THE FOURIER COEFFICIENTS OF AUTOMORPHIC FORMS
BELONGING TO A CLASS OF HOROCYCLIC GROUPS

Joseph Lehner

1. R. A. Rankin has recently coined the term “horocyclic group” as an English
equivalent of the French “Fuchsian group of the first kind” and the German “ Grenz-
kreisgruppe” ([8]). He calls such a group “real” if all substitutions of the group
preserve the real axis, and “zonal” if the group contains translations. In this paper,
we shall refer to real zonal horocyclic groups as “H-groups.” An H-group, then, is
a group I" of linear transformations of a complex variable such that

(a) T' is discontinuous in the upper half-plane but is not discontinuous at any
point of the real axis,

(b) every transformation of T' preserves the upper half-plane,
(c) T contains parabolic substitutions with fixed point .,

The main object of this paper is to determine, by the use of the circle method,
the expansions of the Fourier coefficients of automorphic forms on H-groups of a
certain class. The circle method has been employed by Rademacher and Zuckerman
([6], ['7], [10], [11]) for the case where the H-group is the modular group or one of
its subgroups. Here we develop the circle method for a class of H-groups defined
by the following

(1.0) RESTRICTION: A fundamental vegion of the H-gvoup shall have
' exactly one parabolic cusp.

(This implies that the fundamental region has a finite number of sides ([2], Thm. 16,

p. 75).) As a consequence of this condition, there exists a number h > 0 such that

the fundamental region with cusp at « does not extend below the horizontal line at

height h above the real axis.

The circle method is elementary in character; it uses only Cauchy’s theorem and
a careful dissection of the path of integration. Lacking an arithmetic characterization
of the parabolic points of the H-group such as is available in the case of the modular
group, we use the geometry of the fundamental region for the dissection of the path.

We treat entire automorphic forms of dimension r, that is, analytic functions of a
complex variable z which are regular in the upper half-plane and satisfy there the
functional equation

(1.1) F(Vz) = £(V) (-i(cz + @) "*F(z),

for every transformation Vz = (az + b)/(cz + d) of I'. Here r is real, and the multi-
plier £(V) is independent of z and satisfies the condition |&(V)| = 1. If ¢ # 0, we as-
sume that ¢ > 0 and require arg(-i(cz + d)) to lie between -n/2 and 7/2, as a means
of determining the branch of the many-valued function. If c = 0, we have, as we shall
presently see, Vz = z + mA, where m is an integer and A > 0. Set Sz =2z + A and
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266 JOSEPH LEHNER
e(z) = e2Miz,
Then we can write (-i) “* &(S) = e(a), where 0 < @ < 1. From (1.1) we now get
(1.2) F(Sz) = F(z+ A) = e(a) F(z).
The relation (1.2) implies the existence of a Fourier expansion for e(-az/\) F(z),
(1.3) e(-az/)) F(z) = X a,e(mz/x) = () (t=e(z/A);
m=-y

we assume that this expansion has only a finite number of terms with negative ex-
ponents. Since F(z) is regular in $z > 0, the series converges absolutely in the
same region,

By “automorphic form of dimension r on I',” we shall mean a function, regular
in the upper half-plane, satisfying (1.1) to (1.3).

Our main results are contained in three theorems which follow. For ¢ € C and
¢ > 0, put

(1.4) A,y m) = X g1 (Ve, @) e{llm+ a)d - (v-a)a]/er}  (Vi,a=(c @)

deD,
b - an\(Tt1)/2 . 1/2 1/2
(1.5) Le(m,v, r, @) = (m+a) I.41 (E-X(u-a) (m + a) ) (m+a>0),
L _ (2my/en) Tt
(1.6) LC(O, v, T, 0) = lim Lc(m, v, I, oz) = -—r(w,
m+q—0

where I, is the Bessel function of the first kind with purely imaginary argument, and
C is defined in (2.2) and D; in (2.3). Let I be an H-group satisfying the restriction
(1.0).

THEOREM 1. Let F(z) be an automorphic form of dimension r > 0 on I'. Then
the Fourier coefficients a, with m > 0 are given in terms of those with m < 0 by
the formula

n
1.7 aL=(21/NXTa, x c-1 AC’V(m) L.(m, v, I, ) (m > 0).
v=1 ceC

c>0

THEOREM 2. If F(z) is an automorphic form of dimension zevo on T" with
Fourier coefficients a,,, then

p .
(1.8) ap, = @A) pa, ¥ clA mML(m,p0a)+01 (m>1),
v=1 ~ ceC
0<c< By

where B is any positive constani.
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As an immediate consequence of Theorem 2, we have

THEOREM 3. Let G(z) be an automovphic form of dimension -2 with Fourier
coefficients b, which is, moreover, the derivative of a form F(z) (of dimension
zevo). Then

n
bo=@/N2iTa, X cA mL/(m 0,0 +0m (m>1).

v=1 ceC
0<c<Bym

Theorem 1 was obtained by Petersson [5] by different methods. Theorems 2 and
3 are believed to be new,

A remark on forms of dimension r < -2 is presented in Section 7.

2. Let T be an H-group. The elements of I' may be represented by unimodular
matrices V = (? z ; a, b, ¢, d are real, since T' leaves the real axis invariant.
-1 0 . _(-a=-b
0 _1) € T, the matrix -V = ( e -d)€ I" whenever
V € T'. The matrices +V correspond to the linear transformation

Since we assume that -I =

Vz = (az + b)/(cz + d),

and they may be identified with it. In all of the paper except Section 7, we shall use,
as the representative of the transformation Vz, the matrix V for which ¢ > 0, and
for which a> 0 when c = 0. ‘

The subgroup of I" consisting of all V which preserve «, that is, in which ¢ = 0,
is known (see [4], p. 33) to be a cyclic group generated by a translation

(2.1) S = ((1)’1L (> 0).

Being discontinuous, I'" is discrete; there is no sequence of different V,, € T’
which tends to the identity. Let C be the set of third coefficients in the elements of
T, that is, let

(2.2) C ={x|3 (,; :) el"};

similarly for A, B, D. Using the discreteness of I', Petersson ([4], p. 34) proved
that there is no sequence of different ¢, € C such that ¢,—0. Using the same
property, we can show that C is a discrete set.

LEMMA 1. The set C is discrete.
Suppose otherwise; then there exists a sequence of different c,, in

Vp = (an gn el (n=1,2,- ),

Cn Qp

with ¢, —c (c finite) as n—«, We recall that c, > 0. Now

_ (a+pAc )
Spvsq_( c d+qxe/’
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so we may assume that
1< ap<l+acy, 1<d,<1+2c,.

Hence, {an}, {dn} are bounded, so for a certain subsequence (denoted by the same
subscript), we have

with 1 <a<1+2ac and 1 <d< Ac. Now, if ¢c# 0, we have immediately

a,d -1 -
B= limb, = lim =2 =adc1.

n— oo n— oo n

If ¢ =0, we note that for large n,

(1+2xep?-1
0 < by < n = 20+ A%c, < 3.

Thus {b,} is bounded, and on a further subsequence, b,—Db.

. ab
In either case, then, V_— (c d) on some subsequence, where

ad - bc = lim (a,d, - byc,) = 1.

n—oo

It follows that U, = V, V;1; — I. If only a finite number of V were different, we
should have U, =1 (n> N), that is, V, = V513 (n> N). But this contradicts the as-
sumption that the c, are all distinct. Hence I is not discrete. This contradiction
completes the proof.

For ce C, let

(2.3) Dc={deD|((':(i)€1",0§-d<cA}.

As a corollary of Lemma 1, we have
LEMMA 2. For each positive c € C, the set D is finile,

Let DY be the set of d € D such that (c d) € I. The lemma will follow if we
can show that DY is discrete. If D: is not discrete, there exists a sequence of dif-
ferent d,,—d #«~ for which V, = (c d ) € I'. This contradicts the discreteness of

n :

I', by the same argument as was used in Lemma 1.

We shall now normalize the group I' as follows. Choose V, = (c ) ) eI in
0 L d

1/2
such a way that ¢, > 0 and |c,| is minimal. Let L = (c((,)/ c_?/z) , and let
0
t 1
I''= LTL™! be the transformed group with elements V' = ( ;, 2,) . Note that
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1 cA
1 - -1 _ 0
S'=LSL ! = 0 1

nold for I also.

), so that I'' is an H-group. It follows that Lemmas 1 and 2

Now c' = ¢/c,; therefore,

(2.4) |e'] > 1 if ¢+ 0.

There are elements of T"' for which c¢'= 1, for example, LV, L~ = (a0+1d0 (-)1 )

The effect of the normalization is to make the smallest nonzero value of the third co-
efficient in the transformations of the group numerically equal to 1.

It is the transformed group which we shall study. From now on, we shall drop the
primes, and denote the transformed group by I', its elements by V = ( 2’ g) and its

(1);) (x> 0).

generating translation by S = (
3. We now introduce the restriction on I' that was stated in Section 1. Since I"
has exactly one equivalence class of parabolic points which, by the definition of an
H-group, must contain the point «, we see that all parabolic points of I' are equiva-
ab
c d ) eT.
In this representation, ¢ and d are unique. For suppose that -d'/c' is the same para-

lent to «. Therefore every parabolic point is of the form '-d/c, where V = (

bolic point as -d/c, and let V'= (c‘ d’) Then V'V-! preserves « and so is equal
to Sm, It follows that V' = S™V, which implies that c=c¢', d=d'.

Let z = x + iy be a complex variable. We choose a closed fundamental region (FR)
of T", bounded laterally by portions of the vertical lines x = 0 and x = A, and below by
arcs of isometric circles |cz + d| =1 (¢ > 0); see [2], Section 35. We have already
remarked that FR is bounded by a finite number of arcs ([2], p. 75).

Let R be the closed region which is the union of FR and all its translates by in-
tegral multiples of A. Since |c|> 1 when c# 0 (see (2.4)), it follows that the radii
of the isometric circles (1/|c|) do not exceed unity. Hence
(3.1) y>1 implies zeR.

Also, FR does not extend below a horizontal line of height h above the real axis (see
Section 1), so

(3.2) y <h implies z ¢ R.
We see, incidentally, that
(3.2a) h<1.

We shall now describe a dissection of a line segment which will be used later for
purposes of integration. Let Ly be the line segment

(3.3) Lg: 0<x <, y=y0=N"2h'1,

where N > h™! is arbitrary. Consider the sets
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(3.4) IC,d = {Z € LNIVC,dZ € R},

cd
V'. a= 8™V, 4 with some integer m, and so V!, ,q maps a point into R if and only
if Vc q does. ) Since Ly is contained in a compact subset of the upper half-plane, it
is covered by a finite number of copies of FR, each of which has exactly one real
cusp, -d/c. Hence I.,q is empty except for a f1n1te set of pairs (c,d). Calling this
finite set M, we have

where V¢ 4 = ( ) (The particular V .,a We choose makes no difference. For

(3.5) Ly= U 1ca-
(c,d)eM

We see easily that each I g is the union of a finite number of closed intervals,
for V.,4 maps Ly onto the arc of a circle which, because FR has a finite number of
sides, intersects R in a finite number of arcs. Denote by [IC a| the measure of
I. g The sets Ic,a do not overlap, except possibly at their end points; for no point
can be mapped into the interior of R by two V. 4 with different (c,d). This implies

(3.6) Z Jigql=a
(c,d)eM

4, Now let F(z) be an automorphic form on I' of the type described in Section 1.
Let Cy be the circle |t| = exp(-27/N%h)). By applying Cauchy’s theorem to (1.3),
we have

A £(t) _ =
(4.1) ray, = fﬁJCN?—n—ﬂdt = jLNe(-az/A) F(z) e(-mz/\)dz = . d};,EM g ,

the integrand being the same in the last two integrals. On each set I.,a we apply the
transformation formula (1.1) with V = V., ,d» and in the result we introduce the Fourier
series (1.3) for F(z'), where

z' =V, gz =x"+1y’.

We then get

-1 -
ra = 3 5-1f (-ifcz + ) ¥ ae{l(v+ a)z' - (m+ a)z]/A}dz

(c,d)eM ¥ Ic,a v=-u
(4.2)

+ 3 g"lj (-ifcz + )" X ae{l(v+ a)z - (m+ a)z]/A}dz = S; + S,
(c,d)eM c,d v=0

The choice of V; 4 affects the value of & = €(V. g). But from (1.1), we easily deduce
that e(V'¢ g) = s(Sch @ = elam) e(V¢ g). This makes it clear that the expression
e~le{(v + @) z'/A} is independent of the choice of Ve,a-

When z €I, 3, we have z' € R by (3.4), so y'> h by (3.2). Also, y =y, by (3.3).
Now
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y y
4.3 = °o__ - 0 .
(4.3) y |cz+d|2 (cx + dP + c?y?

Hence, |cz + d|2=y,/y' <N"2h™2, We therefore have the estimates
(4.4) y'>h, Jez+d|<N'h' (zelg).

With these estimates, we get

Is,] < O(N"F) Z |a,|exp{-2n(-|m + a| /N2h + (v+ a)h)/A} 2 [i. 4],
v=0 (c,d)eM

where the O-symbol indicates a constant independent of m and N. The inner sum is
finite, by (3.6). Since h > 0, the infinite series converges (see (1.3)); we have then

S, = O(N™T exp 21r|m + a| /N%h)a).
This error term will occur repeatedly, and we shall denote it by
EnN = O(N-T exp 21r|m +a |/N2hh) .
In S,, we break up the range of (c,d). Set M = M, U M,, where
(4.5) M, = {(c, d) e M| 0 < ¢ < Nh/2}.

Denote the corresponding parts of S, by T, and T,. In T,, we still have the esti-
mates (4.4) and, in addition, by (4. 3) ,

(4.6) y' < y/c?y3 = 1/c?y, < 4N"2h"2-N2h = 4h~!,

If M, is empty, we have, of course, T, = 0; otherwise we get from (4.2)
I
IT2| < Oo(N-%) = la_g| exp{8af/hr+ 27 Jm + a| /N*h)} = B .
/=1
Putting these results together, we get

m
(4.7) 2, = X el f (-ifcz + d))* T a_g e{-[m+ a)z+ (f - @)z'l/A} dz
(c,d)eM Ic,a f=1

+ Em,N .

5. In order to make further progress, let us study the sets I.,4 more closely.
When (c, d) € M,, we have ¢ < Nh/2, and

SV d('g*' lyo) = Yo/c?y3 > 4N"2h"2-N?h = 4h™! > 1,

in view of (3.2a). Hence I 4 contains the point -d/c + iy,, and, by continuity, it con-
tains a largest closed interval J. g which includes that point. The endpoints of J. 4
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are determined by considering the map of Ly by V¢ 4. This is a circle K which
definitely intersects the interior of R and which leaves R for the first time at two
points. The inverse images of these two points are the endpoints of J¢c 4. Therefore,
if we write

IC,d - Jc’d + Jz:,d ’
then certainly
(5.1) y<1 (zeJd.g;

for K is definitely below the line y = 1 as soon as z' leaves R (see (3.1)). On J. g,
we have the estimate (4.4), since J; g C L q-

The above argument shows, incidentally, that M, consists of @ll pairs (c, d) in
the range 0 < ¢ < Nh/2. For each such pair does map a point, namely, -d/c + iy,
(and an interval surrounding the point), into R. Moreover, the sets {J¢,q4, J¢,a}
((c, d) € M,) are obviously nonoverlapping; hence

(5.2) 2 |Jeal <A, 2 |Jeal <a
(c,d)eM, (c,d)eM,

We break the sum in (4.7) into two parts, calling U, the sum in which the integral
is extended over J¢,4, and U, the sum in which the path of integration is Jc a- For
U,, we have the estimate En, N obtained in the same way as that for T,, since (5.1) is
essentially the same as (4. 6), and (4 4) holds in both cases; also, (5.2) plays the role
of (3.6). This gives

3 .
(6.3) Aa,, = > el > a_VfJ (-ilcz + @) e{-[(v + @)z' + (m + a)z]/2}dz
c,d

+ Em,N’

where we have interchanged the order in the integral and the finite sum.,

The integrals in (5.3) must be evaluated in closed form, to yield our final result.
For this purpose, we need precise inequalities on the length of Je,a0 Let

(5.4) z=-d/e+E+iy,  (-00,qa <ELOE Q)

when z € J¢ 4. Let the endpoints of J; g be denoted by z', z". The point Vc,d[zl] ,
where z, is either z' or z", has an imaginary part lying between h and 1, that is,

h < yo[c2(62+y)] ™" <1 (6=0" or 6=2").
This leads directly to the desired inequalities:

1
(5.5) %172§I<9I ds o" d<h N ((c, d) € M1)-
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6. If we make the change of variable -i(cz + d) = cw, each individual integral in
(5.3) takes the form

otif’
(6.1) e{[(m + a)d - (v - a)al/ecr}eTx llyy * wT exp {(27/A)((m + a)w
\Yo_iell

+ (v-a)/ciw)}dw.

If we replace our N by N/vh, then the factor following the symbol X becomes the
I.(m, v) in formula (4.22) of [7]. Our #', 6" satisfy the same inequalities as the 6',
g" in [7], with slightly different constants (see the line following (3.4) in[7]). An
examination of the developments of [ 7] shows that this difference does not affect the
final result. When m + a > 0, this result is ([7], pp. 440-442)

(6.2) I(m,v) = 2meT-1 L.(m, v, r, a) + ¢ TIn-! Em,N>

where we have used the notation of (1.5).

Now, from (5.5), we deduce that

63 T So<h/Z 3 graeom)=ht/2 T |5 4] </,
(c,d)eM, € (c,d)eM, ’ (c,d)eM,

Inserting (6.2) in (5.3), we get

g =21 ¥ el ya,e{lm+a)d- (v-a)alerle L (m, v, 1, a)
(c.,d)eM, v=1

1
+ O(Em’N > N ) +En Ne
(c,d)eM,

Since, by the remark following (5.1),

z = 2 >
{c,d) €M, 0<c<Nh/2 deD¢
c€C

we have, from (1.4) and (6.3) and with the interchange of order in the finite sums,

I
(6.4) Ma =21 3 oa_ > clA, (mL.(m, v, r, a)+E .
m v=1 " 0<c<Nh/2 cymm e =N

ceC

Now suppose r > 0. Keep m fixed and let N—w. Then E_| n— 0. For
m + a > 0, (6.4) goes over into (1.7). ’

If r=0, choose N=gym. Then E,, y = O(1), and we get (1.8).
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We still have to treat the case m + o = 0, which is equ1vélent tom=a =0. Our
developments are valid up to and including (6 1). We see- d1rect1y that the integral in
(6.1) is a continuous function of m and a, for m> 0,0 > 0 Hence we have, from
(6.2), b

lim I_(m, v) Iim 2pc~*- 1L m, v, r,0) +c7T" IN-lo(N-T)
m,o—0 m,0o—0

= 27cT-1 L.(0, v, 1, 0) + c - IN-lo(N-7),
where L (0, v, r, 0) is the quantity defined in (1.6). The remainder of the argument
is the same as before, and leads to the formula (1.7) for m =« = 0.

The following result is an easy corollary of Theorem 1.

THEOREM 4. If F(z) is an automovphic form on T, of dimension r > 0 and
finite at «, then F(z) vanishes identically.

For the hypothesis states that a_, = «.. = a_,, = 0. Then (1.7) shows that a =0
for m > 0.

7. The condition r > 0, or at least the condition r > 0°, is essential in the aevelop-
ments of the preceding sections. However, in certain cases, it is possible to extend
the foregoing results to some negative values of r,

Let
(7.1) r<-2,.

Let F(z) be an automorphic form of dimension r on T, where I' is still an H-group
satisfying the restriction (1.0). Then F(z) satisfies the transformation equations
(1.1), and has a polar signularity (1.3) of order p at «, where the coefficients of the
“principal part,” a_,, .-, a_y, are given,

Set up the function

o0

(7.2) G(z) = X ampe((m+ a)z/n),

m:—p_

with the a,, given by (1.7). The absolute convergence of the series in Iz > 0 is
-clear, since we have the asymptotic estimate

m
A, ~ (2)\)‘1/2 X a_j,A; m)(v- a)l/4,+r/2 (m + oz)3'/4"r/2 exp{41r(u-a)1/z(m+ a)l/z/)t}
v=1

(7.3)
= O(m®*/2 exp{8ruvm/a})  (m—w) ’ ‘

where we have put
(7.4) s=-r>2,

This asymptotic expression is readily obtained from (1.7) by means of the well-known
asymptotic formula for I(z) ([10], p. 373).
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Remark. Let T = I'()), the group generated by S = ( (1) 7{) , T= ((1) _(1) ) , and let

r=0, e(V)=1 for VeT(A), and u =1, a_, = 1. Then the expression (7.3) for am
reduces to

_ exp (4mym/A)
V2X ms/4

(m — )

as given in a previous paper ([3], p. 244). I wish to point out that the proof given
there is not correct in detail. A valid argument may be obtained by specializing the
reasoning of Sections 3 to 6 to the case considered in [3].

We shall now verify directly that G(z) satisfies the transformation equation (1.1).
Let a > 0. Define

(7.5) Gy y(@) = e(-(v - @)z/N)+ L a,Me((m+a)z/n)  (v=1, 2. -, ),
m=0
where a,,(") is obtained from a, of (1.7) by setting

0 ((=v, 1<),

(7.6) a_g =
( 1 (f=v).
Then
‘ p
(7.1 G(z) = > a—-yGy’a(z)’
v=1

since a, is a linear combination of a_,, +--, a_,,. Since the automorphic forms of
given dimension and given multiplier system on a group I' form a linear set, we have
only to verify the transformation formula for Gv,a (v=1, 2, <=, u).

We shall rearrange the series of (7.5) by means of the Lipschitz formula ([1],
p. 206)

(1.9 {@MB/TE} = (m+ a)f-lexp{-2r(m+ o)t} = T elqa)- (t+ qi)B,
m=0 q= =0

valid for 8> 0, ®t> 0, 0 < a < 1, where |arg(t+ qi)| < n/2. We insert a p,(¥) in
(7.5), expand the Bessel functions in power series, and use (7.8). All rearrangements
of order of summation are justified by absolute convergence. The result is:

G2 = e-(v - a)z/n) + X S-I(Vc'd) (-i{cz + d + qea)) ™8
c,d

(7.9)

o]

D3 (21ri(V£!a)/c?\)( 2 e(-(v-a)a-qea)/cA)-(cz + d + qck)'( .
=0 9 |
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Here ¢> 0, ce C and d € Dc.

As we saw in the remark following (4.2), the quantity &~ (Vc de(-(v-a)a/er) is
independent of the choice of a and b in V. ,a- Hence, in the innermost sum of (7.9),

we may replace a - qcA by a, where (2 g) € I. Now
(¢ -(fa)(0%)
c d+qm)‘ cd/\o 1)¢€T>

a .

c d+ qc]\)' Then, if we perform the summation on q,

80 we may take Vc,d+ch = (

d + cA will run over all the values such that ¢> 0, d < 0 and ( c d) €I. Letus
denote by S' a complete system of V € " such that

(i) no two V have the same second row,

(i) ¢>0, d<Oo.

The only element of S' with ¢ =0 is I.

From (7.9) we now have

e-(w-a)z/N+ X &1 (V) (-ifcz + d) "5 e(-(v - a)a/c)
VeS', V£l

Gy o (z)

« 2 riv - a)/ca(ez + d)[/f!

f=0
(7.10)
= e(-(v-a)z ) + vesz?Vﬂ {(V - a)( "t ez + d5) /A}

e-1 (V) (-i(cz + d)) -5

Y e((v-a)vz/N) el (V) (-i(cz + d)*.
VeES!

We now wish to admit V with ¢ < 0. Again from (1.1), we have
F(-vz) = e(-V)(-i(-cz - d))"" F(z),
and so, by comparison,
(7.11) e(-V) (-i(-cz - @) " = e(V)(-i(cz + @)~

This shows that the terms in the series of (7.11) are invariant under V— -V; thus we
can write

(7.12) Gy (@ =2 5 elv - a)Vz/a) e }(V) (-ifez + A)F
VES
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where S is obtained from S' by dropping the restriction ¢ > 0, that is, where S is a
complete system of elements of ' with different second row. Note that both I and -I
appear in (7.12).

Let L = (al by
c, d,
obtain directly

) €. If ¢, =0, we have L = S™. From the definition (7.2), we

(7.13) G(Lz) = e(ma) G(z).

Hence we assume c, # 0. Then VL clearly runs over the set S if V does., It follows
from (7.12) that

1

5 L e((v - @)VLz/Y) e YV) (-i(cLz + d)F.

(7.14) Gy o(L2) =
’ Ve S

But (1.1) gives, for VL = ((.:2 ;12) ,
F(VLz) = £(VL) (-i(c,z + d,))™" F(2)
= F(V[Lz]) = &) (-i(cLz + d))"F F(Lz)
' = &(V) (-i(cLz + d)) T e(L) (~i(c,z + 4,))"F F(z);
hence,
e(VL) (-i(gz + 4,)) *F = &(V) (L) (-i(cLz + d))™F (-i(c,z + d)))" .

Using this in (7.14), we get, with VL = W,

1o Cilez + d) T T e((v - @)Wa/2) e l(W) (~ilezz + )T
weSs

Gy, (Lz)

(7.15)

I

&(L) (-i(cyz + d)))* Gy,a(z) .

Taken together, (7.14) and (7.15) state that Gp’a(Z) satisfies the transformation for-
mula (1.1).

It now follows from (7.7) that G(z) is an automorphic form on I' of dimension r.
From (7.2), we see that G(z) and F(z) have the same principal part at «, and, in
fact, that G(z) - F(z)— 0 as z—, since a > 0. Hence

G(z) = F(z) + H(z),

where H(z) is a cusp form, that is, a form which vanishes at the parabolic vertex of
I', This argument justifies the case a > 0 of

THEOREM 5. Let F(z) be an automorphic form on T of dimension r < -2, and
let @ > 0. Then the Fourier coefficients of ¥(z) differ from the a p, (m > 0) of (1.7)
by the coefficients of a cusp form. If a = 0, the Fourier coefficients are determined
in the same way for m > 1.
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When a = 0, the situation is somewhat different, since there are forms, not identi-
cally zero, which are merely bounded at «. Hence we define, in addition to the Gy o
of (7.5), the function '

Golz) = 1+ X aDe(mzn),
m=1]

where agg) is obtained from a,, of (1.7) by letting ¥ - a— 0. This gives

ale) = {@r/N*m*"Y/T@} £ ¢® T eV, Jemd/cr) (s=-1).
. ceC deD,
c>0

Lipschitz’s formula becomes

{enf/r@} = mflexp(-21) = ¥ (t+q)B (B>1, at>0).

m=1 q=-o

Proceeding as before, we find that

G (2) = -% Z e V) (-ilez + @)F.
VeS

Thus, exactly as in the previous case, we prove that G, is an automorphic form on
I. '

Now

7
F(z) - © a_vGV'O(z)

V=0

is automorphic on I' and vanishes at «, hence is a cusp form. This completes the
proof of Theorem 5.
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