THE SPACE OF LOOPS ON A LIE GROUP
Raoul Bott

INTRODUCTION

In this paper we describe the Hopf algebra H*(Q'K), T where K is a connected
compact Lie group and Q'K is the e-component of the loop space on K. As an ap-
plication, we compute the stable homotopy groups 7 (U) (by a method other than
that envisaged in[5]) and the group 7,,{U(n)}. These results, presented in Section
8, have recently been used by Kervaire [11], and independently by Milnor [ 6], to
prove that the n-sphere is parallelizable only if n=1, 3 or 7.

We shall need the following known information about Q'K:
(1.1) the space Q'K is a homotopy-commutative Hopf space;

(1.2) both H (Q'K; Q) and H¥(Q'K; Q) are primitively generated polynomial
Vings. ‘

((1.1) follows from the fact that K is itself a Hopf space; (1.2) follows from the Serre
C-theory and the fact that over Q, the group K looks like a product of odd spheres
[16]). From the application of Morse theory [4], [8], it is further known that

(1.3) the 7Z.-module Hq(Q'K) is free (q = 0, 1, 2, *++) and vanishes for
odd q;
(1.4) one has an (explicit) additive basis of singulay cycles for the

classes of H (Q'K).

Unfortunately, this basis is not closed under Pontryagin multiplication, and there-
fore it is not directly applicable to our problem. Nevertheless, the construction of
(1.4) is the main tool in the proof of Theorem 1. This theorem, in turn, is the main
step towards our description.

Our first new result is that the Pontryagin ring H*(Q'K) is always finitely gen-
erated. The explicit generators are described in Theorem 1.

A homomorphism s: R— K of the real numbers R into K, whose kernel contains
the group of integers in R, will be called a circle on K. With such a circle we asso-
ciate two spaces: Kg, the centralizer of the image of s, and KS, the space K/Kg of
left cosets. The formula

x—xs(t) x"1s(t)"! xeK; 0<t<1)
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TIn general we use the singular theory, and we use the lower star for homology,
the upper star for cohomology. If no coefficients are indicated, the integers Z are
to be understood. The rational numbers are denoted by Q, the reals by R.
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defines a2 map of K into ©'K, which clearly is constant along the left cosets of K.
This transformation therefore induces a map

(1.5) g5: K*—>Q'K,

and the question arises under what circumstances gJH_(KS) generates H,(Q'K)
multiplicatively.

To formulate an answer, we need the following definition.” Let s be a circle on
K, and T a maximal torus of K containing s. Let 2/(K; T) be the subgroup of the
automorphisms of T which are induced by the inner automorphisms of K, and let
Z(K, T) denote the set of roots of K, interpreted as elements of H(T) (that is, as
homomorphisms of H,(T) into Z). We also write s for the homology class in H,(T)
determined by the restriction of s to 0 < t <1, and we denote by Ag the module
generated in H,(T) by s and all its transforms under 97 (K, T).

Definition 1.1. A circle s ¢ Tc K is called a generating civcle for K if each
root 8 € Z(K, T) takes on the value 1 on some element of Ag.

In other words, s is a generating circle if for each 8 € Z (K, T) there exists an
Xg € Ag such that 6(xg) = 1. For convenience, we shall refer to K as a generating
variety of K, and to gs as a generating map, whenever s is a generating circle.

THEOREM 1. If s is a genevaling civcle for K, then the image of
gs: H (K%)— H,Q 'K)

genevates the Pontryagin ving H,(Q'K).

A companion theorem which assures us that Theorem 1 is not trivial reads as
follows:

THEOREM 2. If K is a compact Lie group with trivial center, then K has a
generating civcle.

In general, a semisimple compact group need not have a generating circle, as is
easily verified. However, the restriction concerning the center is not serious, because
the identity components of the loop space of K and of the loop space of the adjoint
group of K coincide. Further, the adjoint group Ad K of K (that is, the linear group
given by the adjoint representation of K on its Lie algebra) has trivial center. Clear-
ly, Theorems 1 and 2 imply

COROLLARY. The Pontryagin ving H*(Q'K) is finitely genevated.

The homogeneous spaces K5 play a central part in many topological questions
about Lie groups, and they have many pleasing properties. In particular we recall
that

(1.6) zf s is any circle on K, then H (K®) is a free module and
(KS) 0 for odd 1 [4],

(1.7 theve is an algovithm for constvucting the ving H¥*(KS) in terms of
the Cartan integers of K [7], [8]

Together with Theorems 1 and 2, these facts imply that the diagonal map
Dyt Hy(2) — H (R) ®HL(R) can be computed in terms of the generators (that is, in
terms of the elements of H,(Ks), for a suitable s). Indeed, this diagonal map 1s de-
termined by the diagonal map K®—K®xK?®, and is thus described by H*(K ®).
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therefore .remains to describe a procedure for determining the relations between the
generators. In practice, the relations are rather complicated; however, theoretically
the problem can be solved completely. First, it is an easy consequence of (1.1), (1.2),
(1.3), Theorem 1, and (L6) that the following is true.

THEOREM 3. Let s be a generating civcle for K, and let g°: K5— Q'K be the
genevating map. Let P* c H*(Q 'K) be the subspace of primitive elements in
H*(Q'K), and set % C H*(KS) equal to g5*P*. Then

(a) B* is a divect summand of H*(KS);

(b) the subspace P% and the ving H*(KS) completely detevmine the Hopf-algebras
H*(Q'K) and H,(R'K).

The mechanism by which this description proceeds is given in Section 6.

In view of Theorem 3, the problem we set out to solve is reduced to finding
PR Q in H¥(K®; Q). This last gap is filled in Theorem 4 of Section 7, by means of
the beautiful and complete description of H*(KS; Q) due to A. Borel and J. Leray.

I am very much indebted to A. Borel, who read and criticized the first version of
this manuscript. In particular, he pointed out to me that with the strong definition of
a generating circle which I had used, the orthogonal groups SO(4n) have no generat-
ing circles. With the present, much weaker and more appropriate definition, Theo-
rem 2 is, I hope, correct.

2. PROOF OF THEOREM 1 (PRELIMINARIES)

We shall use the symbol K exclusively for semisimple, compact, connected Lie
groups. The space of loops on K, that is, 2K, is based on the identity e € K. We
use the variable endpoint definition for 2K and the symbol V for Pontryagin multi-
plication. This multiplication is associative, and it is homotopy-commutative because
K is an H-space, as remarked earlier. The parametrization of paths in QK is
usually left to the reader.

If s is a circle on K, the restriction of s to [0, 1] defines a point in QK which
is also denoted by s, and we write Qg K for the component of 2K containing s.

The inverse of a circle s is written s~!, and it is defined by s-(t) = s(-t) = s(t)-%.
Two circles s and s! are called conjugate if there exists an x € K such that
xs(t)x-* = s!(t). Throughout, g S denotes the map KS — Q'K defined in the introduc-
tion, and we write A g for the image of g2 H_(KS)— H_(Q'K). The following is an
immediate consequence of the connectedness of K.

PROPOSITION 2.1, If s and s' ave conjugate civcles, then Ag = Aq.
For the circles s and s—! only a weaker proposition holds:

PROPOSITION 2.2. The rings genevated by As and Ag-3 in H*(Q'K) are
identical.

Proof. It is convenient to introduce auxiliary maps f5: K —Q ;K defined by
(2.1) £5() () = ks k! (k-Kg=q;0<t<1).

Note that g® is homotopic to fS followed by Pontryagin multiplication with the point
s”! in Q-1 K; that is, g5 = s~1\/fs.
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Consider now the sequence of maps

(2.2) K S ksxKks”— @KxQ__,KY @K.

Here the first map A is the diagonal map in the following sense. Clearly K = Ks-l;
hence kK, — kK¢ kas_ . can be interpreted as the diagonal map. The second map

in (2.2) is fS st-l’ while the last one is the Pontryagin multiplication. The composi-
tion of these three maps is homotopically trivial, by inspection. In homology this is
expressed by the identity

(2.3) 5Vl + 2 f5xq VIS xg+ sVE§ Ty = 0,

which holds whenever the diagonal expansion of y € H_(K®) in H_(KSXKS) takes the
form

(2.4) Ay=y®1+ Exa®xﬁ+ 1®y (dimxa,x3<dimy).

Because H,(K®) is free, H, (K®xK®) = H_(K®°) ® H,(K®), so that every element
y € H, (K®) with dim y > 0 has such an expansion.

Because V is commutative on the homology level, (2.3) implies that in the lowest
=1
nontrivial (positive) dimension, s'l\/fi and sV{;  differ by sign. Hence the same

is true of g; and g,f_l. Now, using induction on the dimensions in (2.3), we see that
A ¢ is contained in the ring generated by As_l, and vice versa. This proves the
proposition.

A product of the form II= K 1xK 2x+-+xK°™ will be called an s-product, if
(2.5) s,Vs,VeeVs, =¢ (trivial loop),
(2.6) each s; is conjugate to s cr to s™1.

With every such s-product we associate a map £7: 1 - 'K defined by the multipli-
cation

7 = £21v1°2 Ve vESR

(by condition (2.5), f7 has its values in Q'K).

PROPOSITION 2.3. The subring genevated by Ag in H, (Q2'K) contains the image
of T for every s-product Il.

Proof. Again because H,(K®) is free, it is sufficient to consider f7 on elements

of the form u=y} Ry} @ =Ryl [yl € B & H]. Then, if {ly} =y,,
f",{u = yl\/YZV"‘\/Yn-

By (2.5), this element is also given by (sj!Vy1) V(s3! Vy,) = (s;'Vvy,). Thus £7
is in the ring generated by the A_ . By (2.6) and Propositions 2.1 and 2.2, this ring
1

is already generated by Ag.
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We come now to the main part of the proof, which is carried out in the next two
sections. It rests squarely on the results of [8], and can be sketched as follows:

Corresponding to a generating circle s, we construct a family of singular cycles
(T, fr) on @'K. By appealing to [8], it is verified that this family contains an addi-
tive base for H_(Q'K). Next we construct for each (T, fr) an s-product II, and a
map ¢: I' —II such that

(2.7) fr =1'o¢.

Once this program is carried out, the proof of Theorem 1 is ccmplete. One merely

combines (2.7) with Proposition 2.3.
/

3. THE CYCLES OF Q'K

From now on we choose a fixed maximal torus T c K, and we denote its universal
covering group by §. The covering map shall be 7.

The adjoint representation of K on its own Lie algebra f, when restricted to T,
decomposes | into a direct sum '

f =t F €4 co0t €,

where t is the tangent space to T, and the ¢; are 2-planes on which T is repre-
sented nontrivially by rotations. The kernel of this representation of T on ¢; is de-
noted by Uj, and any component of n~1(U;) (i =1, +»-, m) is called a singular plane
(of K) in §.

Let P= {pl, P2, *** pk} be a finite ordered collection of singular planes. Our
purpose is to assign a homology class P, € H*(Q'K) to P. Let p; be the image of
p; under the projection & — T, and let K(pi) be the centralizer of p;. Just as in [8],
we construct the manifold W(P) = HlfK(pl) and its twisted quotient

I'(P) = K(p;) X1 K(py) X *** Xp K(py)/T.

By definition, I'(P) is the quotient of W(P) under the right action of Tk on W(P) de-
fined by

-1 -1
@) (X175 Xp5 +o0y Xg) O (L1, =oe, ti) = (X1t1, £ Xz t2, oo, tri1Xe ty)
3.1

(x; €K(py); t; € T;i=1, ==, k).

From [8] we recall that T'(P) is always connected and orientable.

We define next a family of maps f5: I'(P)— Q'K (all of which will be homotopic).
The image of a fundamental cycle of T'(P) (chosen arbitrarily but once for all, for
each I'(P)) will be the class P,.

The maps {H are defined by means of a chain subject to P. By definition, such
a chain is to be an ordered sequence of polygons ¢ = {cg, ¢}, ***, ¢;} in & satisfying
to the following boundary conditions:
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—(Cl) the polygon c, starts at the identity e of §;

(Cz) the endpoint of c¢;_; coincides with the initial point of c¢; and
(€) lies on the plane p;;

s s e« o 0 o

(Ck+1) the endpoint of ¢ is e.

Let ¢ = {¢; } be a chain sub]ect to P, and denote the projection of c; into T by
;. Let fP W(P)— QK be given by

(%1, Xp, =**, X ) — Co + Ad X1 €} + Ad(X] X3) *Cp + +» + Ad(x] *** X3) - Cy.

The meaning of the + is surely clear: we let the parameter run through <¢,, then
through Ad(x 1) -Cc,, and so forth. Because of the boundary conditions on ¢, no breaks
occur.

It is easily verified that this map is constant along the orbits of the action (3.1)
and so defines the promised map fIg: T(P)— QK. All the maps ffa are homotopic,
because two chains, both subject to P, can be moved into one another without violat-
ing the boundary conditions imposed by P.

We must now strongly appeal to [8] for the proof of the following fact.

PROPOSITION 3.1. Let P range over the finite ovdeved sequences of singular
planes in §. Then the corvesponding homology classes P, generate H (Q'K) addi-
tively.

Indeed we have essentially copied the constructions of Chapter I in [8]. Only the
emphasis has changed. There we started from a straight line segment ¢ in & (in
general position) which terminates at e. The order in which ¢ meets the singular
planes then define a sequence P = {pl} Finally, we used the obvious chain for this
P furnished by c itself, in the construction of fc

To prevent misunderstanding, let me emphasize that the totality of cycles P,
described here is by no means independent. It merely generates H,(Q'K). In (8] we
selected the subcollection which formed a basis; here, there is no need for that.

4. PROOF OF THEOREM 1 (COMPLETED)

Let s be a circle on K. A parametrized curve u: [n,n+ 1]—§ (ne€ Z) is
called an elementary s-segment if the projection of u on T agrees with the map
s!|[n, n + 1], where s! is a circle on K, conjugate either to s or to s™'. A chain c
subject to P is called an s-chain if each of its polygons c; has only elementary s-
segments for its straight edges.

PROPOSITION 4.1. Suppose that c is an s-chain subject to P = {p1, ***, Px}-
Then theve exists an s-product 11, and a map ¢: T'(P)—11 suckh that 5 = 7o ¢.
Proof. Let {c,} (i=1, -+, k) be the polygons of c, and let c; = al1 + a?{ + oo+ axili
be the ordered decomposition of- ¢; into elementary s-segments. We assume that
a: [0, 1]— §, so that a2 is defined for 1 <t < 2, and so forth. Let s! be the circle

determined by aj, and write K} for ng. The s-product II is now defined by
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On kn
n =K01><'..XK OXKIIX... IICXK k

That Il is indeed an s-product is seen as follows: Because the total chain
Co+ Cl+ eoe + Ck

represents a closed polygon in §, the Pontryagin product of all the st represents
the trivial loop. Hence condition (2.5) is satisfied. By the definition of an elementary
s-chain, all the s} are conjugate to s or to s~'. Hence condition (2.6) is also ful-
filled.

Next let W = KXeoeXKXKXeeo oee XK (one copy over each KiJ of 1), and let
W—1I be the product of the natural projections K— K, The promised map
¢: T'(P)—II shall be described by a map ¢: W(P)— W which takes the fibers of W(P)
(over I'(P)) into the fibers of W (over II). We define $(x;, *--, xp) to be the point
{yi} in W, where

y;=¢€ for lgigno,
yi =X for.ng<i<ng+np,
Vi = X1 X, for ng+ n; <i<ng+ n;+n,,

l."
Vi = XXXy for m-n <i<m (m=ng+n;+ - +mny.

In words, g = <7>(x1, oe, xp) is described as follows. The first n, coordinates of g
are e, the next n, coordinates are x,, the next n, coordinates are X, X,, and so
forth.

The verification that ¢ is fiber preserving, and that the induced ¢ factors fl"3 by
7 is left to the reader.

In view of Propositions 3.1 and 4.1, the program outlined in Section 2 is nearly
completed. We still have to show that we can find elementary s-chains subject to P
for every P, under the suitable conditions. This gap is filled by the following propo-
sition, which therefore also completes the proof of Theorem 1.

PROPOSITION 4.2, Let s be a generating cirvcle for K. Then every sequence of
singular planes P admits an s-chain subject to P.

Let s be am‘generating circle for K on T, and consider the module A4 generated
in H,(T) by s and its transforms under 9¢ (K, T). Let A be the kernel of the covering
map 7: % —T. Under the identification H,(T) ~ A, A; goes over into a sublattice of A.

(4.1) Every singulay plane of K on § contains a point of the lattice A.

Proof. The roots of K are by definition the pre-images of generators of
HY(T/U;) under the projection of T on T/U; (i=1, -, m). (Here the U; are the
kernels of Ad| T on ¢;, as in Section 3).

The definition of a generating circle can therefore also be given as follows (see
Definition 1.1): the circle s is generating for K if the natural homomorphism
H)(T) - H1(T/U;) maps As onto Hi(T/U;) for each i =1, **-, m. On the other hand,
the singular planes of K on & are precisely the components of the pre-images of
U; under 7. Hence (4.1) is true.
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Clearly every point of Ag; can be joined to the origin by a sequence of elementary
s-segments. Therefore, by (4.1), every sequence P of singular planes also admits
an s-chain subject to P. This proves Proposition 4.2.

5. GENERATING CIRCLES

A circle s on K is called minimal if the dimension of the center of K¢ is pre-
cisely 1. These circles correspond to the edges of the “Cartan simplex,” and they
are of interest in this context because, by means of Theorem 1, they lead to the most
economical description of H*(SZ K).

THEOREM 2'. Every compact, connected Lie group K with trivial center has a
minimal genevating civcle.

To prove this theorem, we recall some facts concerning the set of roots of X.
The reader is referred to [9] and [14] for details.

Because the class of groups under consideration splits canonically into simple
groups of the same class, we may assume K to be simple, in this discussion.

The Weyl group 9¢ = 9¢ (K, T) acts on the roots T = Z(K, T) as a permutation
group. If this action is transitive, we call K simply laced. The only other possi-
bility is that Z is the union of two disjoint orbits under 9 . In that case, K is called
doubly laced. A nondegenerate inner product is defined on H,(T) by setting

(x, y) = 220(x)-6(y),

where 6 ranges over XZ. The induced inner product on H¥T) is the Killing form,
and the orbits of 2 on Z are precisely the roots of equal length., There are there-
fore at most two lengths, We refer to roots with maximal length as long roots.

One has the notion of a fundamental system of voots in Z: such a system & is
characterized by the property that every root is a linear combination of elements in
& with entirely nonpositive or entirely nonnegative coefficients.

LEMMA. Let & be a fundamental system of roots for the doubly laced group K.
If a € Fis along root, then theve exists a shorter voot b € Z such that the a-coeffi-
cient of b in the base F is precisely 1. '

This lemma is a consequence of the following proposition, which emerges from
the classification theory by direct verification,

PROPOSITION 5.1. Let K be doubly laced. Then theve exists a lineay ovdeving
ay, az, ***, af of the elements of & such that (1) a; is pevpendicular to all rvoots of
F which ave not adjacent to it, while adjacent voots are not perpendicular; (2) the
length of a; is a nondecveasing, nonconstant function of the index i. (See for in-
stance [9, p. 18].)

The lemma now follows by this argument: Let & be ordered according to
Proposition 5.1, and suppose that in this ordering a = ayx. By (1) in the proposition,
there exists an index j < k such that a;j is the last root of & shorter than a. Let
R¥ € 9+ denote the reflections in the root planes a; of %, and set b = Ri R*. oa..

. oy s . N S
Then b is a short root, because it is conjugate to aje Moreover,

R¥ .oa.=a; - 2(aj’ aj+l) *2j41
TR TN @y ) Y
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Because the length of aj4) is not less than the length of aj, the Cartan integer
2(aj, aj+1/(aj+1, 2j+41) is -1. Thus R¥+1°a;=aj + aj+1. By (1) and (2) in the propo-
sition, one can now use induction to show that a is involved with coefficient 1 in b.

Proof of Theovem 2'. The circles on T are completely determined by their
homology classes. Furthermore, every class of H,(T) can be realized by a circle.
We shall therefore not labor with this distinction, hereafter. Let & be a fixed funda-
mental system of roots in Z. Because K has trivial center, Z constitutes a base for
HYT). The dual base of circles in H,(T) is denoted by #,. As is well known, a circle
is minimal if and only if it is conjugate under 9/ to an element of #_,. We shall call
circles of &, shortif they are duals of long roots in #. Thus, if K is simply laced,
all circles of &, are short. In any case, short minimal circles always exist, by
Proposition 5.1 ?‘2). Suppose now that s € &, is dual to the long root a. We shall
show that s is a generating circle. Assume first that K is simply laced. Then
a(s) = 1, by definition, For each w e 9¢, it follows that w*oa(wxos) = 1. Since 9/
is transitive on T, and wxs is clearly in Ag, we see that each root takes the value
1 on Ag, in other words, that s is a generating circle. If K is doubly laced, let b be
a short root in £ with b(s) = 1, guaranteed by the lemma. Since each root is now
conjugate to a or to b under 9/, s is again a generating circle.

We have therefore proved Theorem 2' in the following stronger form:

Every shovt minimal civcle is a genevating civcle. In particular, if K is simply
laced, all minimal circles are generating civcles.

We close this section with a list of the generating varieties for the classical
groups corresponding to short minimal circles.

The unitary grvoups. These groups are simply laced. Thus all minimal circles
are generating circles. For 1 <n <m, let s, be the circle on Ad SU(n + m),
given by t—Ad s!_(t), where s}, (1) is the diagonal matrix with first n entries
e?* [@ = 27im/(n + m)], and subsequent m entries e~Bt[B = 2rin/(n + m)]. These
circles are all minimal circles, and the generating variety corresponding to shm,, is
the Grassmannian Gpm = U(n + m)/U(n) X U(m). The most economical generating
variety for Ad SU(n + 1) is therefore the complex projective n-space Pp(C).

The orthogonal groups. The even orthogonal groups are simply laced, while the
odd ones are doubly laced. For n> 3 and m > 1, let s,,,,, be the circle on
Ad SO(2m + n) given by t—Ad s __(t), where Spm(t) is the “diagonal” matrix con-
sisting of m two-by-two diagonal boxes

(cos 27it - sin 27 it)

sin 27it cos 27it

followed by n entries equal to 1. These circles are seen to be short minimal circles.
The corresponding generating varieties are the spaces SO(2m + n) /U(m)xSO(n). For

the even orthogonal groups SO(2m), we have in addition the minimal circle sg,,
which assigns to t the element Adsg,(t), where now sg () consists of m two-by-

two diagonal boxes
(cos it -sin 7w it)
sin mit cos 7it
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The generating variety for this circle is SO(2m)/U(m). The most economical gen-
erating variety for Ad SO(n) (n > 5), is therefore the real Grassmannian of oriented
2-planes in n-space.

The symplectic groups. The only short minimal circle in this case is given by
s(t) = Ad {e™t . Identity} .

The corresponding generating variety is Sp(n)/ U(n).

6. SOME GENERALITIES

Let X be an arcwise connected space with base-point e. We write X for
XX XX++XxX (n factors), and ¢ for the imbedding X?-1 X" which uses e in the
last factor. The permutation group on n letters is denoted by W(n). It acts on X"
by permuting the factors; one therefore has a representation of W(n) on H,(X") and
H*(XD).

Let #H*(X) be the subring of H*(X"), kept pointwise fixed under W(n).

Let SPH_(X) be the quotient of H*(Xn) by the subspace generated by elements of
the form o, (u) - u (¢ € W(n), u € H,(Xy)). The maps ¢ then define a directed system
of modules

(6.1) H,(X) —S?H _(X) - S°H,(X) -
and an inverse system of rings
(6.2) H*(X) — & 2H*(X) — P3H*(X) *--.

We define the infinite symmetric product of H,(X), written SH_(X), as the direct
limit of (6.1).

The infinite symmeltric power of H*(X), written FH*(X), is by definition the in-
verse limit of (6.2).

These two objects arise naturally if one studies the maps of X into a homotopy-
commutative (or homology-commutative) Hopf space. Indeed, if f: X— is sucha
map, then the multiplication on © induces a map f*: X»—Q for each positive inte-
ger n, and because £ is commutative on the homology level, f} factors through the
projection H_(X")— S"H_(X), while (f?)* takes values in FPH*(X). In the limit, one
therefore obtains homomorphisms f,, and f** which make the following diagrams
commutative:

f
&k %k
SH,(X) — H,(@),

(6.3) g4 /*

H,(X)

f
FEHX) — H*Q).

(6.4) lex
H*(X)

£y
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Here £, and €* are the natural injection and projection of (6.1) and (6.2) re-
spectively. This situation is considerably simplified under the following assumption
on H,_(X):

(F) H,(X) is free and of finite type, and Hq(X) = 0 for odd q.

Since we are only interested in this case, at present, we briefly summarize the main
consequences of the assumption (F). The proofs are left to the reader.

Consequences of (F)
(6.5) Asa W(n) module, H (X" is canonically isomorphic to
{5, X} = H,X® " ®H,(X)

(n factors), where W(n) acts by permutations on this tensor product. Similarly, the
algebra H*(X") is equal to {H*(X*)}". Hence H,(X)— SH,(X) is a functor in the
realm of modules of type (F), and H*(X)— &% H*(X) is a functor in the realm of alge-
bras of type (F).

In view of this fact, we shall write H, for H,(X), and H* for H*(X).

(6.6) The module isomorphism H* = Hom (H,, Z) induces a module isomorphism
JH* = Hom (SH,, Z).

(6.7 The diagonal map A: X— XXX induces a diagonal map A,:SH, —SH, ®SH,
which defines the multiplication in & H*,

(6.8) The canonical identifications H, ® H" = HfJ’m induce in the limit-a multipli-
cation
h,: SH,® SH,— SH,
which dually defines a Hopf homomorphism
h*: $H* - H*Q@ FH*,

In short, both SH, and & H* are Hopf algebras, and they are natural duals. Fur-
ther, if £ is a Hopf space of the type we have been considering, and f: X—Q isa
map, then f,, and {** preserve the Hopf structures.

Let in: H*— ¢7H* be the linear map which takes 1 into 0, and, in case

dim x > 0, assigns to x the element 2 0*(x® 1® *=*® 1) (0 € W(n)). In the limit,
{i,} defines a linear map i: H* —»FH*.

(6.9) The image of H* under i is precisely the subspace of primitive elements in
I H*, '

(Here x € $H* is called primitive, if h*x = x® 1 + 1® x). We are now ready to
state our main conclusion:

PROPOSITION 6.1. Let f: X—Q be a map of an arcwise connected space X into
the homology-commutative Hopf space Q. Assume further that H,(X) and H,(Q)
ave subject to (F), and that f H, (X) genevates the Pontryagin ving of H,(Q).

Let P* c H*(R2) be the subspace of primitive elements in H*(Q ). Then
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(@) Under f**, H*(R) is identified with the vational closuve of the subving genev-
ated byl and by i o f*P* in ¥ H*(X).

(b) Under f,,, H,(Q) is identified with the quotient SH,(X)/J, where J is the
ideal of elements anihilated by f**H*(Q).

(Here the rational closure of a subring A Cc ¥ H¥*(X) is the smallest subring of
#H*(X) which contains A and is additively a direct summand of ¥ H*(X).)

Proposition 6.2 is proved as follows: To say that f,H_(X) generates H_(Q)
means precisely that f,,: SH_ (X)— H,(Q) is onto. Because H,(&) and H, X) satisfy
(F), the dual to this property is that f** imbeds H*(Q) in H*(X) as a divect sum-
mand. Finally, over the rational numbers, H*(Q) is generated by its primitive ele-
ments [10] and by 1. Hence {**$*, together with 1, generates f**H*(Q) rationally.
Since f** preserves the Hopf structure, f** P* = jo f*x P*,

COROLLARY. Under the hypotheses of Proposition 6.1, H¥(Q) and H,(Q) (as
rings) ave algebraically deteymined by the ving H*(X) and the subspace f* P* of
H*(X).

This corollary proves Theorem 3 of the Introduction.

Remark. The Steenrod operations in H*(Q) can also be deduced from their ef-
fect on H*(X), as is easily verified. An example may be instructive. If S,,,) is the
(2n + 1)-sphere, then S, ., the loop spaceon S, .;,isa homology-commutative
Hopf-space, so that our remarks are still applicable. (This is not true for the even
spheres.) Moreover, there exists a map f of S, into 2S;,;;, such that £ H_(S;,,)
generates H, (9S;,4+1). Hence f**: H*(QS,, ;) = #H*(S,,). (There is no choice:
f*$* must equal H2n(S,,).) Since all nontrivial Steenrod operations vanish on §, ,
the same is true in H*(2S,,,,1). To verify that #H*(S, ) is indeed the divided poly-
nomial ring that H*(QS,,.1) is known to be, one argues as follows. In general, under
the condition (F), the map &*: ™ H*(X) —->.§Pn'lH*(X) is easily seen to be bijective in
dimensions at most n - 1. Hence, in this range of dimensions, ¥ H¥*(X) can be re-
placed by & tH*(X).

In the special case under consideration, one sees analogously that
G kH*(S,,) = PH*(S,,) ,
in dimensions at most 2nk. Hence, if x generates H2™(S,,), the obvious formula
T ZRI® T R®1+ -+ 1QR1® - RX)K=kIxRXxR R X

in {H*(SZH)}k implies that the kth power of the generator in dimension 2n of
& H*(S, ) is divisible by precisely k.

7. SUSPENSION OF THE GENERATING MAP

If L is an acyclic space fibered by F over X, then the contraction of the singular
complex of F to a point in L. defines a suspension homomorphism L,: H, (F) —H_(X)
in homology. Its dual L*: H*(X) — H*(F) decreases dimensions by one.

If X is an odd sphere Szh+1 (n > 0), L is the space of paths starting at e € S, 4,
and 7: L —X assigns to each path its endpoint, then we obtain the Serre fiber space
with fiber £, the space of loops over S;,:]. In this case, the image of L* coincides
precisely with the primitive elements of H*() [15].
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Over Q, a 1-connected compact Lie group K looks just like a product of odd
spheres of dimension at least 3. Hence, in the Serre fiber-space over K, with QK
as fiber, the suspension again maps H*(K: Q) onto the primitive elements of
H*(QK; Q).

Consider next the universal bundle for K: K— M— By, where M is an acyclic
space on which K acts principally on the right, and Bg = M/K is the universal base-
space of K. According to A. Borel [1], the suspension in this case maps H*(Bg; Q)
onto a set of primitive generators for H*(K; Q). Since the suspension takes decom-
posable elements into 0, the following proposition becomes evident.

PROPOSITION 7.1. If K is a 1-connected compact Lie group, and
PEC HYQK; Q)

is the subspace of primitive elements in H*(QK; Q), then 5]3‘6 is precisely the image
of L*oM*, wheve M* denotes the suspension from By to K, and L* denotes the
suspension from K fo QK.

Suppose now that K is 1-connected, and that s is an arbitrary circle on K. We
let f: KS — QK be defined by

(7.1) f@) () =ks(k! (g=kK,,0<t< 1),

and we propose to compute f*oL* oM¥*,
In general, if h: P— F maps a polyhedron into the fiber of an acyclic fiber space

F—»LE»X, the composition h* o L* can be computed as follows: Let i: F—L be the
injection of F into a particular fiber, and let w be a point of i(F). Set H=iof. Be-
cause L is acyclic, H: P— L is homotopic to the constant map of P into w. Let
H,: P—L describe this homotopy (0 < u <1, Hy = H, H, = constant map). Let

Eh: PXS!—X be given by the formula

Eh(p, ) = #{H,(p)} (e P, 0<t<1).

(Here we have identified S* with the space obtained from the unit interval by identify-
ing 0 with 1. Because w € i(F), Eh(p, 0) = Eh(p, 1) for all p € P, so that Eh is well-
defined.)

The map Eh is called a suspension for h. Next, let x € H(S') be an appropriate
generator. In the canonical decomposition H¥(PX§S') = H*(P) ® H*(S!), each element
u € H*(PXxS?!) can be written uniquely in the form u,® 1 + u,®@ x (y; € H¥P); i = 1, 2).
We call the element u, the x-component of u. With this understood, it is clear from
[15] that h*oL*v is the x-component of (Eh)*v, for each v € H¥(X).

We apply this procedure twice to the map f [see (7.1)]. A first suspension of f
(in QK —L —K) is easily determined: Ef: KsxS!—K is given by

(7.2) Ef(q, t) =ks(thk"! (a=kK,, 0<t <1).

Next, let i be the injection of K into M. If we write the operation of K on M as
m-k (me M, k € K), then i is given by i(k) = w-k, where w is a point of M. Let
F =iof, and let F; be a homotopy of F into the constant map KxX8!'—w. Then
E%: K5x 8'xXS' > By is given by
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(7.3) E*f(g; ty, t) = 7{F, (o, 1)} (@eKS 0<t;<1;i=1,2),
2

where 7 denotes the projection M— B,

From the foregoing it is now clear that if x and x' are appropriate generators
for HY(S'), then
(7.4) f*oL*o M* is the XxX®X' component of (E*f)*.

To compute (E)*, we need an auxiliary map A, which is defined below.

Let T be a maximal torus of K containing s. We write KT for K/T. There is
a natural map 7: KT—KS, Consider next the Borel fiber spaces

(7.5) T—-M5B
and

T p
(7.6) K —*BT—-’BK.

The first is obtained by decomposing M according to its T-orbits. Thus M/T = B
is a universal base space for T. The second fibering is obtained from the natural
map p: M/T —M/K.

The map 1 will take KTxS!xS! into Bt according to the law

(7.7) xmﬁmtg=n1n47quhm} (@=kT,0< ;< 1;i=1, 2).

This map is well-defined: Because 7' is insensitive to right translations by T, X
depends only on g, and not on k € K. We see that A(q, 0, t,) = A(q, 1, t,) because
th (r(a), 0) = th (m9), 1) for all 0< t, < 1. Finally,

Ag, t, 0) = 7' {woks(l)k-tok} = 7' (wok),

while A(q, t,, 1) is given by 7' (wok). Hence A(qg, t,, 0) = A(q, t,, 1).
Let a: KT - KTxs! xs! take q € KT into (g, 0, 0), and let

B: S1xsl — KTx(slxsl)

be the injection into the second factor which uses the identity coset q, = T on the
first factor.

LEMMA. The map r: KT x8'x8! — B, just defined, has the following propeviies:
(7.8) AOoa =j;
(7.9) AopB is a suspension in (1.5) for the map S'—T given by t—s(t) (0 <t <1);

(7.10) the following diagram (wheve 7, = T x Identity) is commutative:
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kTxslxg! A B..
I 1P
E2f

KSxslxsl — By

Proof. We have already seen that x(q, t,, 0) = 7 (wok). Hence q—2(q, 0, 0) in-
jects KT into B.; as a fiber over By. This proves (7.8). Next,

A-(qo) tl: tz) = ﬂ'{th(qQ, tl)} *
By the definition of F,, A (g, t,, 0) = n'{wos(t)} (0 <t, <1), while

;\-(qo, t1) 1) = T['{W}.

Hence A©° B is a suspension of the map t—s(t) (0 <t <1). This proves (7.9). Fi-
nally, because 7 = pon', and 7 is not affected by right translations of M by K, the
diagram (7.10) is commutative.

The homomorphism 7* is injective (in the fibering KT over KS, base and fiber
have only even-dimensional homology), hence 7¥ is also injective. It will therefore
be sufficient to compute 7¥o (E f)*. By (7.10), this homomorphism is equal to A*o p*,
By (7.8) and (7.9), A* is easily written down for a 2-dimensional element of H¥*(B}):

(7.11) M= v 1Q® 1+ <Mis, > Qx®@x'.

Here s is the homology class of the circle s in H,(T), M} denotes suspension in
the fibering (7.5), v is in H4B7T), <,> stands for the 1nner product, and x, X' are
again appropriate generators of Hl(Sl)

The great virtue of the fibering (7.5) is its simplicity: the suspension M} is a
bijection of H,(T) onto H2(BT), and B is the product of Eilenberg-Mac Lane spaces
K(Z, 2). Hence M. defines an identification of H*(B) with the symmetric algebra
over H(T); that 1s if %, are a base for H'(T), then M} identifies H*(B 1)
with Z[xp, *- x(]) In part1cu{ar H*(BT) is generated by 2-dimensional elements,
so that (7.11) determmes A* on all of H*(BT). Explicitly: let 6¢: H*(Bt) — H*(B)
be the derivation which extends the homomorphism v— <M;s, v> [ve H:(B7)].
Then, because 1@ x® x' has square zero, A* is given by

(7.12) MV = Y@ 1Q@ 1+ j*vOx®x' (ve H¥Br)).
We have proved the following proposition.

PROPOSITION 7.2. In the notation alveady introduced,
(7.13) T*of*oL*oM* =+ j*¥o0f op*

(I would rather not commit myself on the sign; but the + sign seems likely.)
To proceed further, we need to review the fundamental results of A. Borel [1]
and J. Leray [12] concerning p* and j*:

(7.14) wunder p*, H*(Bk; Q) is mapped isomorvphically onto the invariants of
(K, T) in H¥(By; Q);
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(7.15) the kevnel of j* is the ideal genevated by the invariants of 9 (K, T) in
H*(B 13 Q) of positive degree, and j* is onto;

(7.16) the j*-image of the invariants under 9 (Kg, T) in H*(BT; Q) is the image
of T™: H¥(KS; Q) —»H*KT; Q).

Borel has further shown that

(7.17) if K has no torsion, the propositions (7.14) to (7.16) hold over the integers
Z as well.

Here the operation of 9/(K, T) and 9/(Kg, T) on H¥(B) is the one obtained
from the natural operation of these groups on HYT; Q) (and therefore on the sym-
metric algebra over H!(T; Q)) through the suspension M,. Hence (7.14) to (7.16)
imply the following description of H*(KS; Q) which, in the last analysis, depends en-
tirely on the Cartan integers of K and on the position of s in T.

Let Ay be the symmetric algebra over H'(T; Q), and let 1y and IKS be the in-

variants of Ay under (K, T) and 91 (K, T), vespectively. Let Jy be the ideal
(in Ay) generated by the elements of positive degvee in 1. Then H¥(KS; Q) can be
identified with 1y /JK. We call this the Bovel description of H*(K S; Q).

S

If s e H,(T), then the homomorphism s: H(T) - Q extends uniquely to a deriva-
]
tion 6,: Ag — Ayk. The composition IK—E»5 I —’IKS/JK is denoted by 0*, We use
S
this notation in Theorem 4 below, which in view of Propositions 7.1 and 7.2, and the
formula (7.14) to ('7.17) is now evident.

THEOREM 4. Let s be a civcle on the 1- connected compact Lie group K, and
let £: KS —-K be given by

(7.18) \ f@)() = ks®k™'  (q=KkK;0<t< 1),

Let $* denote the primitive elements in H¥*(QK). Then, in the Borel description of
H*(KS; Q), the subspace f*P*®,Q is the image of 1 under 9%: IK—+1KS/JK. If K

has no torsion, then this formula is valid over the integers,

Our program is now nearly completed. What is still needed is a remark concern-
ing the case when K is not 1-connected.

Let then K be only 0-connected and semisimple, and let s be a circle in the
maximal torus T of K. Also, let K' be the universal covering group of K, and de-
note the pre-images of s and T in K' by s' and T'. Let g5: KS —Q'K be given
by (1.5) in the Introduction. Let f: K'S —QK' be given by the analogue of (7.18). As
is well known, K'S = K%, Further, 2K' and Q'K are of the same homotopy type. It
therefore makes sense to compare f* with the homomorphism induced by gs, which
we write g¥.

PROPOSITION 7.1. Let P* denote the primitive elements of H¥(Q2'K). Then, in
the situation just described,

fxp* = [s'/s] - g% P*,

whevre [s'/s] denotes the degrvee of the covering map s'—s.
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Proof. Let X = Q'KX Q'KX-+X Q'K ([s'/s] factors), and let A: Q'K—X be the
diagonal map q—(q, q, **+, q). Also, let u: X—Q'K be the map given by the Pontry-
agin product. It is easily seen that uoAogs ~ f. For primitive elements, this de-
composition of f immediately yields the formula of the proposition.

8. THE STABLE HOMOTOPY OF THE UNITARY GROUP

From the fibering U(n) — U(n + 1) — S2n+1 it follows easily that 7 {U(n)} is in-
dependent of n, for n > 2k. These stable values of . {U(n)} will be denoted by
7. (U). As our first application of the preceding theory, we prove the following
theorem.

THEOREM 5. The stable homotopy of the unitary groups is of period 2:
(8.1) m (0) = m ,(U) (k=0,1, ).
The first nonstable group is given by
(8.2) TniUM} =Z/m1Z2 (n>1).

The formula (8.1) was already announced in [5]. With the aid of that relation, the
Borel-Hirzebruch divisibility theorems [2] imply (8.2), except for the prime 2. The
proof of (8.2) was sketched in [6].

The proof of (8.1) to be presented is rather round-about. However, the more di-
rect proof which I had in mind in [5], and which will be described at another time,
involves more of the Morse theory. In view of the good use Kervaire and Milnor
have made of (8.2), it therefore seems worthwhile to include a proof entirely in the
context of this paper. The first step is to construct a model for H*¥{ @ SU(n + 1)}.

PROPOSITION 8.1. Let Q denote the loopspace SU(n + 1) (n > 1), and let
P, (C) denote the complex projective n-space. Then -

(8.3) HY(Q) = PH*(P_(C)).

The Hopf algebra H_(Q) is a polynomial ving Z[ oy, 0,, «++, 0,] with generators
o; (dim 0,=2i;i=1, 2, e, n) and with diagonal map

(8.4) A0, = 20g X og (@+B=1, 05=1).

Proof. Let g: P,(C) — Q be the generating map corresponding to the circle sy
of Section 5. We need to show that the induced homomorphism

g**: H¥(Q) — $H*{P,(C)}

is onto. (It is injective, because g is a generating map.) By Proposition 6.1, it is
sufficient to show that under g* the primitive subspace of H*( ), say $*, maps

onto H{P,(C)} = Ei>0 Hi{P,(C)}. Over the rationals, SU(n + 1) looks like the
product S3x85x...xS2n+l, Hence H*(R2) has primitive elements in all even dimen-
sions greater than 0 and less than or equal to 2n. The ring H*{Py(C)} has pre-
cisely a free module of rank 1 in each of these dimensions. Hence, since g* P* is
in any case a direct summand of H*{P, (C)}, it follows that g*$* = H+{P,(C)}. This
proves (8.3).
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Now let u € H¥{P_(C)} be a generator. Then H¥{ P, (C)} = Z[u]/{un*1}, where
{untl} denotes the ideal generated by untl, Hence, if o0; is the g, -image of the dual
to ul, then, together with 1, the o; (i=1, ---, n) generate H_(), and (8.4) must be
the diagonal map. Finally, g,,: SH*{Pn )} —H,(Q) is injective, because g** is
onto. There are therefore no relations between the o;, other than commutativity;
that is, H, (R) = Z[oy, ***, op].

COROLLARY. Let S](u) denote the graded ving of symmetric functions in n
variables uj, ---, U, (dim uj = 2). Then, for dimensions at most 2n, theve is a ring
isomovphism ¢ of H*(Q) onto ST(u).

From the relation H*{P,(C)} = Z[u]/{u™"1}, one concludes without difficulty that
#PH*{P_(C)} = S}(u) for dimensions at most 2n. However in this same range of di-
mensions the projection & H*(P,(C)) »#™H*{P,(C)} is bijective. Hence (8.1) im-
plies the corollary. Further:

(8.5) Under ¢, the primitive subspace P* goes onto the module genevated addi-

tively by the power sums Z,(u) = uk + u1?f+ e 4 uﬁ k=1, 2 ..., n).

Proof. The primitive subspace of $H*{P_(C)} is the image of the map
i: H*{P,(O)} —» #H*{P(C)}. Since i(uk) is clearly represented by Zi(u) in S}(u),
(8.5) is evident.

Remark. The universal base-space of U(n + 1), denoted by By(n+1), is known to
have a cohomology ring which, in dimensions at most 2n, is identical with the one just
found for ©SU(n + 1). This fact strongly suggests the periodicity of w(U).

The next proposition is the essential step in the proof of (8.1).

PROPOSITION 8.2. Let f: G\, — 2SU(2m) be the generating map of the Grass-
mannian U(2m)/U(m) X U(m) into QSU(2m) induced by the genevating civcle s ., of
Section 5. Then f*: H*(QSU(2m)) — H*(G is onto.

mm)

Proof. We again let $* denote the primitive elements in H*(£2 ), where now
Q = QSU(2m). We first determine the image of P* under f* in the Borel descrip-
tion of H*(G,,,,,). Because U(2m) has no torsion, this description is valid over the
integers.

Let 8: R—SU(2m) be the circle which assigns to t the diagonal matrix with first
m entries e27it and last m entries e-27it, Then {SU(2m)}5 = G, and we let
f: Grum— 2SU(2m) be the map [see (7.1)] determined by this circle. Because under
Ad, s maps onto the generating circle s, with degree 2, Proposition 7.1 implies

(8.6) Frp* = 2f*qp*,

The homomorphism f* is computed with the aid of Theorem 4. For this purpose, let
T be the group of diagonal matrixes in SU(2m). Let x;¢€ H1(T) be the class which
corresponds to the character

t —ith coordinate of t,

under the canonical isomorphism Hom (T, S')~ H}T). The xi, ***, X, span HYT),
but are not independent, since xj + *++ + X2, = 0. The roots of SU(2m) are given by
Xj - Xj, and the Weyl group is just the full permutation group on the x;.

It follows that H*{ BSU(Zm)} is given by



THE SPACE OF LOOPS ON A LIE GROUP 53

(8.7) H*{BSU(Zm)} = Szlm(x)/{x1 + o0+ xzm} ,

where S{™(x) denotes the symmetric polynomials in the variables x;, -*-, x, , and
where {xl, e, me} is the ideal generated by x; + --- + x,,, Let I m(x) be the
ideal generated in Z[x;, :-+, x,, ] by the elements of positive degree in S%m(x).
Then the Borel description of H*(Gmm) in these same variables is

(8.8) H*(G_ ) = SP(x) @ 827 (x)/15™(x) .

This is apparent, because the subgroup of the Weyl group which keeps s, fixed
is precisely the subgroup of permutations which preserves the first, and last, m
variables.

Let’ p: ST(x) »H*(G ) be defined by p = Identity ® 1. It is then well known
that

(8.8) the homomovrphism p is onto, and it is bijective in dimensions up to 2m.

LEMMA 8.1. The subspace I*P* is spanned by the elements {2p o2 (x)}
(k=1, <, 2m - 1) wheve Z1(x) is the power sum xlf F ovee + x1r<n in Sin(x).

Proof. By Theorem 4, f*$* = B*H*{BSU(Zm)}, where 6* is the derivation cor-
responding to S, In terms of the {xi}, the derivation 6* is clearly represented

0d 0 d 0

by.__+--.+ - eoe =
0X,

- . Hence
axl axm axm+1

% ofxktl o .. 4 kil
g* o(xTTH + oo + x5T

(k+ D[{xk+ e+ xK} @1 - 1@ {xk_  + et x12<m}]

2(k + 1)p+Z (%)

in H¥(Gp,p). The (k + 1)st symmetric function cx41, in Sfm(x) is congruent to
(x1f+ vee 4 x%m) /(k + 1) modulo decomposable elements of S%m(x). Because 6*
anihilates decomposable elements, we therefore have 8* ocy,; = 2po Z(x). Finally
Si‘m(x) is generated by the ¢;. This proves the lemma.

LEMMA 8.2. In dimensions up to 2m, the homomovrphism
x=ptotrop~: §7™Hu) —S[x)
is well-defined. Fov k=1, -«., m, X maps the power sum % (u) onto +1 times the

power sum T 1 (x).

Proof. The homomorphism X is well-defined in this range of dimensions, be-
cause of the corollary to Proposition 8.1 and (8.8). The rest follows from (8.5), (8.6)
and Lemma 8.1.

LEMMA 8.3. In dimensions up to 2m, the homomorphism X takes S%m'l(u)
onto STH(x).

Proof. Let c;(u) denote the ith elementary symmetric function in Szlm‘l(u).
Then S%m"l(u)z Z[cl(u), e, ch_l(u)] , and similarly S7"(x)= Z[c,(x), «=, cX].

The well-known Newton formulas express Z;(x) in terms of the elementary sym-
metric functions

ZpX) =+nc,(®) + rp(x)  (n=1, ¢, m),
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where r,(x) is a polynomial in ¢y(x), -+, c,_1(x). Similarly,
Z;() = +ic;(u) + r;(v) i=1, - 2m-1).

These two relations, together with the condition that x 0Zy(u) = + Zi(x), imply that
X °cy{u) = +cp(x) + Qi(x), where Q(x) is a polynomial in cy_;(x), :+, ¢1(x). Clearly,
x ocy(u) = +c y(x). Hence, by induction, c;(x) is in the image of X for all i (1 <i<m).

Proposition 8.2 follows as a corollary. Indeed, we have shown that f*H*(Q) con-
tains poci(x) (i=1, ---, 2m). Since the c;(x) generate S1(x), and p is onto, f* must
be onto.

PROPOSITION 8.3. The map f: Gmm — QSU(2m) induces an isomorphism in
homology, up to dimension (2m + 1),

Proof. The Poincaré series for QSU(2m) is clearly
(1 -t3-1(1 - t4-Le(q - t4m-2)-1
By the Hirsch formula, [1], the Poincaré series for G,,,, is
O L R e I ( I R B S A

Hence the spaces in question have equal Betti numbers, up to dimension 2m + 1.
Since they are both free of torsion, the proposition follows from Proposition 8.2,

We are now in a position to prove the formula (8.1). The two spaces G, and
2 SU(2m) are simply connected. Hence f induces a homotopy equivalence up to di-
mension 2m. Thus f,: T (Gpp) = 7(Q) is bijective for k < 2m. Combining this
with the well-known facts that

TG mm) = Ty 1{UmM)} 1 <k<2m) and m(Q)=m,,{SUCM)} (1< K),

we obtain the isomorphism m{U(m)} = m,, {SU(2m)}, which is valid for k < 2m.
Taking m large, we obtain (8.1).

To prove the second part of Theorem 5, we first determine the spherical cycles
in QSU(n + 1). The following proposition will be needed.

PROPOSITION 8.3. The subspace B, of primitive elements in H, { QSU(n + 1)}
is spanned by elements {pi} (i=1, «-., n) which are inductively determined accord-
ing to the formula

(8.10) P - Py 1°0y + Py 70, - +tko =0 (k=1,2, -, n.

-

(Here the o; are the generators employed in Proposition 8.1.)

Note that the relation between the p; and o; is precisely the Newton relation be-
tween the “power sums” and the elementary symmetric functions alluded to earlier.
This suggests the following proof. Let Silm) be the subring of Z[xj, **+, X,,] (m > n)
generated by the first n symmetric functions cgm) =2, Xy+X; (i=1, +--, n). Then
sl(lm) =Z[ c(m), ey ct(lm)], as is well known, so that the assignment ai—»cim identi-
fies each S{™) (m > n) with Z[oy, -+, 0,]. Now let

¢z Z[xq, ***, xpn]— Z[x4, o0, x| @ Z[x,, -, x,]
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be given by ¢(x;) = x; X 1 and ¢(xp44) = 1®x;, for 1 <i<n. Then ¢ induces a
homomorphism of Sjn) into Sgn) ® Sgn) which, in view of our identification of ngn)
and Sﬁln) with Z[o,, ++-, 0], is equivalent to (8.2). But now it is clear that each
power sum Ex;i-' corresponds to a primitive element which is not divisible. This
proves the proposition.

The following fact will also be needed in the sequel (we have set Q, = QSU(n + 1)):

PROPOSITION 8.4. Let i: Qn— Qn4+1 be induced by the standarvd inclusion
SU(n) ¢ SU(n+ 1) (n > 2). Then, in the basis of (8.4), the image of

i Ho(Qn) —H, (Q441)

is the subving Z[oy, ***, 65_1] of Z[oy, ***, op].

Proof. The map i can be considered as the fiber inclusion in the fibering of
Q,,1 over Qs2n-1, Because the degrees in both fiber and base space are even, i,
is injective. But then the image of i, must be Z[o b n-l]'

THEOREM 6. Let Q= QSU(n+ 1),and let {pk} be the genevators of P, as
given by (8.10). Then the image of my (Q) in H,(Q) is genevated by (k - 1)! py
(k =1, -, n).

Because mpy (£2) is in the stable range, and by virtue of Proposition 8.4, we can
choose n arbitrarily large to prove the theorem for a fixed k. In the sequel, we
choose m sufficiently large relative to k, and set n+ 1 = 2m. As before,

f: Gy @ denotes the generating map, and we write B for By(zy,).* The inclu-
sion U(m) C U(2m) defines a map i: Gmm—B which is a homotopy equivalence for
dimensions up to 2m. The inclusion SU(2m) C U(2m) induces a map j: Bsy(zm)— B.
Now let S: 7:(®)—7x+2{Bsy(zm)} be the double suspension in homotopy. Because
we are suspending through acyclic fiber spaces, S is bijective. Let A =1 Oi,;1 °j.08.
Then A: 7 (R) = 7r42(R) is defined for dimensions smaller than 2m, and it is bijec-
tive for 1 < r < 2m. Thus

(8.11) 77 () =25 lom,(Q).

We now let j oS, be the double suspension in homology from H,(Q) to H,(B),
and we set A, =1, Oi;l 0j,°8,, in the same range of dimensions.

It is clear that if ) denotes the Hurewicz homomorphism §: 7 (X) — H{(X), then
we have the commutativity relation

(8.12) A,00 =[oA.
Hence (8.11) implies that
(8.13) 57, (2) = ANl oH (Q).

The homomorphism A, has the following three properties, in the dimensions
under consideration:

(@) x, anihilates decomposable elements;
(b) A, Dreserves the primitive subspace B o

(c) the image of A, is not divisible in dimensions greater than 0.
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The first property holds because X, involves a suspension (see [13]). Next, it is
clear that A, preserves spherical classes, by (8.12). From general theory, such
classes are always in P,. Further, because SU(2m) looks like a product of odd
spheres over the rationals, , must in fact be generated rationally by the spherical
classes. This proves (b). Finally, in the proof of Lemma 8.2, we have computed the
double suspension composed with f* in cohomology, and found that its image is not
divisible. Thus (c) is established. An immediate consequence of (a) and (8.10) is that

(8.14) AyPr = +IA, 0.
Now, by (b) and (c), it follows that A 0, = +p,,). Hence Al,:'l op; = +(k - 1) Ipx. This
proves the theorem.

The formula (8.2) is an easy consequence of Theorem 6: Let Q, 5 Q41 L, Q82041
be the fibering induced by the fibering SU(n + 1)/SU(n) = Sz,+1. (Again, we have set
2, = 2SU(n).) By Proposition 8.2, j,p, = n-j,on, and jo, generates Hz,(RSz541).
The spherical classes in Hp,( 2,,1) are generated by (n - 1)! p,, by Theorem 6;
hence their image under j, in Hz,(2S2,+1) is generated by n!j,o,. It follows by
‘the Hurewicz isomorphism that the index of j 7, (2,41) in 7,,(QS,,41) is nl.

Now 725,_1 (2 p,41) = 0, by (8.1). Hence, by the exact sequence of the fibering,
Ton-1(9,) = Z/n!Z. But 724_1(Q4) = m2n (U(n)).

Theorem 6 also has the following corollary, which is evident, in view of Proposi-
tion 8.3.

COROLLARY. The spherical classes of dimension 2n, in By(m) (m > 2n) are
divisible by precisely (n - 1)1. -

An equivalent formulation:
The nth Chern class of a U(m) bundle over S, is divisible by (n - 1)!.

Indeed the Chern classes of a GL(n, C) bundle over X are by definition pre-
images of classes in By(y,) (m> n). Finally, and for a similar reason:

The kth Pontryagin class of a GL(n, R) bundle over Sy is divisible by (2k - 1)1.

9. THE ODD ORTHOGONAL GROUPS

In Section 5, a generating variety for SO(2n + 1) (n> 2) was found to be the
Grassmannian: V,, ; = SO(2n + 1)/U(1)xS0O(2n - 1). Using the fibering

SO(2n + 1)/S0(2n - 1) >V, ,

we can easily determine the cohomology of V,, ;. We find that if u e H%(V,,_1) is
a generator, then the classes

(9.1) {1’ u’ -o-’ un-l’ un/z, ..-, uzn—l/z}

span H*(Vap,_1). Let o] € H,;(V,,_1; Q) be determined by ui(oj) = 1. In terms of
these, a dual basis for (9.1), in H(V, _;), is

(9.2) {0(')’ 0"2’ ".’Urn—l’ ?01'1’ B 20'Zn—l} *

Let g: V2n-1 —Q'SO(2n + 1) be the generating map, and set o; = g*or{. In view of
Theorem 1, we have the following propositions.
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PROPOSITION 9.1. The algebra H,(£2'SO(2n + 1)) (nZ 2) is genevated by the
classes

(9.3) {0'0, % 0p-1» 20y ** Zczn_l}.
In terms of the vational classes 0, the diagonal map is given by
(9.4) Ao =2 Oy ®GB (@ +B=1).

The dual statement reads as follows:

PROPOSITION 9.2. Under g**, the ving H*(QS0(2n + 1)) is identified with the
rational closuve of the subring genevated in ¥ H¥(V,,+1) by the classes

(9.4) {1, i @), i@3), -, i@},

This follows from Theorem 3 and the well-known fact that the algebra under con-
sideration has primitive classes only in the dimensions of the form 4k - 2
(=1, <, n).

PROPOSITION 9.3. The generators {oi} of Proposition 9.1 satisfy the following
velations:

(9-6) 0’% - 20'i_1 'O'i+1 + e i 200'021= O (i = 1, "', n- 1).

This formula could be proved from (9.5). We sketch a shorter proof: Let {p;}
be the polynomials in the {o;} determined by the recursion (8.10). In view of (9.4),
these classes represent primitive elements. Because primitive classes can occur
only in dimensions of the form 4k - 2, the polynomials py; (i=1, =+, n - 1) must
represent 0. Thus pz; =0 (i =1, +--, n - 1) is a system of relations for our genera-
tors. These are rather cumbersome, but they can be transformed into (9.6) by the

following device. We identify the polynomial ring in the {o;} with S%ﬁj, as in the

proof of (8.3). Under this identification, p; goes over into the even power sum
Z,;(x). Now these power sums generate rationally the first n - 1 elementary sym-
metric functions in the squares of the variables, and (9.6) is seen to be precisely the
condition that these elementary functions represent 0 in our algebra.

The polynomials py;.1 (i =1, -+, n) span the primitive subspace of our algebra
over the rational numbers. In view of (9.3), this proves the following proposition.

PROPOSITION 9.4. Let p; (i=1, -.-, 2n - 1) be polynomials in the generators
{o0;}, defined recursively by

(9.7) -O'l-{-c-.iko'kzo (k: 1, -oo).

Pr = Pr.1
Then the primitive subspace of H,(QSO(2n + 1)) is spanned by

(9.8) {P1, P3, ***, P2[n/2] =15 2P2[n/2]+15 ***s 2P2n_1} -

Remarks. For n - 2, that is, for 2'SO(5), we have generators 1, o,, 20,, 20,.
The only relation is o2 = 20,. Hence H,(£'SO(5)) is a polynomial ring with gener-
ators ¢, and 20,. For n> 2, the generators are 1, 0,, 0,, ---, so that o2 is divisible
by 2. As a consequence, the algebra is no longer a polynomial ring. This is in agree-
ment with Borel’s result [3] that Spin(2n + 1) has 2-torsion for n > 2.
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10. THE EVEN ORTHOGONAL GROUPS
This section parallels the preceeding one. The generating variety for
©'80(2n + 2) (n> 1) is again the Grassmannian of oriented 2-planes in the space
of 2n+ 2 dimensions. We denote it by V2. If u is a generator of H2(V,,), thena
base for HXV,, ) is given by
(10-1) {1’ u, ***, un) un+1/2’ °°% uZn/z; V} ’

where v is a class in H2™(V,,) which is uniquely determined by the requirement that
un and v span H21(V,,), and that

(10.2) uv = uttl/2,
The square of v is given by:
ullv if n is even,
(10.3) v2 =
0 if n is odd.
The formula (10.3) is obtained by considering the index 7(V,,) of V,,. According to

[2, Chapter VI, Section 24], 7(Vy,) = 2 (-1)! dim H,;(V,,). This formula immediately
implies (10.3).

Let o} € Hy;(V2p; Q and (' € Hy,, (Vo Q) be determined by the relations
ui(oj) =1, ue)=0, w=ut-2v, wl})=0, w(")=1.
In terms of these rational classes, a basis for H,(V,, ) is given by
(10.4) {1, 0%, -, 00 1,00 +€,00 - €, 201, 205 }.

Let g: V,,—Q'SO(2n + 2) be the generating map, and set g,0; = 0}, g,&' = €. The
analogues of Propositions 9.1 to 9.4 then take the following form

PROPOSITION 10.1. For n >1, the algebra H*( 'SO(2n + 2)) is genevated by
the g, -image of the base (10.4). The diagonal map is given by:

A3 =20 0 @0 @+ 8 =i,
(10.5) Aye =eQ1+1Qc¢,
Akcr;_n=2 oa®03+(—1)ns®s (@ +.8=2n),

These genevators ave velated by the equations

(10.6) oiz - 20, 10, ;+220,:0,,=0 (1<i<n),
(10.7) (0, + eXop - €) - 20, *0p 1 + *** + 2050, =0,

The primitive subspace of the algebra is spanned by

(10.8) {p1, p3, Pn-25 Pn+gs 285 2Pn42s %) 2p2n—1} (n odd),
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(10.9) {p19 P35 ***y Pp_1» 2¢g, 2pn+1’ ** ‘?‘pZn—l} (n even),

wheve the polynomials {p;} are determined by the recursion (9.7). Under g**, the
yving H¥( Q'SO(2n + 2)) is identified with the vational closure of the subving of
FHHV,,,) generated by the classes

(10.10) {1, i@, i@, -, i@®™h; iw}.

The derivation of these formulae is facilitated by the following fact.

PROPOSITION 10.2. The inclusion i: SO(2n + 1) C SO(2n + 2) induces an iso-
movphism of H (£'S0(2n + 1)) onto the subving of H, (2'SO(2n + 2)) generated by

(10.11) {1, 015 "y On_1, Zan, M) 20 Zn-l} .

This proposition, in turn, follows immediately from the commutativity of the gen-
erating maps with the respective inclusions.

An obvious problem now is to compare the algebras A, = H (£'SO(n)) for differ-
ent values of n. Let i, denote the homomorphism Ap—Ap;) induced by the standard
inclusion. According to (10.2), i, injects Ap,.1 into Azp,p (n> 2), and the quotient
algebra is a polynomial ring with one generator of dimension 2n. We assert that the
extension is nontrivial if n is even, and tvivial if n is odd. To see this, let B, be
the polynomial ring Z[a] (dim @ = 2n) with diagonal map A, @ =1®a + a ®1. If the
extension in question is to be nontrivial, there must exist a homomorphism
At B2an—Azn+2 such that the induced homomorphism i, ®A: Az 1® Bon—Azpni2 is
bijective. If n is even, a prospective A must take a@ into an integral multiple of 2e.
(By (10.9), this is the only available primitive class.) But then the image of i,® A
can not contain the class o, + €. In the odd case, we can set A{a) = pp+ €. It is then
easy to see, in view of (10.11), that the image of i,® A contains all the generators of
A, 2. Over the rational numbers, i, ® A is clearly injective. Hence, in this case,
1x@Ar: Ay 1® By, — Ay 2 is bijective,

11. TWO OTHER EXAMPLES

So far, we have never had to use Theorem 6 to determine the Hopf algebras
under consideration. This is not true of the algebra H,(28p(n)} (n> 3).

Because Sp(n) has no torsion, the Borel description of the generating variety
Vn = Sp(n) /U(n) is valid over the integers. With respect to a suitable base of H(T)
on a maximal torus T of Sp(n), say x,, ***, X, the Borel description gives H*(V,,)

as S(xy, **, xn)/S*’(x%, «+. x%), where S(x s ***y X,,) denotes the symmetric poly-
nomials of Z[x,, **+, X, ], and where S+(x%, oo, x%) denotes the ideal in S(xj, ***, X,,)
generated by the elementary symmetric functions in the x f‘, of positive degree (see

1b.
2

Let S(x%, e xﬁ) be the invariant polynomials in x{. This ring describes
H*(Bsp(n)). According to Theorem 4, we have to find the image of the composition

i 0
S(x%, o, xﬁ)_l,s(xl, ey, X)) D S(xy, e, x)) S H (V)

where i denotes the natural inclusion, while § denotes the derivation corresponding

to the generating variety. In this case, 6 is seen to be %Ea/axi. Let =, (i=1, -, n)
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denote the class of xil + eee + x}l in H¥(Vy,). Then it is easily verified that the image

in question is additively generated by Z,, Z3, *++, Z,,,_;. Since these elements are
not divisible, we conclude that the double suspension takes H*(BSp(n) ) onto the prim-
itive elements of H*(QSp(n)). Theorems 1 and 4 now imply

PROPOSITION 11.1. The generating map identifies H*( QSp(n)) (n > 3) with the
rational closure of the ving generated in ¥ H*(V,) by the classes -

(11-1) {1) i(El)y i(Z3), °*% i(221'1-].)} .
This is hardly a palatable description. For instance, I do not know how (11.1)

implies (as it must) that H,_($£2Sp(n)) is a polynomial ring. However, this complexity
is not entirely artificial. In evidence of this fact, here is the diagonal map for n = 3:

In suitable generators uy, uj, ug (dim u; = 2i),
(11-2) H*(QSp(s)) = Z[uls us, ‘Ll5],
and the diagonal map is given by

A, =1, ®1+1Qu,,

(11.3) AUy

u;® 1+ uZ®u,, and so forth,
AU =u®1+ 2u; *u, ®u, + (1 + u;)®u2, and so forth.

The exceptional group G,. The generating variety V for the group G, has dimen-
sion 10. By using the methods of [4], one finds that if x € H%(V) is a generator, then
{1, %, x2/3, x3/3, x*/3%-x5/32. 2} is an additive base for H*(V). We let o! € H,,(V) be
the corresponding dual base, and set g«0] = 0;, where g denotes the generating map.
By Theorem 1, these elements generate Hx(2G,). The primitive elements of QG,
occur in dimensions 2 and 10. Hence g*®* = {x, x5/32.2}. It now follows by Proposi-
tion 6.2 that

(11.4) H* QG,) is the rational closure of the ving generated by i(x) and
i(x5) in P H*(V).

This result implies the following relations between the {o;}: 20, - 302 = 0,
20, - 0 =0, 40, - 301 = 0. It follows that if we set u=0,, v=0, - 02 and w = o,
then these three generate Hy( 2G,), and 2v = u2. Hence
(11.5) Hy(QG,) = Z[u, v, W /{2v - u?} .
Finally, the diagonal map is found to be
Aau=u@®@®l+1Q®u,
(11.86) Ayw=v®1+u®@u+1Qv,

AW=WR1+ 2v¥Qu+ 6uv@v + 6v@uv + 2u®@vi+ 1@ w.
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