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1. INTRODUCTION

Let C(X) denote the ring of all continuous real-valued functions on a completely
regular space X. If X and Y are completely regular spaces such that one is dense
in the other, say X is dense in Y, and every f € C(X) has a (unique) extension
f e C(Y), then C(X) and C(Y) are said to be strictly isomorphic. In a recent paper
[2], L. J. Heider asks if it is possible to associate with the completely regular
space X a dense subspace pX minimal with respect to the property that C(uX) and
C(X) are strictly isomorphic.l ‘

In this note, Heider’s question is answered in the negative. It is shown, more-
over, that if uX exists, then it consists of all of the isolated points of X, together
with those nonisolated points p of X such that C(X ~{p}) and C(X) fail to be
strictly isomorphic. Thus, if uX exists, it is unique.

2. PRELIMINARY REMARKS

Let C(X) denote the ring of all continuous real-valued functions on a completely
regular space X. Let C*(X) denote the subring of all bounded f € C(X). The follow-
ing known facts are utilized below.

(2.1) Corresponding to each completely regular space X, there exists an essen-
tially unique compact space gX, called the Stone-Cech compactification of X, such
that (i) X is dense in BX, and (ii) every f € C*(X) has a (unique) extension
fe C*(BX) = C(BX). Thus C*(X) and C(BX) are isomorphic. (See, for example, [3]
or [4, Chapter 5].)

(2.2) There exists an essentially unique subspace vX of X such that (i) X is a
Q-space, (ii) X is dense in uX, and (iii) every f € C(X) has a (unique) extension
fe C(vuX). Thus C(X) and C(vX) are isomorphic. (For the definition of Q-space,
and a proof of this theorem, see [1] or [3].)

(2.3) ¥ X and Y are completely regular spaces such that C(X) and C(Y) are
isomorphic, then Y is homeomorphic to a dense subspace of vX such that every
real-valued function continuous on this subspace has a (unique) continuous extension
over VX. [3, Theorem 65.] |

(2.4) If Z is any compact space, and f is any continuous mapping of X into Z,
then there exists a (unique) continuous extension f of f over X into Z. (See [5,
Theorem 88].)

Received May 17, 1956,

The author was supported (in part) by the National Science Foundation, grant no.
NSF G 1129. He is also indebted to Meyer Jerison for several helpful comments,
and to L., J, Heider for an advanced copy of [2].

1. Since the writing of this paper, Heider's problem has been generalized and
solved independently by J. Daly and L. J. Heider.
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In the oral presentation of [2], Heider asked “. . . whether or not to each com-
pletely regular space X, there is associated a completely regular space uX such
that pX and v(pX) are homeomorphic, and uX C Y C vX for every completely regu-
lar space Y such that vY is homeomorphic to vX.” By considering the special case
Y = X in Heider’s formulation, we see at once that uX c X. Moreover, since v(uX)
and vX are homeomorphic, it follows from (2.3) that uX is homeomorphic to a dense
subspace of X all of whose continuous real-valued functionls have continuous exten-
sions over X. Thus, it is natural to identify pX with its image in X under this
hogneomorphism, this identification leads to the formulation of Heider’s problem
given in the Introduction, namely: does there exist a dense subspace uX of X which
is minimal with respect to the property that C(uX) and C(X) are strictly isomorphic?!

We conclude this section with a definition.

Definition. If X is a completely regular space, let nX denote the union of the set
of isolated points of X and the set of nonisolated points p of X such that C(X ~{p})
and C(X) fail to be strictly isomorphic.

Thus, by (2.3), a nonisolated point p of X fails to be in X if and only if every
f e C(X ~{p}) has a (unique) continuous extension over X.

3. UNIQUENESS OF uX

We begin this section with a theorem which will be used below, and which we be-
lieve to be of some independent interest.

THEOREM 3.1. If Y is a dense subspace of a completely vegular X such that
the vings C(Y) and C(X) (rvespectively, C*(Y) and C*(X)) are strictly isomorphic,
then, for any (nonisolated) point p € Y, the rings C(Y~ {p}) (respectively, C*(Y~ {p})
and C*(X ~{p})) are strictly zsonfo'rphzc

Proof. Except for the part of the theorem in parentheses, it is enough, by (2.3),
to show that every f € C(Y~ {p}) has a (unique) extension F € C(X ~{p}). As for the
part in parentheses, it will be evident from the construction that if f € C*(Y~ {p}),
then F € C*(X~{p}).

Let {Uqy}gea be a base of neighborhoods in the space X of 'p. The index set A
becomes a directed set if we let the statement 8 > a@ mean that Ug C Uy. Since X
is completely regular, for each a € A, there exists an iy € C*(X) such that ig(x) = 1
for x € X~Ugy, and iy vanishes on a neighborhood of p. (To see this, let hy € C*(X)
be such that hy (X ~Ug) = 1, and hy(p) = -1. Then let iy(x) = max (hg(x), 0) for
every x € X.) Let f be the function defined on Y by letting f,(y) = ip(y) f(y) for every
y € Y~ {p}, and by letting fy(p) = 0. Clearly, fy € C(Y), and fy(y) = f(y) for all y
outside of Uy. Now, by hypothesis (and (2.3)), f has a unique extension Fg € C(X).

For each x € X ~ {p}, the set {Fy(x)} vea forms a real-valued net [4, Chapter 2].
For each x € X~ {p}, let F(x) = limy Fg(x). This limit exists since, if Uy _isa
basic neighborhood of p disjoint from x, it follows from g8 > ax that

!

Fa,x(x) = Fg(x) = F(x).
It is clear that F is an extension of f. We will show next that F € C(X ~{p}), by veri-
fying that F is continuous at each x,¢ X~ {p}.
Let on, Uc,,0 denote disjoint neighborhoods (in X) respectively of x, and p. X
x € V, , thenfor any 8> a,, F(x) = FB(x). Hence the continuity of F at x, follows
fromr the continuity: of Fg at x,. This completes the proof of the theorem.
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COROLLARY. If Y is a dense subspace of the completely regular space X then,
for any (nonisolated) point p € Y, if vY and vX (vespectively, BY and BX) ave
homeomovrphic, then v(Y ~{p}) and v(X~ {p}) (respectively, B(Y~'{p}) and
B(X~{p})) are homeomorphic.

It will be shown next that if uX exists, then it is unique.

THEOREM 3.2. If with the completely regular space X there is associated at
least one dense subspace pX minimal with vespect to the property that C(uX) and
C(X) are strictly isomovphic, then pX is unique. In fact, pX = nX.

Proof. It follows from the definition of nX, and from the fact that uX is dense
in X, that each of these spaces contains all the isolated points of X. Hence we need
only consider the nonisolated points of X. We will show first that pXc 9X.

Let p be a nonisolated point of X contained in pX. By the minimality of pX,
there exists an f € C(uX.~{p}) with no continuous extension over pX. But, by
Theorem 3.1, f has an extension F € C(X~{p}). If p were not in X, F would
have a continuous extension over X, whose restriction to uX would in turn be a
continuous extension of f over uX. Hence p € nX, whence pX c nX.

Suppose there were a point p € nX ~uX. If fe C(X~{p}), then since C(uX)
and C(x) are isomorphic, the restriction of f to uX has a continuous extension over
X. This latter would be a continuous extension of f over X, contrary to the assump-
tion that p € nX. Hence uX = 5X. This completes the proof of the theorem.

COROLLARY. A necessary and sufficient condition that pX exist (in which case
it is equal to 1nX) is that nX be dense in X and that every f ¢ C(nX) have a (unique)
extension f € C(X).

As noted by Heider [2], uX = nX = X, provided every point of X is a Gg.

4. THE SUBSPACE pX NEED NOT EXIST

In this section we give an example of a completely regular space X such that pX
does not exist. In fact, for this X, nX is dense in X, but C(nX) and C(X) are not
isomorphic.

We begin by generalizing a result of Hewitt [3, p. 62].

THEOREM 4.1. Let Y be a noncompact completely regular space, and suppose
that Y c X c BY and that BY v X has power less than exp exp X,. ThenvX = gX = gY.
In particular, C(X) = C*(X).

Proof. We will show first that C(X) = C*(X), thus verifying that vX = gX. (See
(2.1) and (2.2).) For any f € C(X), let f* denote its restriction to Y. As noted in[1],
f* may be regarded as a continuous mapping of Y into the one-point compactification
RU{w} of the real line R. By (2.4), f* has a (unique) continuous extension f* over
BY into RU{w}. Since Y is dense in X, the function f* is also an extension of f.
Now the set G ={y € Y: f*(y) = «} is a closed Gg of BY, and it is contained in
BY ~X C BY ~ Y. Hewitt has shown [3, Theorem 49] that every nonempty closed Gp
of BY contained in Y~ Y has power at least exp exp N,. On the other hand it is
evident, from the hypothesis, that G has power less than exp exp R,. Hence G is
empty. So f* € C*(Y), and it follows that f € C*(X). Thus vX = gX.

Since X is dense in 8Y, and BY is compact, in order to conclude that gX = gY it
suffices, by (2.1), to show that every fe C*(X) has a (unique) extension f e C*(BX).
We may take f to be the (unique) extension over BY of the restriction of f to Y.
This completes the proof of the theorem.
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Example. Let Y be any completely regular space that admits unbounded con-
tinuous real-valued functions, and such that nY = Y. (In particular, Y could be
any infinite discrete space.) Let X = gY. For each p € 8Y ~Y, it follows from
Theorem 4.1 that v(X~{p}) = X. Hence, nX C Y, and since 7Y = Y, it follows that
nX =Y. But, although X is dense in X, no unbounded f € C(Y) has a continuous
extension over the compact space X. Thus, by the corollary to Theorem 3.1, pX
does not exist.
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