.

The assertion that B can be selected so as to be a Banach algebra (that is, a
complete normed linear algebra), rather than merely a normed linear algebra, is
important. In fact, the resulting weaker proposition is elementary, and we shall in-
dicate briefly why it does not immediately imply our result 4.2. If T were a con-
tinuous homomorphism of A into a normed algebra N, and J, were the ideal gen-
erated by T(J), then J, would certainly be proper, but might be everywhere-dense.
Thus if N were completed, J, might generate the improper ideal. On the other hand,
in a Banach algebra with unit, each proper ideal is contained in a closed proper ideal.

In the special case in which A is commutative and J has a single generator
(which is to say that J is the principal ideal generated by a single element a), we
obtain a proposition which can be immediately deduced from the main theorems of
the paper cited, namely [1, 7.1] and [8, 5.2]. The advance of the present work over
these earlier papers comes from the technique presented below for controlling the
variety of solutions (x;, ***, xyy) of the equation

1.1 a1Xp+ e +aENn=1,

where aj, ---, ay are given elements of some ring with unit. For N > 1, this variety
exists even in the commutative case,

We call a system {a, >+, ay} 7ight regular if 1.1 can be solved in the ring in
question. If this ring is an algebra A with unit over the complex numbers, and
A1, ***, AN are complex numbers, while aj, -+, ay belong to A, then (Aj, «*+, An) is
said to belong to the joint right spectrum o(ay, -+, a,; A) of (a;, -, ayy) if
{al - Ay e, A - )LN} is not right regular, Qur main result enables us to conclude
that o(ay, ***, ap; A) is the union of the joint right spectra o(T(a;), +--, T(an); B),
where T is a continuous homomorphism of A (now assumed to be an % -algebra
with unit) into a Banach algebra B with unit, the union being over a countable family
of such pairs (B, T). If, in addition, A is commutative, there is the following conse-
quence. Let A be the class of all continuous homomorphism { of A on the complex
numbers C (it is known that A has a natural one-to-one relation to the class of
closed maximal ideals.) Then the joint spectrum o(a;, -+, an; A) coincides with the
image in complex N-space cN of A obtained through the mapping

E—(C(ay), -+, Elay)) -

Michael has a discussion [8, 12.5] of the continuity of complex-valued homo-
morphisms of a commutative & -algebra with unit; and in this discussion the
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solvability of equation 1.1 plays a part. (In fact his assumption I, for the case in
which his T is the A defined above, is precisely our theorem. To see this, one
must correct the misprinted '# ' to ' ="'.) His theorem and ours allow the deduc-
tion that, if {al, ey aN} is a system of rational generators of A, then there are no
discontinuous complex-valued homomorphisms of A (see Section 8 below).

Finally, we deduce a characterization of the & -algebra Hol () of complex-
valued and holomorphic functions defined on any open plane set . This character-
ization requires one generator and a derivation (see Section 8 below for the details.)

2. INVERSE LIMIT RINGS

It was recognized in [1, p. 455] and demonstrated ir [8, 5.1] that & -algebras are
inverse limits of Banach algebras. Most of our present constructions apply to in-
verse limit rings more general than #-algebras. Furthermore, we propose to de-
fine & -algebras as inverse limits of Banach algebras (see below), because in this
way we can avoid repeating some cumbersome phrasing necessitated by the approach
used in[1] and [8].

Accordingly, we proceed to a brief study of inverse limit spaces.

Let V be a partially ordered, directed set, to be used for indexing. Let
{Bv: v e V} be a family of topological spaces. Suppose for each pair u, v of ele-
ments of V such that u < v there is a continuous mapping

2.1 7yt B,—B,.
Assume also the compatibility property
2.2 if u<v<w, then 1oy C 1.

(The system of mapping {"1‘{} is called an inverse mapping system.) Form the topo-
logical product B of these spaces,

2.3 B= X B,.
uev

The component of a point b in B, is denoted by b,. The set A of all b in B such
that by = 7yb,, for all u, v in V for which u < v is the inverse limit of these By,
or more precisely, of the mapping system involved [6, p. 31]. For each b € A and
each v € V we denote b, by =(b), thus introducing the natural mapping of A into
B,.

v
Let us call the mapping system dense if the image in 2.1 (which is not required
to exhaust B,) is at least dense in By, for all u, v such that u < v. Let us also call
A the dense inverse limit of the By. This will not generally insure that =, (A) is
dense in B, (see [4]). However, when 7 (A) is dense in B, for every v, we shall
say that A is a strongly dense inverse limit.

2.4 THEOREM. Let {B,, B,, B,, **'} be a sequence of complete metric spaces,
and let mappings

n

2.41 a?lL:B ,—B, (=0,1,2, )
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have dense range. Then these generate a dense mapping system with index class
{0, 1, 2, ---}. The inverse limit A is a complete metvic space, and its natural image
in each B, is dense.

Pyoof. The construction and the denseness of the mapping system are rather ob-
vious, and may be passed over.

In the present circumstances, the product space B is metrizable; indeed we have
in mind the metric

2.42 plb, 1) = sup max (p, (by, bj,), 2™,
where p,, p,, °** are the metrics in B,, B,, *--, respectively. With this metric 2.42,

or any other uniformly equivalent with it, the completeness of A is readily shown.

We turn to the proof that 7n,(A) is dense in B, for each n. It is actually suffi-
cient to establish this for n = 0, and we proceed to that task.

Let b, be a point of B,, and let £ be a positive number. We shall construct an
a € A such that

2.43 polby, a,) < €.

In the construction we shall omit the indices on the various metrics, and also on
the mappings 2.41. Moreover, we shall denote the composite of any m successive
mappings of the set 2.41 by 7™.

Select positive numbers ¢,, €,, -+ for which €, + €, + .-« < €. An element b,
exists in B, such that

p(b,, b)) < €,.
Having chosen b,, we can{ind a b, in B, such that
p(b,, mb,) < £,,  plub,, 72b,) < &,.

The latter of these is possible because 7 is continuous. Continuing in this, we ar-
rive at by, by, «=+, by, *«- (b, € By) such that

p(rkb,, T b ) <eny

for all k < n. For each n, consider the sequence

Chp="T"b, (P=nmn+1,n+2 ).

This is a Cauchy sequence, because

p(cn,p+1’ Cn'P) < Sp-i-l'

Let the limit in B of this sequence be called an. For example, ap = lim Tl'pbp.

From wcny) p= Cp,p We can deduce mapi) = an; and this means that {a,} is a point
of A. It remains to show 2.43. Using the metric in B;, we have

plbg, ™ by) < plbg, mby) + - + plaP-1 b,_) Pb,) < e.

Taking the limit as p—=, we obtain 2.43.
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We have thus established that a dense inverse limit of a sequence of complete
metric spaces is strongly dense.

We now consider algebraic structures in the By. Consider the case in which
each B, is a topological group, and each mapping of the system (2.1) is a homo-
morphism. Then A receives a topological group structure (this is not the projective
limit of [10], where the mappings 2.1 are required to be “onto”).

For later use, we wish to establish the following.

2.6 THEOREM. Let A be a strongly dense inverse limiit group. Let T be a con-
tinuous homomovrphism of A into a Banach space K. Then theve is an index v such
that

2.61 T = T,om,,

wheve T, is a continuous homomorphism of By into K. For each v there is at
most one T, such that 2.61 holds.

Proof. First we make a general remark on the topology of inverse limit spaces,
using the notation of [1] introduced at the beginning of this section. Let e € A, and
let u be a neighborhood of e, for some v. Consider

2.62 {a:ay € u}.

This is a neighborhood of e, By varying v and u in all possible ways, we obtain a
neighborhood basis for e in A (but not in B)!

Now consider that T is continuous at the identity e in A. There is therefore a
neighborhood W of e of the form 2.62 such that a € W implies || T(a)| <1. Letus
show that T(a) depends only on a,, the index v here being limited to that one oc-
curring in the chosen representation of W by 2.62. It suffices to show that a, = ey
implies T(a) = 0. Suppose, therefore, that a, = e,. Then (a®), € u for every posi-
tive n, so that || T(a™) || < 1. But T(an) = nT(a), since T is a homomorphlsm.
Hence T(a) =

Consequently we may define T.(b) = T{(ay) for each b in B of the form
a, (a € A). This T, may be extended to all of By, because 7(B) is dense, and K
is complete. These considerations are sufficient to prove 2.6.

We mention that the algebras of [1] and [8] are examples of strongly dense in-
verse limit algebras. In these examples, each B, is a Banach algebra. While 7w (A)
is dense in B, it does not generally exhaust B,,. Why not “throw away” the other
points of B,, and exhibit A as a projective limit of normed linear algebras? The
answer is that we wish to reduce various questions about A to questions about
Banach algebras (which are more tractable than normed algebras).

3. RIGHT REGULAR SYSTEMS IN TOPOLOGICAL RINGS

Let B be a ring with unit. Let (b, -+, by) be an ordered n-tuple of elements
of B. We say that (b, -+, by) is a vight regular system, if the equation

3.1 byx; + - +byxy =1 (xy, ***, Xy € B)

can be solved.
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3.2 THEOREM. Let (by, ***, by) be a vight vegular system, and suppose that
(xq, ***, Xpy) S a solution of 3.1. Choose ty, -+, t arbilrarily in B, and define

3.21 z; = t; + (1 - 2byty)  (i=1, -, N).
Then (zy, ***, 2y) @S a solution of 3.1, and every solution of 3.1 can be obtained in

this way from the particulay solution (Xy, -+, Xpp-

It will suffice to present a demonstration of the last clause of 3.2. Let
(x1, **», Xn) be one solution of 3.1, and (z}, -+, zyN) another. Define t; = z; - x;:
Then 3.21 becomes an identity. (This is not the only possible choice for tj, --, ty.)

3.3 COROLLARY. Suppose that B,, B, are topological rings with a homo-
morphism

7: B,— B,

such that n(B,) is dense in B,. Suppose (by, **+, bn) is a vight regular system in B,
(so that (wby, -+, mby) is such a system in B,), and suppose y, «**, yy are elements
of B, such that

3.31 (wby)yy + «+ + (abypn = 1.

Then elements z,, **+, Zy can be found in B, satisfying

3.32 byzy + e+ byzy =1,
and such that for each i (i =1, ---, N), nz; lies in a preassigned neighborhood of y;
in B,.

Proof. 1t is possible to find xi, *--, Xy in B, such that byx; + - + byxy = 1.
Now form

Z1=t1+X1(1—Z>bktk) (i=1:"')N)’

selecting t; so that wt; is very close to y; in B,. These z; satisfy 3.32. More-
over, Zaby nt, is close to Z(wby)yy, which is 1, so that #(1 - Zb,t,) is close to 0,
whence 7z; is close to wt;, which is close to y;.

We next apply these ideas to dense inverse limit rings.

4. RIGHT REGULAR SYSTEMS IN INVERSE LIMIT RINGS

Let A be an inverse limit of topological rings B,. Let aj, --+, apy be a right
regular system in A. Then naturally =, aj, -+, 7yay is right regular in B, for
every v. Since [1, p. 462] was written, we have found that the converse is also
true, at least for dense inverse limits of sequences of complete metric rings. From
here to the end of Section 4, A is supposed to be a dense inverse limit of a sequence
of complete metric rings B,, B,, *-°

4.2 THEOREM. Suppose (a;, **+, ay) is a finite set of elements of A such that
Taay, =y Tpan

is a right regular system in B, , for each n. Then (a,, -, ay) is a right regular
system in A.
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In our proof, we shall deal with many N-tuples of elements, some in B, and
some in A. We shall speak of a € AN (the topological product) and of b € B§ and

mean thereby (a, *-+, apy) (ax € A) and (by, -+, by) (by € By), respectively. It is
convenient to have a metric in these product spaces. In order to be specific, we de-
fine

p(b, c) = max p(bk’ ck) ’
k

where on the right we have the metric in the factor space. We shall also write (b, c)
for bjcy + *** + byen. This is of course an element of the ring concerned. The
symbol m, will be used for the canonical homomorphism of A into B,, and also for
that of AN into BN. For wgﬂ (see 4.1) we use 7, and for the composite of any m

successive ones we use 7™M, These notations will be used also for BE. Various
elements in BE we distinguish by superscripts which do not indicate powers.

In order to find x € AN such that
4.21 (a,x)=1,
we begin by observing that y € B%T can be found such that
4.22 ' (1oa, y) = 1.

Let &, + €, + *-- be any convergent infinite series of positive numbers. Using
our main tool 3.3, we can find y! e Bll\I such that

4,23 (ma, y) =1
and
4.24 ptryl, y9 <eg,  (in BY).

By an evident induction process we obtain yZ € B%‘I, y3 € Blgl, -+ such that

4.25 (Tpa, ¥ =1 (n=1, 2, «)

and

4.26 p(pmyn, gm-1 yn-1) <g_ for all m < n.
Let

clk) =n2Ky?  (n=k k+1,-).
Then
4.27 c(k), = mc(k + 1), (n>k),
and (from 4.26)
4.28 plcm-m) ,cln-m), ;)<e, (n>m).

Inserting 7™-¥ into 4.25 yields
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4.29 (mea, c(k),) =1 (n>K).

By 4.28, c(k), forms a Cauchy system in BIE, convergent to some n-tuple c(k). By
4.29, (mka, c(k)) = 1; by 4.27, c(k) = wc(k + 1); that is c¢(-) defines an element x of the
inverse limit algebra, evidently satisfying 4.21. This proves 5.2 completely.

We need not mention units in 4.2; for if A has none, then there are no regular
systems. We tacitly used the fact that if B,,,; has a unit 1, then #(1) is a (the) unit
for B,; and if every B, has a unit, so has A.

If A has no unit, then B,, has no unit for n sufficiently large, say for n> n,.
One could discard all B,, with n < n,;, and adjoin units to all the others and thus to A.
A system (a;, °**, apy) which then becomes regular could be called quasi-regular in
its original situation; and this would lead to a version of 4.2 having content even when
there is no unit. We do not pursue this idea in this paper. .

Let us call an ideal M in a topological algebra A (over a topological field K)
co-finite if it is closed and A/M is finite-dimensional.

In the following theorem, A is supposed to be as agreed upon at the start of this
section; moreover, each B, is to be an algebra with unit over a topological field K,
such that (see 2.41)

4.3 72l (kb) = knPtl(b) (keK,beB_, ;n=0,1,2, ).

4.4 THEOREM. Let each B, have the property that every proper, finitely gen-
evated right ideal lies in some co-finite maximal vight ideal. Then A has this
property also.

Recall that in a Banach algebra with unit element, or more generally in a “Q-
ring” with unit element [8, E], every proper right ideal is contained in a closed
ideal.

Indeed, let a, -+, apy generate the ideal J in question. Since J is proper,
(ay, «-+, an) forms a nonregular system in A, and hence there is an n such that the
elements m, aj, -+, mpan lie in some finitely generated proper ideal J, of B;. Ex-
pand J, to a maximal co-finite right ideal M, of B,. There is a mapping of A into
B,/M,, wherein A maps on a dense set, which implies that A maps onto B,/M,,.
The kernel M of that mapping is therefore a co-finite maximal closed ideal, and it
contains J.

For infinite systems (a;, -+, app, ***), Theorem 4.2 does not hold, as the follow-
ing example shows. Let B, be the Banach algebra of complex functions on the inte-
gers {0, 1, 2, <=, n}. Thus, B, is essentially Cnt+! with the operations defined co-
ordinate-wise. The mappings (2.41) are the natural ones:

+1 LR 2 el LA N
Tt g o i) = gy ons 1)
A is the space (s) of sequences (Ag, A;, A, +++). Let ayy be the sequence of N ones
followed by zeros (N =1, 2, --.). Then F = {a,, a,, -~} generates a proper ideal in
A, but (a;, ***, apy) is already a regular system in By_;. This illustrates the follow-
ing theorem, which is easy to prove: If F inthe A of 4.2 is such that n,F always

generates an everywheve-dense ideal in B, then F genevates such an ideal in A.
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5. JOINT SPECTRA

Let B and K be topological rings. Let A(B, K) be the class of continuous homo-
morphisms of B into K, exclusive of the 0-homomorphism if K has a unit.

Let N be a positive integer, and let (bj, +**, bpy) be an ordered N-tuple of ele-
ments of B, By the joint K-spectral image for (bl’ see, bN) relative to B we mean

5.1 | {@€®)), -, Eby)): € € A(B, K)} .

This is a subset of KN, and we denote it by Alby, *, bn; B, K).

Now let A be an inverse limit of rings B,,. Since every continuous homomorph-
ism € of any B, induces a homomorphism §ow, of A, we have

5.2 Afay, ==, a; A, K)D UA(vrv aj, ***, T, ay; By, K),
v

for every N-tuple (aj, -+, apy) in A.

When K is a Banach algebra (for example, the real or complex number field) and
A is a strongly dense inverse limit, the inclusion in 5.2 becomes an equality. This
can be traced back to a more fundamental relation.

5.21 THEOREM. If K is a Banach algebra and A is a strvongly dense inverse
limit of topological rvings B, then (in a natural sense)

5.22 AA, K) = A By, K).

To show 5.21, we need first to imbed A(B,, K) in A(A, K) in a natural way. For
€ in the former, o 7, lies in the latter; and since 7, A is dense in By, different
£’s make for different {o 7,,’s. Thus we can imbed as desired. In fact, after im-
bedding, we obtain A(By, K) C A (By, K) for u < v. Theorem 2.6 shows that the left
side of 5.22 is exhausted by the union on the right. (More precisely, the left side of
5.22 is an injective, direct limit, with mappings being the duals of those in the in-
verse mapping system.)

The example given at the end of Section 4 illustrates the inclusion relation
A(B,, C) < A(Byy1, C) (here K = C, the complex number field). Indeed, after a
natural identification, A (B,, C) is the set of integers {0, 1, .-, n}.

We now turn to another concept. We consider a ring B with unit, in which a
subring K has been distinguished.

Let {bl, ey bN} be a set of elements of B. Consider the class of ordered N-
tuples (kj, *++, kyy) of elements in K such that {bj - k1, +-, b - kN} generates a
proper right ideal in B. This class of N-tuples is the joint right K-spectrum of
(by, ***, byy) 7elative to B. 1t is, of course, a subset of KN, and is to be denoted by
o(by, ***, byy B, K). There is a relation to the joint spectral image,

5.3 . o(by, ***, bpg B, K) D Alby, =+, by B, K)

which rests on the fact that the kernel of each element of A (B, K) is a proper ideal.

We add that o(F; B, K) can be easily defined for an infinite family F of elements.
See [ 9].
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If this idea is to be applicable to an inverse limit, each By must contain K (or
perhaps an algebra isomorphic to it), and the mappings (2.1) must preserve K; and
then A will contain K, and the 7, will also preserve it. (These conditions are
usually met when all the B,, are algebras over a field K.) Now suppose (kj, *+, kyy)
belongs to (myay, ***, m, ay; By, K) for some v. Then (n,(a; - K;), **+, 7 (an- ky))
is not regular in By, and hence (a; - kj, **+, ay - kN) is not regular in A. This
shows that

5.34 o(ay, =+, ap; A, K) D U o(m, ay, ---,‘1‘1\, ay; By, K.

v

For the opposing inclusion, we have only 4.2 to help us, so we assume its hy-
potheses, as well as those just above.

5.4 THEOREM. Let A be a dense inverse limit of complete metlric vings with
unit B,, B,, ***, each conlaining a subving K such that

5.41 ' ) =k (ke K).

Then, for a1, ***, aN € A, 5.34 becomes an equality.

The proof consists in recognizing that 4.2 says that if (0, ---, 0) belongs to no
term on the right of 5.34, then it does not belong to that on the left.

6. RELATION OF JOINT SPECTRUM AND SPECTRAL IMAGE

We assume

6.1 A is a dense inverse limit of a sequence of complete metric vings with
unit: Bg, By, **°;

6.11 each B, contains a ving K such that 5.41 holds;
6.2 K is a Banach space;
and finally

6.21  the velation of K to each B, is such that when the subset {by, -, by} of
B, is contained in some proper vight ideal of B, then there is a continuous homo-
movphism £ of B, into K such that £(b;) = 0 (i=1, -+, n).

6.3 THEOREM. If 6.1 fo 6.21 hold, then, for any subset {31: TN aN} of A
which is contained in some proper vight ideal of A, there is a continuous homo-
morphism £ of A into K such that f(3;)) =0 (i=1, +-+, n); and

6.31 U(al, b aN; A, K) = A(al, b aN; A, K)-

In view of the inclusion o0 D A (5.3), the two parts of 6.3 say the same thing. The
inclusion o c A is provided by 6.21 and the fact that kernels of homomorphisms are
ideals.

We have no application at hand which exploits the possibility (left open in 6.3)
that A might be noncommutative.
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To prevent misunderstanding, we state 6.3 expressly for g-algebras. We recall
that the field of scalars in an & -algebra is the complex number field C.

6.32 THEOREM. Let A be a commutative & -algebra with unit. If the set
{al, e, aN} is included by some proper ideal, then theve is a continuous homo-
movphism £ of A on C such that f(a;) =0 (i=1, -, n).

Proof. Since the B, are here (necessarily) commutative Banach algebras, and
K = C, we see that 6.21 holds, because every ideal in B, is contained in at least one
maximal ideal, all maximal ideals in B, are closed, and the quotient algebras are
always isomorphic with C. These are of course the basic facts of I. M. Gelfand’s
theory.

7. CONTINUITY OF MULTIPLICATIVE LINEAR FUNCTIONALS

Michael [ 8, 12.1] calls a topological algebra A functionally continuous if every
homomorphism F of A onto the complex numbers is continuous. He establishes
this property for commutative symmetric & -algebras (see [8, 12.6]) and for some
special algebras. Our present results enable us to extend Michael’s considerably,
because 6.3 implies the validity of a condition [8, 12.5 (I)]. At this point, we quote a
definition from [8]. An element y € A is called bounded if the set of complex num-
bers {¢(y): ¢ € A(A, C)} is bounded.

7.1 THEOREM. Let A be a commutalive F -algebva with unit. Then A is func-
tionally continuous if either 7.12 or "7.13 and "1.14, below, hold.

7.12  There ave elements g, **+, gN in A such that the inverse image in A(A, C)
of each point in A(gy, **, gN; A, C) is a compact set in A (compact in the weak

topology).

7.13  For each x € A theve is a bounded element y € A such that {(x) =0 precisely
whenevey {(y) =0 (all € € AA, C));

7.14  if y,, ¥, °- belong to A and ave bounded, and s(§) = ¢(y,) + {(y,) + ++- con-
verges uniformly on NA, C), then theve is an a€ A such that s(€) = (a) for all
¢ e AA, C).

The proof can easily be constructed by examining[8, 12.5]. Actually, Michael
uses a weaker form of 7.13 and 7.14; but we submit that 7.13 and 7.14 are the condi-
tions one will attempt to verify in any concrete case.

An easy way to ensure 7.12 is to assume that A is finitely generated; in other
words, that there are gy, *++, gy whose polynomials are dense in A. Then a con-
tinuous homomorphism is determined by its values on gj, -, gN. This makes
A(g1, ***, 8N; A, C) a one-to-one image of A(A, C). The same conclusion can be
reached in the case in which A is generated by gi, -+, gN together with the inverses
of those polynomials (in g;, -+, gn) that kave inverses in A (g, -+, gy “rational
generators”).
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8. A CHARACTERIZATION OF THE ALGEBRA OF FUNCTIONS
ON A PLANE OPEN SET ‘

Let £ be an open set in the complex plane; and let Hol (©) be the algebra of
holomorphic functions on Q. We shall exhibit it as an #-algebra. Select compact
subsets K,, K,, *** of & such that K,, ©K,,; and |JK, = Q. For f € Hol (@), let

8.1 £, = max Jix,)]|.
These seminorms define a topology in Hol () which is independent of how the K

are selected.

Let B, be the uniform closure, under uniform convergence on K, of the func-
tions in Hol () restricted to K, for n= 0, 1, *. Then Hol(f2) is the dense inverse
limit of these Banach algebras.

For our discussion, it is convenient to mention explicitly that there is a sequence
of positive numbers r,, r,, r, --- such that

8.2 K, ;1 includes the r,-neighborvhood of K,,, for n=0, 1, 2, **-.

Finally, we mention the special role of the function z (z(A) = A for all A € C).

8.3 The algebra is generated by z together with the inverses of those polynomials
in z which have inverses in the algebra. :

This follows from Runge’s theorem [2, p. 300]. The “Bereich” there is supposed
to be connected; but this causes no difficulty, since each K, lies in at most finitely
many components.

The properties already considered do not characterize Hol(2). A competing
algebra from which Hol () has to be distinguished is € [0, 1] which shares with
Hol () all these properties, and also the following:

8.41 There is a continuous devivation D in the algebra such that Dz = 1.

A derivation is a linear transformation of the algebra in question into itself such
that D(fg) = f-Dg + Df - g. Clearly Dk = DD-.--D is also continuous, but this observa-
tion (valid in ® ® as well) does not suffice to establish the following property of
Hol (Q):

8.42 There are positive real numbers r,, r,, r , --- such that

[D*el < k1e * |1 (n=0,1,2, ).

n+l

(From 8.41 alone one could hope at most for something like

ID%el, <5, el )

The necessity of 8.42 arises out of 8.2 and Cauchy’s integral for the kth deriva-
tive on K,,, taken over circles in K.

8.5 THEOREM. Lelt A be an ¥ -algebra with a unit, a genevalor z in the sense
of 8.3, and a derivation satisfying 8.41, 8.42. Then there is a closed semisimple sub-
algebra H of A such that (N being the radical of A)

8.501 A=HIN (veclor space dirvect sum)



¢

180 RICHARD ARENS

and H is Hol () for some nonvoid open plane set .

Before proceeding to the proof, we remark that we have not succeeded in making
an example where N is nontrivial,

To proceed to the proof, we suppose A is the dense inverse limit of Banach alge-
bras B,, B,, **. These algebras are commutative, by 8.3. Let K, be the (compact)
spectrum of z in B,. Let £ be the union of the K,. The set © can be identified
with A(A, C). We turn to showing the crucial fact 8.2.

For any complex number t (|t| < 1,) and any f € A, the series

[+ o]
> tk pk

8.51
k=0 K1

=T (I

converges in the norm of B,, and
I Tetlln < @ - w2t () il -

This comes from 8.42. Hence T; can be extended to an operator of B,,; into B,
and

8.52 IT )l < @ -ttt Ty 4o~ Ty T, -
It is moreover a homomorphism, as one can deduce from 8.51 and Leibniz’ rule.

Now Ti(z) =z +t. For £ € AB,, C) (which we have identified with K ), £ oT; is an
element of K, ;, provided |t| <r,. Its position in the plane is C(th) = g(z) + t.
This proves 8.2. For f€ A and C € Q we set £(f) = £(¢). If f is a polynomial or
rational function in z, then f isin Hol (©), -and likewise for the limits, because they
are uniform limits on each K,, which, according to 8.2, lies inside €, and is com-
pact. Moreover, this homomorphlsm of A into Hol(ﬂ) is contmuous.

We now study the homomorphism of Hol () into A, as given by the classical
formula [7, 78]

10 F
27i I‘A -z

8.53 F— di=a, (Fe Hol()).

I' must be drawn inside £ I I' is drawn so as to enclose, buf not touch, K, , then
ay is an element of B_.

8.54 This element does nol change if " is varied, as long as T satisfies the con-
ditions imposed,

The proof is by linear functionals, and does not require semisimplicity. Gradual
displacement of T" away from K, K,, --- defines a sequence of elements, selected in
turn from B,, B,, ---, of such type as to form an element of A. Of course
ap;Gg=ap + ag; and apg = arpag. The latter is obvious with semisimplicity, but
we can give a proof without it, as follows. Let two contours enclosing K, be chosen,
and define. ay, ag - in B,,, using 8.53. By a deformation we can provide that

8.55 the contour for ap lies inside that for ag.

We use u as the variable of integration in the case of ag, so that we avoid the nec-
essity of mentioning the contours. The identity
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-4n®aa; = SF(A) -2y dr - yG(u) (2 -2)"to(wdu,

where

y0 = e -nTas, e ={FO) @ -nTar,

is readily verified. But by 8.55, (A) = 27iG()), and ¢{u) = 0; and we obtain (2171)23. FGe
With these facts established, we settle down to specific contours I';, T',, «+-, where I"
surrounds K, , is disjoint from K,,, and lies in K, ,;. It follows from 8.53 that

8.56 lagl, < ¢, max |F&,,,)|,

where c,, depends on the length of I',, and the behavior of (A - z)-! on T, but not
on F. It also follows from 8.53 that 43 = F, and so

8.561 max | FK)| < |lag],-

Let H be the subalgebra of all ap, Fe Hol(£). Then H is isomorphic to Hol (),
algebraically (8.53) and topologically (8.56, 8.561). Moreover, f —af is a continuous
projection of A on H (it can be shown that a, = 1€ A). Also, f - a7 is always in the
radical. This concludes the proof of 8.5.

Evidently, if we adjoin to the conditions of 8.5 any condition ensuring semi-
simplicity, then we have a characterization of Hol ().

Helmer [3, Thm. 9] shows that if fj, ***, fiy are entire functions, then the set
{1, -, fN} generates a principal ideal in the algebra of entire functions. We de-
sire to generalize this result here.

8.6 THEOREM. Let S be an open set in the plane. Let {fy, -, f5} be a finite
subset of Hol (2). Then the ideal generated by {fl, see fN} is a principal ideal.

To prove 8.6 we first observe, as is done in [3], that it is sufficient to treat the
case in which f;, ..., fjy have no common zeros on 2. Next, we observe that £ cor-
responds naturally to A(Hol (), C) (see [5]). Then we may apply 4.2, according to
which {f;, ---, N} generates (1).

Finally, we wish to describe an algebra of holomorphic functions which is an %-
algebra, but in which the seminorms cannot generally be chosen to be maximae
modulorum. Let D,, D,, .- be a sequence of closed discs in the plane, of radius
ry, Ty, *++ and center {,, ¢, --+, respectively. Let A be the class of functions that
are defined on the union of D,, D,, *-- and have at each {, a Taylor expansion that
converges absolutely on D,. For f € A, and each n, define

8.7 pa® = 2 )tk |1 )| .

These seminorms p,, p,, *-- define an #-algebra-structure in A. The space A(A, C)
turns out to be the union of D,, D,, ***. We can therefore assert that if f;, ---, fjy are
functions in A that have no common zeros, then there are g;, -+, gy in A such that

flgl + o +ngN = 1.
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