CONTRIBUTIONS TO THE THEORY OF CONVEX BODIES
Herbert Knothe

1. GENERALIZATION OF THE PRINCIPAL THEOREM OF
BRUNN AND MINKOWSKI

The Brunn-Minkowski theorem on closed convex bodies in n-dimensional
Euclidean space can be extended by introducing a suitably defined logarithmically
convex functional pi(X). In the present paper we give a proof of such an extension
which was announced orally by the author [4], some years ago. Similarly to the way
in which the Brunn-Minkowski theorem provides a means for deriving the isoperi-
metric inequality, our extension leads to a more general inequality. The functional
pk(x) shall be a local function, in the interior and on the boundary of a convex body
K, which depends not only on the point % (x denotes a local vector), but also on K.
This dependence shall satisfy the following four conditions.

1. Continuity: If K,>K, and z—>_x:, then .
> >
o, ) > 0k, ().

Here the statement K, >K, means that the distance between two parallel directed
support planes of K, and K, tends to zero for all directions of these planes.

2. Homogeneity: T AK + —; denotes a body which is obtained by applying _1;) Ka
similarity transformation AK and a translation characterized by the vector a, then
the relation

> >
Prr (X + a) = AmpK@

shall hold.

3. Logarithmic convexity: If
Kg=(1-0)K,+6K, (0<6<1)
denotes the linear combination of K,, K, in the Brunn-Minkowski sense, the inequality

. >
(1) log pKe{(l - 9)-:?1 + 0%} > (1 - 0) log pKl(:z) + 0 log pKz(}Z)

> >
shall hold, where x,, X, are arbitrarily chosen points of K,, K,, respectively.

4. Nonnegativeness:

It is easily shown that (2) implies that ,pK(;) can vanish only at a boundary point.

Example 1. Let a = pK(}?) denote the shortest distance of % from the boundary
of K. It is evident that a satisfies the conditions 1, 2, 4. We shall prove that
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40 HERBERT KNOTHE

condition 3 is also _f)ulﬁlled Let xl, x2 be two points in K,, K,, respectively, and
consider the poglt x9=(1- 9)5?1 + sz in Kg = (1 - 9)K, + 6K,. Let ag be the short-
_e)st distance of xg from the boundary. We draw two stralght line segments from

X,, X, to the boundaries of K,, K,. Let their lengths be @,, a,. They are to be paral-
lel to a straight line segment through xp of length ag. It is obvious that

(3) ag > (1-0)a,+ 63, > (1 - 0)a, + 0a,,

where a,, a, are the shortest distances of X, X, from the boundaries of K,, K,.
Condition (3) says that a is a convex functional under linear combinations of convex
bodies. Since

log ag > log {(1 - 0)a, + 6a,} > (1 - 9) log a, + 0 log a,,

a is also a logarithmically convex functional.

Example 2. Let o denote the distance of a point of K from a tangent plane of K
with a normal parallel to a fixed direction in space. Then o satisfies conditions 1
to 4.

THEOREM. T#e (n+ m)th voot of the integral

f prav (o homogeneous of the mth degree),
K

extended over the volume (with element dv) of a convex body K, is a convex func-
tional under linear combinations Kg = (1 - 9)K, + 6K,. In other words,

n+m /_ n+m n+mf
(4) Vv pr,dvg > (1 -6) prKdv+6 V/ pk. dv, .
Ky 00 = K, * Ky 2
We first prove (4) under the assumption that
dv, = f dv
LIPKI 1 szKz 2

Let x,, :-+, X, be cartesian coordinates in R,,. Both K, and K, have two support
planes (an “upper” and a “lower” one) perpendlcular to the Xn-axis. Let their cor-
responding xp-values be xJ, x}, for X, and XJ, X}, for K,. The points (%) of K,
are to be associated with the points (xl) of K, in the following way: We determine
Xn, Xn So that the planes x, = const. and X, = const. cut equal volumes from K,, K,:

(5) E{f"prldxl"'dxn-l}dxn = f;:{f'"fPK,dil'"dx_n-l}din-

Thus we obtain a correspondence X, = f,(x,) between X, and x,. Equation (5) can
be written in differential form:

(6) ' f""fPKldxl"'dxn-l ._. %—zf“‘prszl"‘dEn-l .
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We now consider two (n - 1)-dimensional intersections of K, and K, correspond-

ing to the values x, and X, = f,,(x,). For any pair of values x, and X, = f (x,), the
coordinate X,,_; can be mapped on x,,_; so that

(1) {f fPK dxj ---dxp_ppdxpy g = %j—’;n-l( ){f"fpxzdil'-'d?n-z dxp, 1.
Xn-1\%Xn

xn 1(xp)

Equation (7) furnishes the relation X,,_} = f,_1(Xn_1, X). For every pair
Xn-1, Xp, €quation (7) may be differentiated with respect to x,_;:

oo - E2 B
(8) . vee pKl 1...dxn_2 —_ _d_gl_a_}(n_-]j soe pKz 1 n-2.

Continuing this procedure, we cut the intersections x, = const., x,_]1= const. of
K, and the corresponding intersections

X, = f,(x,) = const., X, ;=1£f, ;(x, 1, X,) = const.

into slices perpendicular to the x,_j-axis. As before, a correspondence between
the values x,,_,, X, _, can be established:

X, o {
(9) f Xn-2(%n-1,%5) f pr 1 Has [
=ga§ | (%n-2 {I'“_[PKZd’—‘l"'din—3}d’—{n-2;
%n-2(%y _1:%n)

this is equivalent to a relation

(10) -in-Z = fn-Z(Xn-Z.’ Xnh-1s xn) .
Finally we obtain a one-to-one mapping of the points of K,, K, such that

(11) pKldxl"'dxn = pszil'"d’—‘n'

Equation (12) represents a generalized volume-preserving mapping of K, on K,,
the points of K; and K, having the “weights” PK,’ PK,* The Jacobian matrix of the
mapping has the form

6;{1 ail ail

(12) (a’“‘i)= 0 Ko X
0xXg 0x, X, I

0%,

0 0 —5—{;1

all the elements beneath the principal diagonal being zero. The body
' Kg= (1 - 0)K, + 6K,
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contains all points (1 - 9)X, + 6X,. A fortiori, Kg contains the points
(13) 1 -0)x, + 6%, ,

where the X, correspond to the x,, by our generalized volume-preserving mapping.
The point (13) has the coordinates (1 - 9)x; + 0%;.

The Jacobian

( o{(1 - Z):; o0x;} )

has the form

1 9x 1 0X) 0X1

( -9)+ 9—8———1 ( -9)+Ba—£‘2 tee (1—9)4— 95;(—11

9%, 9%,

0 (1-0)+05— -+ (1-6)+06=—

(14) 0x; 0xy,
81—{n

0 0 b (1 - 6) + 95;11—

Thus we see that the integrand in the integral L pKedVB in (4) satisfies the equality
8

(15)  px,dvg = pk, (1-e+9ax1)(1-e axZ) (1-0+ 9;ax§)dxl'--dxn-

Since

1 =1 3X1 aXZ a_in
0g Pk, = 108 pKzaxl ox, ox_[’

we conclude from (1) and

0x;
(16) log (1-—9+9 )>910ga
that
(17) fpdv>fpdv
gp K002 Pr,

L is never negative, and it can not be zero except on

(As the development shows, -
1

the boundary.)

We see further that the more general relation
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f dvg > fp dv
Dnge 6 -~ DK1 1

holds, where the integral on the right-hand side is extended over an arbitrary domain
D of K,. The integral on the left-hand side is extended over a domain in Ky which
arises from D by applying to D the generalized volume-preserving mapping. From
this statement we derive immediately the result

(18) j;{ O'KBpKGdVB > @1- 9)];{ Ox,Px, vy + 0 j;{ Ok, PK, V25
0 2

1

where ok denotes a convex functional obeying the same laws as py, in addition to
the following:

(19) ok, {1 - 0)%, + 0%} > (1 - 0oy () + 60y (D).

> >
Here the local vectors x,, x, are arbitrary points of K,, K,.

The decision on the validity of the equal sign can be made without difficulty.
Equation (17) shows that we must have

0%,

axi

=1,

identically for every direction of the coordinate axes. Therefore
X; = X; +a;, a; = const.

In other words, equality in (17) and (18) takes place only if K,, K, can be transformed
into each other by a translation. This concludes the proof of the theorem for the
special case where

f dv=f dv, .
L Pr, 1T PR, T2

1 2

We now consider the case where

f dv f dv, .
KI"’K1 ) K”K2 2

2

By subjecting K, to a similarity transformation K, = AK, and choosing A suitably,
we arrive at the relation

d m+l
dv, = f = dv, = A f dv, .
f Px V1 PR, %2 K21°K2 2

Substituting Ky = (1 - 0)K, + 6K,, we obtain from (17)
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20 L pgave> fox avy = -0 [ m [

(20) L PR, 9ve > PK, V) (1-09) - pKldv1+ gamin pKldvz,
8 1 K,

where py is supposed to be homogeneous of the mth degree in R,,. Since

(21) Kg=(1-0K,+ 6K, = (1-0)K,+60K,,

the following substitution suggests itself:

1-96

0(1 - .U),
(22)
ox = ou,

where p and 6 run from O to 1. By combining (20), (21) and (22), we find that

23) am+nf dv >1-9f -\ +9m+nf dv,.
( KupK'U' n 2 ( )‘KlpKl 1 A szKz 2

We extract the (m+n)th root on both sides of (23) and take advantage of the ele-
mentary relation

{(1-0a+6m}/™ > a-0a/" 4 op'/?

this leads to the inequality

1/(m+n) 1/{m+n) ( 1/m+n)
d > (1-9) d A d
’ [{‘IMPK“ Vu] B [J‘; s VI] ’ [LZPKZ Vz]

1

or, with reference to (22),

[-IE pKuqu]]/én+n) > 1- p)[IpKldvl]l/(m+n)+ “‘[L pKz dvz]l/(rn-rn).
m 2

The equal sign characterizes the case where K,, K, can be transformed into each
other by a similarity transformation and a translation. We shall say, with Minkowski,
that K, and K, are homothetic.

2. APPLICATIONS WITH p =1

Let us first apply (18) to polyhedra in R . Let K, be a polyhedron with q lateral
surfaces, and K, a polyhedron circumscribed about the unit sphere, with q lateral
surfaces parallel to those of K,. We project K, and K, orthogonally on the same
R,_1, the volumes of the convex projections being P,, P,. By means of a similarity
transformation applied to K, (K, +» RK,), we can arrange that the projections P,, P,
of K, and K, have equal volumes. The linear combination

Kg = (1 - 9)K, + 0K,
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is also a polyhedron with q lateral surfaces parallel to those of K,, K,. For the
sake of simplicity, we assume the center of the sphere inscribed in K, to be the
origin 0 of our cartesian coordinate system. Moreover, we suppose 0 to be in the
interior of K,. Let p; (i= 1, -+, q) be the distances of the q lateral surfaces of K,
from 0. Let R be the distance of those of K, from 0. The distances of the lateral
surfaces of Kg from 0 are

1- B)pi + 0R.

Ky can be generated in the following way: First we subject K, to a similarity trans-
formatlon K + (1 - 9)K,. Then we translate the lateral surfaces of K outward by the
amount 6R. Let s; be the (n - 1)-dimensional volumes of the lateral surfaces of K,,
V, the volume, S, the surface of K,. The volume Vg of Kg certainly satisfies the
inequality

q
(29) Vo> (1-0°V+o@-0" RY s = (1- 607V o1- 0" RS,
i-

An upper bound on Vg is found by means of the following method:

We consider a pyramid determined by a lateral surface A; of K, ((1 - 9)p; is its
distance from 0) and 0. The lateral surfaces passing through 0 are cut by a plane
which is parallel to A; and lies at a distance (1 - 8)p; + 6R from 0.

This intersection determines, together with 0, a new pyramid with the volume v;.
It is obvious that

q
Vg < 2 v
i=1
or, more explicitly,
1-oP-ls -(n-1
Vo < & 20 5i{a - o)p; + R - o)pg} s
that is,
[- o]
(25) Vp < (1-6)"V+0o(-0""RS+ T o560,

j=2

where the series is convergent for § < 1. The explicit values of the aj are of no in-
terest for our purposes. In any case, (24) and (25) show that dVy/do|g-o exists and
that

dvyg |

(26) -2
de 8=0

= -nV + RS.

We now specialize (18) as follows: We extend the integrals over the orthogonal pro-
jections of K,, K,, Ky and substitute px =1. The quantities 0K, OK,, 0Ky may be

the lengths of secants perpendicular to the projection plane. They are evidently con-
vex functionals. We have
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Vg =f°K9dV9: Vl = foK]_dvl’ V’2 = J-G.szvz.

At 6 = 0, the differential quotient with respect to 6 of the left-hand side of (18)
must be greater or equal to that of the right-hand side, because of the inequality and
the fact that both sides of (18) are equal for 6 = 0. Therefore we obtain, by means of
(26),

-nV, + RS, > -V, +V,,
(27)
-n - 1)V, + RS, > V,.

If we designate the volume of K, (polyhedron similar to K,, circumscribed about the
unit sphere, as mentioned above) by V, then

V, = RV,
and equation (27) takes the form
(28) -(n - 1)V, + RS, > ROV,

If we assume K,, K, to have equal surface areas S, = S,, we can always find an R, _;
such that the projections of K, K, on R,,_; have equal volumes and (19) can be ap-
plied. The reason is that the surface area S of a convex body in R, can be found,
according to Cauchy, by integrating its (n - 1)-dimensional orthogonal projections
over all directions:

2
@n .1

S =

JPdw,

where w,_; denotes the volume of the unit sphere in R, _,, where P is the volume
of an orthogonal projection, and where dw is the solid angle element of their direc-
tions. Since

S, = S, = nR*"'V,
R can be expressed in terms of S, and v
(29) R = (8,/nV)Y/(n-1)
Replacing R in (28) by the expression (29), we obtain the result
(30) 8% > n*Vvp-l,
Inequality (30) represents an isoperimetric inequality between the surface area and
the volume of a polyhedron. It was first proved by G. Bol and the author [2] by means

of other methods. It is remarkable that the value of R given by (29) is the minimum
of the polynomial

(31). RV -RS,+ m- 1)V, (0<R).
The inequality (30) can be improved. (In the two-dimensional case an inequality

similar to (28) has been derived by Bonnesen.) For this purpose we first return to
the geometrical meaning of R. We consider again our bodies K, and K,



CONTRIBUTIONS TO THE THEORY OF CONVEX BODIES 47
(circumscribed about the unit sphere with lateral surfaces parallel to those of K,).
Let P,, P be their orthogonal projections on an R, _j. Then (29) holds for every R
satisfying the condition
(32) rR*-! = p /P
Let Rmax denote the maximum of R reached for a certain direction of projection, and
Rmin the minimum. Let R, as defined by (29), be called R,. Then R, makes the
polynomial (31) a minimum, as said before. Inequality (28) shows that

(33) Rp.xV=R__,.S+ -1V <O0.

(We now omit the subscript 1 in S,, V,.)

We now write
R = Ry+ 1.
Taking into account the fact that the value of the expression in (33) is not smaller than
RIV -RS+ (n- 1)V,

we obtain
—~ —~ n n - -
(34) RyV-RS+ (n- 1NV -VY ( i)ulR?"'
i=2

In the same manner we find, writing Ry,in = R, - 0, that

( il) ol(- 1}RD-i,

M=

(35) ROV -ReS+ (n- 1)V < -V

1

2

The right-hand sides of (34) and (35) are negative. Inequalities (34) and (35) are there-
fore sharper inequalities than (31). Since

=(})eniorg > Jo%RE,
we can replace (34) and (35) by the less sharp but more elegant inequalities
(36) RV - RoS+ (n - DV < _(;)HZRB-ZV,
(37) RBV - RoS+ (n - 1V < -30’RE-2V.

By adding (36) and (37), we obtain

RyV - RyS+ (n - 1)V

(38) _ . L L ;3—1-]2
< B - @] 22w e
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The symbols require no further explanation.
We introduce (29) into (38) and obtain, finally

-n n 1
nn-lsn—l - ‘{r’n-lv

(39) 2 (n- i

n-2 Tn-

R 1
n-~1 n-1
e nls“l[g) -(g) . :
2@ -1) (P max \P/g

Now let us increase the number of lateral surfaces beyond any fixed limit in such a
way that K, tends to a regularly curved convex body and K, tends to the unit sphere.
We shall confine our considerations to the two- and three-dimensional cases. Since
volume, surface area, and curve length depend continuously on convex bodies, we are
allowed to apply (39) to bodies without vertices and edges: In this case we have to
substitute in R,:

= maximum breadth of the cufve, P_. = minimum breadth

P=2, P« min

of curve.

Denoting by L. and F the length of the curve K, and the area of the enclosed re-
gion, we obtain again Bonnesen’s result

w2
(40) 12 - 4nF 2 ? (Pmax - Pmin)z’
a famous improvement on the well-known plane isoperimetric inequality.

We now specialize (40) to R,;. (As far as I know this is the first analogue to
Bonnesen’s inequality (40).)

In R; we have to substitute

P=ou,
Pmax = orthogonal projection of maximum area of K,,
Pmin = orthogonal projection of minimum area of K,,
P, = S/4.

The result is:

(41) %53/2 - (41})1/2v > ‘?(meax - me'in)z Sl/z( Vo - 2 )

We recognize (41) as an improvement on the isoperimetric inequality in Rg:
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S3- 367 V2 > 0.

Another application of (18) follows. We take a convex body K, and take K, asa
sphere with the same volume V as K,, and such that K, and K, are tangent to the
same Rp-1. We denote by sj (i =1, 2) the distance of a point of K; from the R,,_;.

The integral f sidv; has the meaning

Ii=fSidVi= oV,

where 0; represents the distance of the center of gravity of K; (the interior filled
with mass of constant density) from R,_j. Since K, is a sphere, we have the rela-

n f
tion o, = vv/ wyn, Where w, is the volume of the unit sphere. We consider the inte-
gral

Ig =fsng9,

extended over the linear combination Kg=(1-0)K, + 6K,. We see immediately that

8=0

dIg
de

= -nl, + 0,V + szsldo'u

where do, denotes the surface element of K,. In the same manner as before, we con-
clude from (18), after substituting py = 1, oy = sy, that

42) -nI, + 0,V + 0, f s,do, > -I, + 0,V

Since

fsldol =T,+S,

where 7, is the distance of the center of gravity of K, from R,_; (the surface
covered with mass of constant density), we derive from (42) in an elementary way
(again omitting the now superfluous subscript 1), the inequality

(43)

This inequality is also an improvement on the classical isoperimetric inequality
since, for every body with o # 7, there exist tangential R,_; for which o> 7.

3. APPLICATIONS WITH p #1
We consider a convéx central surface S with center C. We shall derive an iso-

perimetric inequality between the principal moments of inertia of the surface (constant
surface density 1):

%) > £ > 1)
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and those of the volume (constant volume density 1):

i) > 1) > 19

Let us draw a plane P through C. The distance from P of an interior point of S
is called s. We consider the integral extended over the volume of S:

(44) 1= [sav.

The interior points of S can be mapped in a one-to-one way on the interior points of a
sphere K with an equal value I, and so that the plane P is transformed into itself.
Let sk denote the distances of the correspondmg interior points of K from P, and

sg those of the points of {(1 - 8)S + 6K}! from P. The symbol {(1-0)s+ GK}' denotes
the body consisting of the points (1 - 9)xg + 9}?1{, where xs, xK are points of S and K
associated with each other by the mapping. Since s} is a logarithmically convex func-
tion of 6, and {(1 - 9)S + 6K}' is contained in (1 - 8)S + 6K (taken in the Brunn-
Minkowski sense), our first theorem is applicable. Hence

]
(45) Ig >Ig>1,
where Ig, I) denote the integrals extended over (1 - 9)S+ 6K and {(1 - 0)S + 6K}',

respectively. From (45) it follows, in a manner analogous to the preceding examples,
that

(46) %@' = -51+st2doz 0,

where R is the radius of K and where the integral
47) f s?do

is extended over the surface of S. Since
(48) I = 47R%/15,

(46) implies the inequality

(49) ([s a0 )" > 2500 (fszdv)4.

The equal sign characterizes the spheres.

In order to derive from (49) an isoperimetric inequality between the Igs) and the
I(r), we remark that there exists a plane P,, passing through C, and with the follow-
ing property: The integral [s®dv has the same value with respect to every plane P

perpendicular to any direction in P,.. Well-known considerations about the circular
intersections of an ellipsoid show that, for such a P, the formula

fszdv = %(Iir) - 12(1-) + 1,(,’))
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holds. There exists another plane Ps such that
forao = 1() o) o 9,

for any plane perpendicular to any direction in Ps. If we now form the integrals
f s?dv and f s?do with respect to a plane the normal of which coincides with the di-

rection of the intersection of P, and Py, we obtain
£9) _ (), ()Y s 50007 (1(x) _ 1(x), 1)
(50) v - L7+ I3 > —3 LV -7+ 14 .

The inequality (49)_can be generalized. For instance, rela%tions similar to (49) exist

for any momenta |[sVdv, f s¥do (v > 0) provided that the fconvex surface has a center.

Another application of (18) improves inequalities, first derived by G. Bol [1] con-
cerning the integrals f a®dv (n> 0), where a denotes thé shortest distance of an in-

terior point from the boundary of a convex body K, (wh1ch is not assumed to have a
center). Denoting by s the distance of an interior pomt from a support plane, we con-
sider the integrals ‘

(51) I, = fsandv .

We have already shown that a, and therefore a™, are logarithmically convex func-
tionals, and that s is a convex functional. The relation (18) is therefore applicable to
(51) if we substitute 0 x= s, px = a® Inour case, K, is a sphere (of R) possessing

the same f adv as K,;. From (18) we conclude again thajt

dl
n
(52) 36 |g=0 = °

or that
-n+ 4)I,+ R |a"dv + nR san-1 dv> -1, + (Jsandv K,
Because of the relations
n = n =
(fsa dv)K2 = R(fa dv)K2 R(fandv K,’
the inequality (52) can be written
-(n+ 3)I, + ansan"1 dv > 0.

|
l
We introduce the notation ‘
|
\

fandv = Vg,
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and denote by o, the distance of the center of gravity of the body (covered with the
mass density an) from the support plane. Since

(ona 8nRn -3
Vn = fa & = G Dms @ 3)

we obtain
n+3 n+3
n(n+3)(n +1)(n+ 2) Va-1 ( On )
o

53
(53) 87(n + 3)nt+2 yot2 =

n-1

(53) improves Bol’s inequalities, just as (43) improves the classical isoperimetric
inequality.
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