ON POWER SERIES, AREA, AND LENGTH

F. Bagemihl

Let C be the unit circle, and U the open unit disk in the complex plane. Denote by Φ the class of functions that are holomorphic in U and map every disk that is internally tangent to C onto a Riemann configuration of infinite area, and by Λ the class of functions that are holomorphic in U and map every rectilinear segment in U that terminates in a point of C onto a curve of infinite length. Lohwater and Piranian have established [1] the existence of functions in Φ of the form $\sum a_k z^k$ with $\sum \left|a_k\right| < \infty$. The first one of the two theorems which we shall prove implies that, in a certain sense, most functions of this form belong to Φ ; we are indebted to Karl Zeller for suggesting a demonstration that is more elementary than our original one. No function $\sum a_k z^k$ with $\sum \left|a_k\right| < \infty$ belongs to Λ , however, because such a function maps every radius of U onto a curve whose length is not greater than $\sum \left|a_k\right|$. Our second theorem asserts that, for every p>1, "most" functions of the form $\sum a_k z^k$ with $\sum \left|a_k\right|^p < \infty$ belong to Λ .

For $p \geq 1$, denote by \mathfrak{L}_p the Banach space of all complex sequences $\{a_k\}$ for which $\Sigma \, |a_k|^p < \infty$; $\|\{a_k\}\| = (\Sigma \, |a_k|^p)^{1/p}$. With the element $\{a_k\}$ of \mathfrak{L}_p , associate the function $\Sigma \, a_k \, z^k$. If, as $j \to \infty$, the elements $\{a_k^{(j)}\} \in \mathfrak{L}_p$ converge to $\{a_k\} \in \mathfrak{L}_p$, then the sequence of functions $\Sigma \, a_k^{(j)} \, z^k$ converges uniformly to $\Sigma \, a_k \, z^k$ on every compact subset of U; this well-known fact is used implicitly in proving below that certain sets, E_m and $E_m(n)$, are closed.

A convex region D is called a tangential domain, if it lies in U, the intersection of its closure and C is the point 1, and the only straight line through the point 1 that does not intersect D is the tangent to C. Let Φ_D be the class of functions that are holomorphic in U and, for every real θ , map the region $D_\theta = \{ze^{i\theta}\colon z\in D\}$ onto a Riemann configuration of infinite area. Piranian and Rudin have proved [2, Theorem 4] that for every tangential domain D there exists a function in Φ_D of the form $\Sigma\,a_k\,z^k$ with $\{a_k\}\,\in\mathfrak{A}_1$; let R_D be the set of all elements of \mathfrak{A}_1 whose associated functions belong to Φ_D . If the boundary of D has infinite curvature at the point 1, then $\Phi_D\subset\Phi$.

THEOREM 1. For every tangential domain D, RD is a residual subset of 21.

Proof. For every natural number m, define E_m to be the set of those elements of \mathfrak{L}_1 whose associated functions do not map D_θ for every θ onto a Riemann configuration of area greater than m. Since C is compact, E_m is closed.

Suppose that P(z) is a polynomial and t>0. For any θ , let G_n $(n=2,3,4,\cdots)$ be the intersection of D_θ with the annulus 1-1/n<|z|<1-1/2n. Since D_θ is a tangential domain, the area of G_n is $g(n)/n^2$, where $g(n)\to\infty$ as $n\to\infty$; moreover, in G_n the modulus of the derivative of tz^n is greater than tn/e. Consequently, if n is sufficiently large, the function $P(z)+tz^n$ maps G_n , and hence D_θ for every θ , onto a Riemann configuration of area greater than m. Given $\epsilon>0$ and $\{a_k\}\in\mathfrak{L}_1$, choose K so large that $\Sigma_{k=K+1}^{\infty}|a_k|<\epsilon/2$, set $P(z)=\Sigma_{k=0}^Ka_kz^k$, let $t=\epsilon/2$, and take n to be greater than K and so large that, if $b_k=a_k$ $(k=0,1,\cdots,K)$, $b_k=\epsilon/2$ for k=n, and $b_k=0$ for all other nonnegative integers k, we have $\{b_k\}$ $\{\epsilon\}_1$ - $\{b_k\}$ $\{\epsilon\}_1$

Received May 21, 1957.

Thus, E_m is nowhere dense in \mathfrak{L}_1 , and hence $R_D = \mathfrak{L}_1 - U E_m$ is a residual subset of \mathfrak{L}_1 .

If p>1, let R_p be the set of all elements of $\,{\mathfrak L}_p\,$ whose associated functions belong to $\Lambda.$

THEOREM 2. For every p > 1, R_p is a residual subset of \mathfrak{L}_p .

Proof. For every natural number n, let $F_m(n)$ $(m=1, 2, 3, \cdots)$ be the set of those elements of \mathfrak{L}_p whose associated functions do not map every rectilinear segment that lies in the annulus $1-1/n \leq |z| < 1$ and extends from |z|=1-1/n to C, onto a curve of length greater than m. Since C and the circle |z|=1-1/n are compact, $F_m(n)$ is closed.

Suppose that $\epsilon>0$, m is a natural number, and $\{a_k\}$ ϵ \mathfrak{L}_p . Choose J so large that $\Sigma_{j=J+1}^{\infty} j^{-p} < (\epsilon/2)^p$, r so large that $\Sigma_{t=1}^{r} (J+t)^{-1} > 4em$, and K so large that $\Sigma_{k=K+1}^{\infty} |a_k|^p < (\epsilon/2)^p$ and $|a_k| < (J+r)^{-1}$ $(k=K+1,K+2,K+3,\cdots)$. If

$$f(z) = \sum_{k=0}^{K} a_k z^k + \sum_{j=1}^{r} c_j z^{n_j} \quad (max(K, n) < n_1 < n_2 < \dots < n_r),$$

where $|c_j| = (J + j)^{-1}$ $(j = 1, 2, \dots, r)$, and if the natural numbers n_j $(j = 1, 2, \dots, r)$ are sufficiently large and far apart, then

$$|f'(z)| > n_j |c_j|/2e$$
 (1 - $1/n_j \le |z| \le 1$ - $1/2n_j$; j = 1, 2, ..., r),

and consequently f(z) maps every rectilinear segment that lies in the annulus $1 - 1/n \le |z| < 1$ and extends from |z| = 1 - 1/n to C onto a curve of length greater than

$$\sum_{j=1}^{r} \frac{1}{2n_{j}} \cdot \frac{n_{j} |c_{j}|}{2e} = \frac{1}{4e} \sum_{j=1}^{r} |c_{j}| > m.$$

If, further, arg c_j = arg a_{n_j} for every j = 1, 2, ..., r for which $a_{n_j} \neq 0$, and we set $d_k = a_k$ (k = 0, 1, ..., K), $d_k = c_j$ for $k = n_j$ (j = 1, 2, ..., r), and $d_k = 0$ for all other nonnegative integers k, then $\{d_k\}$ $\in \mathfrak{D}_p$ - $F_m(n)$ and $\|\{a_k\}$ - $\{d_k\}\| < \epsilon$.

Thus, $F_m(n)$ is nowhere dense in \mathfrak{L}_p , and hence $R_p(n) = \mathfrak{L}_p - \bigcup_m F_m(n)$ is a residual subset of \mathfrak{L}_p , so that $R_p = \bigcap_n R_p(n)$ is also a residual subset of \mathfrak{L}_p .

Remark 1. Let Λ^* denote the class of functions that are holomorphic in U and map every continuous curve in U that approaches C, onto a curve of infinite length. A slight extension of part of the foregoing argument shows that, if $\Sigma |c_k| = \infty$ and $\{n_k\}$ is an increasing sequence of natural numbers for which $n_k \to \infty$ fast enough as $k \to \infty$, then $\Sigma c_k z \stackrel{n_k}{\leftarrow} \Lambda^*$. If, in particular, we take $c_k = 1/k$, we see that there exists a sequence $\{a_n\}$ such that $\Sigma a_n z^n \in \Lambda^*$ and $\{a_n\} \in \mathfrak{L}_p$ for every p > 1. (See [4, p. 194], [3, p. 237] for related results.)

Remark 2 (by G. Piranian). Let Λ^{**} denote the class of functions

$$\sum \mathbf{a_k} \mathbf{z^k} (\{\mathbf{a_k}\} \boldsymbol{\epsilon} \boldsymbol{\mathfrak{L}_1})$$

which map every arc of C onto a nonrectifiable curve. A proof somewhat similar to that of Theorem 2 shows that there exists a residual subset R of \mathfrak{L}_1 such that, for every $\{a_k\}$ ϵ R, the associated function Σ a_k z^k ϵ Λ^{**} .

REFERENCES

- 1. A. J. Lohwater and G. Piranian, On a conjecture of Lusin, Michigan Math. J. 3 (1955-1956), 63-68.
- 2. G. Piranian and W. Rudin, Lusin's theorem on areas of conformal maps, Michigan Math. J. 3(1955-1956), 191-199.
- 3. W. Rudin, The radial variation of analytic functions, Duke Math. J. 22 (1955), 235-242.
- 4. A. Zygmund, On certain integrals, Trans. Amer. Math. Soc. 55 (1944), 170-204.

University of Notre Dame

