CONTRIBUTIONS TO THE THEORY OF CONVEX BODIES

Herbert Knothe

1. GENERALIZATION OF THE PRINCIPAL THEOREM OF BRUNN AND MINKOWSKI

The Brunn-Minkowski theorem on closed convex bodies in n-dimensional Euclidean space can be extended by introducing a suitably defined logarithmically convex functional $\rho_K(\widehat{\mathbf{x}})$. In the present paper we give a proof of such an extension which was announced orally by the author [4], some years ago. Similarly to the way in which the Brunn-Minkowski theorem provides a means for deriving the isoperimetric inequality, our extension leads to a more general inequality. The functional $\rho_K(\widehat{\mathbf{x}})$ shall be a local function, in the interior and on the boundary of a convex body K, which depends not only on the point $\widehat{\mathbf{x}}$ ($\widehat{\mathbf{x}}$ denotes a local vector), but also on K. This dependence shall satisfy the following four conditions.

1. Continuity: If $K_1 \rightarrow K_2$ and $\overrightarrow{x_1} \rightarrow \overrightarrow{x_2}$, then

$$\rho_{K_1}(\overrightarrow{x_1}) \rightarrow \rho_{K_2}(\overrightarrow{x_2})$$
.

Here the statement $K_1 \rightarrow K_2$ means that the distance between two parallel directed support planes of K_1 and K_2 tends to zero for all directions of these planes.

2. Homogeneity: If $\lambda K + \overrightarrow{a}$ denotes a body which is obtained by applying to K a similarity transformation λK and a translation characterized by the vector \overrightarrow{a} , then the relation

$$\rho_{\lambda K+a}(\lambda x + a) = \lambda^m \rho_K(x)$$

shall hold.

3. Logarithmic convexity: If

$$K_{\theta} = (1 - \theta)K_1 + \theta K_2 \qquad (0 \le \theta \le 1)$$

denotes the linear combination of K1, K2 in the Brunn-Minkowski sense, the inequality

(1)
$$\log \rho_{K_{\theta}} \left\{ (1 - \theta) \overset{\Rightarrow}{x_1} + \theta \overset{\Rightarrow}{x_2} \right\} \geq (1 - \theta) \log \rho_{K_1} (\overset{\Rightarrow}{x_1}) + \theta \log \rho_{K_2} (\overset{\Rightarrow}{x_2})$$

shall hold, where \overrightarrow{x}_1 , \overrightarrow{x}_2 are arbitrarily chosen points of K_1 , K_2 , respectively.

4. Nonnegativeness:

$$\rho_{K}(\hat{\bar{x}}) \geq 0.$$

It is easily shown that (2) implies that $\rho_K(\vec{x})$ can vanish only at a boundary point.

Example 1. Let $a = \rho_K(\widehat{x})$ denote the shortest distance of \widehat{x} from the boundary of K. It is evident that a satisfies the conditions 1, 2, 4. We shall prove that

Received January 20, 1956.

condition 3 is also fulfilled: Let x_1, x_2 be two points in K_1, K_2 , respectively, and consider the point $x_{\theta} = (1 - \theta)x_1 + \theta x_2$ in $K_{\theta} = (1 - \theta)K_1 + \theta K_2$. Let a_{θ} be the shortest distance of x_{θ} from the boundary. We draw two straight line segments from x_1, x_2 to the boundaries of K_1, K_2 . Let their lengths be a_1, a_2 . They are to be parallel to a straight line segment through x_{θ} of length a_{θ} . It is obvious that

(3)
$$a_{\theta} \geq (1 - \theta)\widetilde{a_1} + \theta \widetilde{a_2} \geq (1 - \theta)a_1 + \theta a_2,$$

where a_1 , a_2 are the shortest distances of \overline{x}_1 , \overline{x}_2 from the boundaries of K_1 , K_2 . Condition (3) says that a is a convex functional under linear combinations of convex bodies. Since

$$\log a_{\theta} \ge \log \{(1-\theta)a_1 + \theta a_2\} \ge (1-\theta) \log a_1 + \theta \log a_2$$
,

a is also a logarithmically convex functional.

Example 2. Let σ denote the distance of a point of K from a tangent plane of K with a normal parallel to a fixed direction in space. Then σ satisfies conditions 1 to 4.

THEOREM. The (n + m)th root of the integral

$$\int_{K} \rho_{K} dv$$
 (ρ_{K} homogeneous of the mth degree),

extended over the volume (with element dv) of a convex body K, is a convex functional under linear combinations $K_{\theta} = (1 - \theta)K_1 + \theta K_2$. In other words,

(4)
$$\sqrt[n+m]{\int_{K_{\theta}} \rho_{K_{\theta}} dv_{\theta}} \ge (1 - \theta) \sqrt[n+m]{\int_{K_{1}} \rho_{K_{1}} dv_{1}} + \theta \sqrt[n+m]{\int_{K_{2}} \rho_{K_{2}} dv_{2}}.$$

We first prove (4) under the assumption that

$$\int_{K_{1}} \rho_{K_{1}} dv_{1} = \int_{K_{2}} \rho_{K_{2}} dv_{2}$$

Let x_1, \dots, x_n be cartesian coordinates in R_n . Both K_1 and K_2 have two support planes (an "upper" and a "lower" one) perpendicular to the x_n -axis. Let their corresponding x_n -values be x_n^0 , x_n^1 , for K_1 and \overline{x}_n^0 , \overline{x}_n^1 , for K_2 . The points (\overline{x}_1) of K_2 are to be associated with the points (x_1) of K_1 in the following way: We determine x_n , \overline{x}_n so that the planes $x_n = \text{const.}$ and $\overline{x}_n = \text{const.}$ cut equal volumes from K_1 , K_2 :

(5)
$$\int_{\mathbf{x}_n^0}^{\mathbf{x}_n} \left\{ \int \cdots \int \rho_{\mathbf{K_1}} d\mathbf{x_1} \cdots d\mathbf{x_{n-1}} \right\} d\mathbf{x_n} = \int_{\overline{\mathbf{x}_n^0}}^{\overline{\mathbf{x}_n}} \left\{ \int \cdots \int \rho_{\mathbf{K_2}} d\overline{\mathbf{x_1}} \cdots d\overline{\mathbf{x_{n-1}}} \right\} d\overline{\mathbf{x}_n}.$$

Thus we obtain a correspondence $\overline{x}_n = f_n(x_n)$ between \overline{x}_n and x_n . Equation (5) can be written in differential form:

1

We now consider two (n-1)-dimensional intersections of K_1 and K_2 corresponding to the values x_n and $\overline{x}_n = f_n(x_n)$. For any pair of values x_n and $\overline{x}_n = f_n(x_n)$, the coordinate \overline{x}_{n-1} can be mapped on x_{n-1} so that

$$(7) \int_{\mathbf{x}_{n-1}^{0}(\mathbf{x}_{n})}^{\mathbf{x}_{n-1}} \left\{ \int \cdots \int \rho_{K_{1}} d\mathbf{x}_{1} \cdots d\mathbf{x}_{n-2} \right\} d\mathbf{x}_{n-1} = \frac{d\overline{\mathbf{x}}_{n}}{d\mathbf{x}_{n}} \int_{\overline{\mathbf{x}}_{n-1}^{0}(\mathbf{x}_{n})}^{\overline{\mathbf{x}}_{n-1}} \left\{ \int \cdots \int \rho_{K_{2}} d\overline{\mathbf{x}}_{1} \cdots d\overline{\mathbf{x}}_{n-2} \right\} d\mathbf{x}_{n-1}.$$

Equation (7) furnishes the relation $\overline{x}_{n-1} = f_{n-1}(x_{n-1}, x_n)$. For every pair x_{n-1}, x_n equation (7) may be differentiated with respect to x_{n-1} :

(8)
$$\int \cdots \int \rho_{K_1} dx_1 \cdots dx_{n-2} = \frac{d\overline{x}_n}{dx_n} \frac{\partial \overline{x}_{n-1}}{\partial x_{n-1}} \int \cdots \int \rho_{K_2} dx_1 \cdots dx_{n-2}.$$

Continuing this procedure, we cut the intersections $x_n = \text{const.}$, $x_{n-1} = \text{const.}$ of K_1 and the corresponding intersections

$$\bar{x}_n = f_n(x_n) = \text{const.}, \quad \bar{x}_{n-1} = f_{n-1}(x_{n-1}, x_n) = \text{const.}$$

into slices perpendicular to the x_{n-2} -axis. As before, a correspondence between the values x_{n-2} , \overline{x}_{n-2} can be established:

(9)
$$\int_{\mathbf{x}_{n-2}(\mathbf{x}_{n-1},\mathbf{x}_n)}^{\mathbf{x}_{n-2}} \left\{ \int \cdots \int \rho_{K_1} d\mathbf{x}_1 \cdots d\mathbf{x}_{n-3} \right\} d\mathbf{x}_{n-2}$$

$$= \frac{d\overline{\mathbf{x}}_n}{d\mathbf{x}_n} \frac{\partial \overline{\mathbf{x}}_{n-1}}{\partial \mathbf{x}_{n-1}} \int_{\overline{\mathbf{x}}_{n-2}(\mathbf{x}_{n-1},\mathbf{x}_n)}^{\overline{\mathbf{x}}_{n-2}} \left\{ \int \cdots \int \rho_{K_2} d\overline{\mathbf{x}}_1 \cdots d\overline{\mathbf{x}}_{n-3} \right\} d\overline{\mathbf{x}}_{n-2};$$

this is equivalent to a relation

(10)
$$\overline{\mathbf{x}}_{n-2} = \mathbf{f}_{n-2}(\mathbf{x}_{n-2}, \mathbf{x}_{n-1}, \mathbf{x}_n)$$
.

Finally we obtain a one-to-one mapping of the points of K_2 , K_1 such that

(11)
$$\rho_{K_1} dx_1 \cdots dx_n = \rho_{K_2} d\overline{x}_1 \cdots d\overline{x}_n.$$

Equation (12) represents a generalized volume-preserving mapping of K_2 on K_1 , the points of K_1 and K_2 having the "weights" ρ_{K_1} , ρ_{K_2} . The Jacobian matrix of the mapping has the form

(12)
$$\left(\frac{\partial \overline{\mathbf{x}}_{1}}{\partial \mathbf{x}_{1}}\right) = \begin{pmatrix} \frac{\partial \overline{\mathbf{x}}_{1}}{\partial \mathbf{x}_{1}} & \frac{\partial \overline{\mathbf{x}}_{1}}{\partial \mathbf{x}_{2}} & \cdots & \frac{\partial \overline{\mathbf{x}}_{1}}{\partial \mathbf{x}_{n}} \\ 0 & \frac{\partial \overline{\mathbf{x}}_{2}}{\partial \mathbf{x}_{2}} & \cdots & \frac{\partial \overline{\mathbf{x}}_{2}}{\partial \mathbf{x}_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{\partial \overline{\mathbf{x}}_{n}}{\partial \mathbf{x}_{n}} \end{pmatrix},$$

all the elements beneath the principal diagonal being zero. The body

$$\mathbf{K}_{\theta} = (1 - \theta)\mathbf{K}_1 + \theta\mathbf{K}_2$$

contains all points $(1 - \theta)\overline{x}_1 + \theta \overline{x}_2$. A fortiori, K_{θ} contains the points

$$(13) (1 - \theta)\overline{x}_1 + \theta \overline{x}_2,$$

where the \overline{x}_2 correspond to the x_1 , by our generalized volume-preserving mapping. The point (13) has the coordinates $(1 - \theta)x_1 + \theta \overline{x}_1$.

The Jacobian

$$\left(\begin{array}{c} \frac{\theta \left\{ (1 \, - \, \theta) \mathbf{x_i} \, + \, \theta \overline{\mathbf{x_i}} \right\}}{\partial \mathbf{x_K}} \end{array} \right)$$

(14) $\begin{pmatrix} (1-\theta) + \theta \frac{\partial \overline{x}_1}{\partial x_1} & (1-\theta) + \theta \frac{\partial \overline{x}_1}{\partial x_2} & \cdots & (1-\theta) + \theta \frac{\partial \overline{x}_1}{\partial x_n} \\ 0 & (1-\theta) + \theta \frac{\partial \overline{x}_2}{\partial x_2} & \cdots & (1-\theta) + \theta \frac{\partial \overline{x}_2}{\partial x_n} \\ 0 & 0 & \cdots & (1-\theta) + \theta \frac{\partial \overline{x}_n}{\partial x_n} \end{pmatrix}.$

Thus we see that the integrand in the integral $\int_{K_{\theta}} \rho_{K_{\theta}} dv_{\theta}$ in (4) satisfies the equality

(15)
$$\rho_{K_{\theta}} dv_{\theta} = \rho_{K_{\theta}} \left(1 - \theta + \theta \frac{\partial \overline{x}_{1}}{\partial x_{1}} \right) \left(1 - \theta + \theta \frac{\partial \overline{x}_{2}}{\partial x_{2}} \right) \cdots \left(1 - \theta + \theta \frac{\partial \overline{x}_{n}}{\partial x_{n}} \right) dx_{1} \cdots dx_{n}.$$

Since

$$\log \rho_{\mathrm{K}_{1}} = \log \left\{ \rho_{\mathrm{K}_{2}} \frac{\partial \overline{\mathbf{x}}_{1}}{\partial \mathbf{x}_{1}} \frac{\partial \overline{\mathbf{x}}_{2}}{\partial \mathbf{x}_{2}} \cdots \frac{\partial \overline{\mathbf{x}}_{n}}{\partial \mathbf{x}_{n}} \right\},\,$$

we conclude from (1) and

(16)
$$\log \left(1 - \theta + \theta \frac{\partial \overline{x}_i}{\partial x_i}\right) \ge \theta \log \frac{\partial \overline{x}_i}{\partial x_i}$$

that

(17)
$$\int_{K_{\theta}} \rho_{K_{\theta}} dv_{\theta} \geq \int_{K_{1}} \rho_{K_{1}} dv_{1}.$$

(As the development shows, $\frac{\partial \overline{x}_i}{\partial x_i}$ is never negative, and it can not be zero except on the boundary.)

We see further that the more general relation

$$\int_{D_{\theta}} \rho_{K_{\theta}} dv_{\theta} \geq \int_{D} \rho_{K_{1}} dv_{1}$$

holds, where the integral on the right-hand side is extended over an arbitrary domain D of K_1 . The integral on the left-hand side is extended over a domain in K_θ which arises from D by applying to D the generalized volume-preserving mapping. From this statement we derive immediately the result

(18)
$$\int_{K_{\theta}} \sigma_{K_{\theta}} \rho_{K_{\theta}} dv_{\theta} \geq (1 - \theta) \int_{K_{1}} \sigma_{K_{1}} \rho_{K_{1}} dv_{1} + \theta \int_{K_{2}} \sigma_{K_{2}} \rho_{K_{2}} dv_{2},$$

where σ_K denotes a convex functional obeying the same laws as ρ_K , in addition to the following:

(19)
$$\sigma_{K_{\theta}} \{ (1 - \theta) \overset{\triangleright}{\mathbf{x}_{1}} + \theta \overset{\triangleright}{\mathbf{x}_{2}} \} \geq (1 - \theta) \sigma_{K_{1}} (\overset{\triangleright}{\mathbf{x}_{1}}) + \theta \sigma_{K_{2}} (\overset{\triangleright}{\mathbf{x}_{2}}) .$$

Here the local vectors x_1, x_2 are arbitrary points of K_1, K_2 .

The decision on the validity of the equal sign can be made without difficulty. Equation (17) shows that we must have

$$\frac{\partial \overline{x}_{i}}{\partial x_{i}} \equiv 1,$$

identically for every direction of the coordinate axes. Therefore

$$\overline{x}_i = x_i + a_i$$
, $a_i = const.$

In other words, equality in (17) and (18) takes place only if K_1 , K_2 can be transformed into each other by a translation. This concludes the proof of the theorem for the special case where

$$\int_{K_{1}} \rho_{K_{1}} dv_{1} = \int_{K_{2}} \rho_{K_{2}} dv_{2}.$$

We now consider the case where

$$\int_{K_1} \rho_{K_1} dv_1 \neq \int_{K_2} \rho_{K_2} dv_2.$$

By subjecting K_2 to a similarity transformation $\overline{K}_2 = \lambda K_2$ and choosing λ suitably, we arrive at the relation

$$\int\!\!\rho_{K_1} dv_1 = \int\!\!\rho_{\overline{K}_2} d\overline{v}_2 = \lambda^{m+1} \int_{K_2} \!\!\rho_{K_2} dv_2.$$

Substituting $\overline{K}_{\theta} = (1 - \theta)K_1 + \theta \overline{K}_2$, we obtain from (17)

(20)
$$\int_{K_{\theta}}^{\overline{L}} \rho_{K_{\theta}} dv_{\theta} \geq \int \rho_{K_{1}} dv_{1} = (1 - \theta) \int_{K_{1}}^{\overline{L}} \rho_{K_{1}} dv_{1} + \theta \lambda^{m+n} \int_{K_{2}}^{\overline{L}} \rho_{K_{1}} dv_{2},$$

where ho_K is supposed to be homogeneous of the mth degree in R_n . Since

(21)
$$\overline{K}_{\theta} = (1 - \theta)K_1 + \theta \overline{K}_2 = (1 - \theta)K_1 + \theta \lambda K_2,$$

the following substitution suggests itself:

(22)
$$1 - \theta = \sigma(1 - \mu),$$
$$\theta \lambda = \sigma \mu,$$

where μ and θ run from 0 to 1. By combining (20), (21) and (22), we find that

(23)
$$\sigma^{m+n} \int_{K_{\mu}} \rho_{K_{\mu}} dv_{\mu} \geq (1 - \theta) \int_{K_{1}} \rho_{K_{1}} dv_{1} + \theta \lambda^{m+n} \int_{K_{2}} \rho_{K_{2}} dv_{2}.$$

We extract the (m+n)th root on both sides of (23) and take advantage of the elementary relation

$$\{(1 - \theta)a + \theta b\}^{1/n} \ge (1 - \theta)a^{1/n} + \theta b^{1/n};$$

this leads to the inequality

$$\sigma \left[\int_{K_{\mu}} \rho_{K_{\mu}} dv_{\mu} \right]^{1/(m+n)} \geq (1 - \theta) \left[\int_{K_{1}} \rho_{K_{1}} dv_{1} \right]^{1/(m+n)} + \theta \lambda \left[\int_{K_{2}} \rho_{K_{2}} dv_{2} \right]^{1/(m+n)}$$

or, with reference to (22),

$$\left[\int_{\mathbf{K}_{\mu}} \rho_{\mathbf{K}_{\mu}} d\mathbf{v}_{\mu}\right]^{1/(m+n)} \geq (1 - \mu) \left[\int_{\mathbf{K}_{1}} d\mathbf{v}_{1}\right]^{1/(m+n)} + \mu \left[\int_{\mathbf{K}_{2}} \rho_{\mathbf{K}_{2}} d\mathbf{v}_{2}\right]^{1/(m+n)}.$$

The equal sign characterizes the case where K_2 , K_1 can be transformed into each other by a similarity transformation and a translation. We shall say, with Minkowski, that K_1 and K_2 are homothetic.

2. APPLICATIONS WITH $\rho = 1$

Let us first apply (18) to polyhedra in R. Let K_1 be a polyhedron with q lateral surfaces, and \overline{K}_2 a polyhedron circumscribed about the unit sphere, with q lateral surfaces parallel to those of K_1 . We project K_1 and K_2 orthogonally on the same R_{n-1} , the volumes of the convex projections being P_1 , P_2 . By means of a similarity transformation applied to K_2 ($K_2 \rightarrow RK_2$), we can arrange that the projections P_1 , P_2 of K_1 and K_2 have equal volumes. The linear combination

$$K_{\theta} = (1 - \theta)K_1 + \theta K_2$$

is also a polyhedron with q lateral surfaces parallel to those of K_1 , K_2 . For the sake of simplicity, we assume the center of the sphere inscribed in K_2 to be the origin 0 of our cartesian coordinate system. Moreover, we suppose 0 to be in the interior of K_1 . Let p_i ($i=1,\cdots,q$) be the distances of the q lateral surfaces of K_1 from 0. Let R be the distance of those of K_2 from 0. The distances of the lateral surfaces of K_{θ} from 0 are

$$(1 - \theta)p_i + \theta R$$
.

 K_{θ} can be generated in the following way: First we subject K_1 to a similarity transformation $\overline{K}_1 + (1 - \theta)K_1$. Then we translate the lateral surfaces of \overline{K}_1 outward by the amount θR . Let s_i be the (n-1)-dimensional volumes of the lateral surfaces of K_1 , V_1 the volume, S_1 the surface of K_1 . The volume V_{θ} of K_{θ} certainly satisfies the inequality

(24)
$$V_{\theta} \geq (1 - \theta)^{n} V + \theta (1 - \theta)^{n-1} R \sum_{i=1}^{q} s_{i} = (1 - \theta)^{n} V + \theta (1 - \theta)^{n-1} RS.$$

An upper bound on V_{θ} is found by means of the following method:

We consider a pyramid determined by a lateral surface A_i of \overline{K}_1 ((1 - θ) p_i is its distance from 0) and 0. The lateral surfaces passing through 0 are cut by a plane which is parallel to A_i and lies at a distance (1 - θ) p_i + θ R from 0.

This intersection determines, together with 0, a new pyramid with the volume v_i . It is obvious that

$$v_{\theta} \leq \sum_{i=1}^{q} v_i$$

or, more explicitly,

$$V_{\theta} \leq \sum \frac{(1-\theta)^{n-1}s_{i}}{n} \{(1-\theta)p_{i} + R\theta\}^{n} \{(1-\theta)p_{i}\}^{-(n-1)};$$

that is,

(25)
$$V_{\theta} \leq (1-\theta)^{n}V + \theta(1-\theta)^{n-1}RS + \sum_{j=2}^{\infty} \alpha_{j}\theta^{j},$$

where the series is convergent for $\theta < 1$. The explicit values of the α_j are of no interest for our purposes. In any case, (24) and (25) show that $dV_{\theta}/d\theta \big|_{\theta=0}$ exists and that

$$\frac{dV_{\theta}}{d\theta}\bigg|_{\theta=0} = -nV + RS.$$

We now specialize (18) as follows: We extend the integrals over the orthogonal projections of K_1 , K_2 , K_θ and substitute $\rho_K \equiv 1$. The quantities σ_{K_1} , σ_{K_2} , σ_{K_θ} may be the lengths of secants perpendicular to the projection plane. They are evidently convex functionals. We have

$$V_{\theta} = \int \sigma_{K_{\theta}} dv_{\theta}, \quad V_{1} = \int \sigma_{K_{1}} dv_{1}, \quad V_{2} = \int \sigma_{K_{2}} dv_{2}.$$

At $\theta = 0$, the differential quotient with respect to θ of the left-hand side of (18) must be greater or equal to that of the right-hand side, because of the inequality and the fact that both sides of (18) are equal for $\theta = 0$. Therefore we obtain, by means of (26),

$$-nV_1 + RS_1 \ge -V_1 + V_2,$$

$$-(n-1)V_1 + RS_1 > V_2.$$

If we designate the volume of \overline{K}_2 (polyhedron similar to K_2 , circumscribed about the unit sphere, as mentioned above) by \widetilde{V} , then

$$V_2 = R^n \widetilde{V},$$

and equation (27) takes the form

$$-(n-1)V_1 + RS_1 \ge R^n \widetilde{V}.$$

If we assume K_1 , K_2 to have equal surface areas $S_1 = S_2$, we can always find an R_{n-1} such that the projections of K_1 , K_2 on R_{n-1} have equal volumes and (19) can be applied. The reason is that the surface area S of a convex body in R_n can be found, according to Cauchy, by integrating its (n-1)-dimensional orthogonal projections over all directions:

$$S = \frac{2}{\omega_{n-1}} \int Pd\omega,$$

where ω_{n-1} denotes the volume of the unit sphere in R_{n-1} , where P is the volume of an orthogonal projection, and where $d\omega$ is the solid angle element of their directions. Since

$$S_1 = S_2 = nR^{n-1}\widetilde{V},$$

R can be expressed in terms of S_1 and \widetilde{V} :

(29)
$$R = (S_1/n\widetilde{V})^{1/(n-1)}.$$

Replacing R in (28) by the expression (29), we obtain the result

$$S_1^n \geq n^n \widetilde{V} V_1^{n-1}.$$

Inequality (30) represents an isoperimetric inequality between the surface area and the volume of a polyhedron. It was first proved by G. Bol and the author [2] by means of other methods. It is remarkable that the value of R given by (29) is the minimum of the polynomial

(31)
$$R^{n}\widetilde{V} - RS_{1} + (n-1)V_{1} \qquad (0 \leq R)$$
.

The inequality (30) can be improved. (In the two-dimensional case an inequality similar to (28) has been derived by Bonnesen.) For this purpose we first return to the geometrical meaning of R. We consider again our bodies K_1 and \overline{K}_2

(circumscribed about the unit sphere with lateral surfaces parallel to those of K_1). Let P_1 , \widetilde{P} be their orthogonal projections on an R_{n-1} . Then (29) holds for every R satisfying the condition

$$R^{n-1} = P_1/\widetilde{P}$$

Let R_{max} denote the maximum of R reached for a certain direction of projection, and R_{min} the minimum. Let R, as defined by (29), be called R_0 . Then R_0 makes the polynomial (31) a minimum, as said before. Inequality (28) shows that

(33)
$$R_{\max}^{n} \widetilde{V} = R_{\max} S + (n-1)V \leq 0.$$

(We now omit the subscript 1 in S_1 , V_1 .)

We now write

$$R_{\text{max}} = R_0 + \mu$$
.

Taking into account the fact that the value of the expression in (33) is not smaller than

$$R_0^n \widetilde{V} - R_0 S + (n-1)V$$

we obtain

(34)
$$R_0^n \widetilde{V} - R_0 S + (n-1)V \leq -\widetilde{V} \sum_{i=2}^n \binom{n}{i} \mu^i R_0^{n-i}.$$

In the same manner we find, writing $R_{min} = R_0 - \sigma$, that

(35)
$$R_0^n \widetilde{V} - R_0 S + (n-1)V \leq -\widetilde{V} \sum_{i=2}^n \binom{n}{i} \sigma^i (-1)^i R_0^{n-i}$$
.

The right-hand sides of (34) and (35) are negative. Inequalities (34) and (35) are therefore sharper inequalities than (31). Since

$$\sum {n \choose i} (-1)^i \sigma^i R_0^{n-i} \ge \frac{n}{2} \sigma^2 R_0^{n-2},$$

we can replace (34) and (35) by the less sharp but more elegant inequalities

(36)
$$R_0^n \widetilde{V} - R_0 S + (n-1)V \le -\binom{n}{2} \mu^2 R_0^{n-2} \widetilde{V}$$
,

(37)
$$R_0^n \widetilde{V} - R_0 S + (n-1)V \le -\frac{n}{2} \sigma^2 R_0^{n-2} \widetilde{V}.$$

By adding (36) and (37), we obtain

$$R_0^n \widetilde{V} - R_0 S + (n - 1)V$$

$$\leq -\frac{n}{4}\widetilde{\mathbb{V}}R_0^{n-2} \left[\left(\frac{P}{\widetilde{P}} \right)_{\max}^{\frac{1}{n-1}} - \left(\frac{P}{\widetilde{P}} \right)_{\min}^{\frac{1}{n-1}} \right]^2 - \frac{n(n-2)}{2}\widetilde{\mathbb{V}}R_0^{n-2} \left[\left(\frac{P}{\widetilde{P}} \right)_{\max}^{\frac{1}{n-1}} - \left(\frac{P}{\widetilde{P}} \right)_0^{\frac{1}{n-1}} \right]^2.$$

The symbols require no further explanation.

We introduce (29) into (38) and obtain, finally

$$n^{\frac{-n}{n-1}}S^{\frac{n}{n-1}} - \widetilde{V}^{\frac{1}{n-1}}V$$

$$\geq \frac{1}{4(n-1)} n^{\frac{1}{n-1}} \widetilde{V}^{\frac{2}{n-1}} s^{\frac{n-2}{n-1}} \cdot \left[\left(\frac{P}{\widetilde{P}} \right)^{\frac{1}{n-1}}_{\max} - \left(\frac{P}{\widetilde{P}} \right)^{\frac{1}{n-1}}_{\min} \right]^{2}$$

$$+ \frac{n-2}{2(n-1)} \widetilde{V}^{\frac{2}{n-1}} n^{\frac{1}{n-1}} s^{\frac{n-2}{n-1}} \left[\left(\frac{P}{\widetilde{P}} \right)^{\frac{1}{n-1}}_{\max} - \left(\frac{P}{\widetilde{P}} \right)^{\frac{1}{n-1}}_{n-1} \right]^{2} .$$

Now let us increase the number of lateral surfaces beyond any fixed limit in such a way that K_1 tends to a regularly curved convex body and \overline{K}_2 tends to the unit sphere. We shall confine our considerations to the two- and three-dimensional cases. Since volume, surface area, and curve length depend continuously on convex bodies, we are allowed to apply (39) to bodies without vertices and edges: In this case we have to substitute in R_2 :

 $\widetilde{P} \equiv 2$, $P_{max} = maximum$ breadth of the curve, $P_{min} = minimum$ breadth of curve.

Denoting by L and F the length of the curve K_1 and the area of the enclosed region, we obtain again Bonnesen's result

(40)
$$L^2 - 4\pi F \ge \frac{\pi^2}{2} (P_{\text{max}} - P_{\text{min}})^2,$$

a famous improvement on the well-known plane isoperimetric inequality.

We now specialize (40) to R_3 . (As far as I know this is the first analogue to Bonnesen's inequality (40).)

In R₃ we have to substitute

$$\widetilde{P} \equiv \pi$$
.

 P_{max} = orthogonal projection of maximum area of K_1 ,

 P_{min} = orthogonal projection of minimum area of K_1 ,

$$P_0 = S/4$$
.

The result is:

(41)
$$\frac{1}{3}S^{3/2} - (4\pi)^{1/2}V \ge \frac{\sqrt{S}}{2} \left(\sqrt{P_{\max}} - \sqrt{P_{\min}}\right)^2 + \frac{S^{1/2}}{4} \left(\sqrt{P_{\max}} - \frac{1}{2}\sqrt{S}\right)^2.$$

We recognize (41) as an improvement on the isoperimetric inequality in R_3 :

$$S^3 - 36\pi V^2 > 0$$
.

Another application of (18) follows. We take a convex body K_1 and take K_2 as a sphere with the same volume V as K_1 , and such that K_1 and K_2 are tangent to the same R_{n-1} . We denote by s_i (i=1,2) the distance of a point of K_i from the R_{n-1} . The integral $\int s_i dv_i$ has the meaning

$$I_{i} = \int s_{i} dv_{i} = \sigma_{i} V,$$

where σ_i represents the distance of the center of gravity of K_i (the interior filled with mass of constant density) from R_{n-1} . Since K_2 is a sphere, we have the relation $\sigma_2 = \sqrt[n]{V/\omega_n}$, where ω_n is the volume of the unit sphere. We consider the integral

$$I_{\theta} = \int s_{\theta} dv_{\theta}$$
,

extended over the linear combination $K_{\theta} = (1 - \theta)K_1 + \theta K_2$. We see immediately that

$$\frac{\mathrm{dI}_{\theta}}{\mathrm{d}\theta}\bigg|_{\theta=0} = -\mathrm{nI}_1 + \sigma_2 \mathrm{V} + \sigma_2 \int \mathrm{s}_1 \mathrm{d}\sigma_1,$$

where $d\sigma_1$ denotes the surface element of K_1 . In the same manner as before, we conclude from (18), after substituting $\rho_K \equiv 1$, $\sigma_K = s_K$, that

(42)
$$-nI_{1} + \sigma_{2}V + \sigma_{2} \int s_{1} d\sigma_{1} \geq -I_{1} + \sigma_{2}V.$$

Since

$$\int \mathbf{s_1} \, \mathrm{d}\sigma_1 = \tau_1 \cdot \mathbf{S},$$

where τ_1 is the distance of the center of gravity of K_1 from R_{n-1} (the surface covered with mass of constant density), we derive from (42) in an elementary way (again omitting the now superfluous subscript 1), the inequality

$$\frac{S^{n}}{n^{n}\omega_{n}V^{n-1}} \geq (\sigma/\tau)^{n}.$$

This inequality is also an improvement on the classical isoperimetric inequality since, for every body with $\sigma \neq \tau$, there exist tangential R_{n-1} for which $\sigma > \tau$.

3. APPLICATIONS WITH $\rho \neq 1$

We consider a convex central surface S with center C. We shall derive an isoperimetric inequality between the principal moments of inertia of the surface (constant surface density 1):

$$I_1^{(s)} \ge I_2^{(s)} \ge I_3^{(s)}$$

and those of the volume (constant volume density 1):

$$I_1^{(r)} \ge I_2^{(r)} \ge I_3^{(r)}$$
.

Let us draw a plane P through C. The distance from P of an interior point of S is called s. We consider the integral extended over the volume of S:

$$(44) I = \int s^2 dv.$$

The interior points of S can be mapped in a one-to-one way on the interior points of a sphere K with an equal value I, and so that the plane P is transformed into itself. Let s_K denote the distances of the corresponding interior points of K from P, and s_{θ} those of the points of $\{(1 - \theta)S + \theta K\}'$ from P. The symbol $\{(1 - \theta)S + \theta K\}'$ denotes the body consisting of the points $(1 - \theta)X_S + \theta X_K$, where X_S , X_K are points of S and K associated with each other by the mapping. Since s_{θ}^2 is a logarithmically convex function of θ , and $\{(1 - \theta)S + \theta K\}'$ is contained in $(1 - \theta)S + \theta K$ (taken in the Brunn-Minkowski sense), our first theorem is applicable. Hence

$$\mathbf{I}_{\theta} \geq \mathbf{I}_{\theta}' \geq \mathbf{I},$$

where I_{θ} , I_{θ}^{I} denote the integrals extended over $(1 - \theta)S + \theta K$ and $\{(1 - \theta)S + \theta K\}^{I}$, respectively. From (45) it follows, in a manner analogous to the preceding examples, that

(46)
$$\frac{\mathrm{dI}_{\theta}}{\mathrm{d}\theta}\bigg|_{\theta=0} = -5\mathrm{I} + \mathrm{R}\int \mathrm{s}^2 \,\mathrm{d}\sigma \geq 0,$$

where R is the radius of K and where the integral

$$\int s^2 d\sigma$$

is extended over the surface of S. Since

(48)
$$I = 4\pi R^5/15,$$

(46) implies the inequality

$$\left(\int s^2 d\sigma\right)^5 \geq \frac{2500}{3} \pi \left(\int s^2 dv\right)^4.$$

The equal sign characterizes the spheres.

In order to derive from (49) an isoperimetric inequality between the $I_j^{(s)}$ and the $I_j^{(r)}$, we remark that there exists a plane P_r , passing through C, and with the following property: The integral $\int s^2 dv$ has the same value with respect to every plane P perpendicular to any direction in P_r . Well-known considerations about the circular intersections of an ellipsoid show that, for such a P, the formula

$$\int s^2 dv = \frac{1}{2} \left(I_1^{(r)} - I_2^{(r)} + I_3^{(r)} \right)$$

holds. There exists another plane Ps such that

$$\int s^2 d\sigma = \frac{1}{2} \left(I_1^{(s)} - I_2^{(s)} + I_3^{(s)} \right),$$

for any plane perpendicular to any direction in P_s . If we now form the integrals $\int s^2 dv$ and $\int s^2 d\sigma$ with respect to a plane the normal of which coincides with the direction of the intersection of P_r and P_s , we obtain

(50)
$$\left(I_1^{(s)} - I_2^{(s)} + I_3^{(s)}\right)^5 \ge \frac{5000\pi}{3} \left(I_1^{(r)} - I_2^{(r)} + I_3^{(r)}\right)^4.$$

The inequality (49) can be generalized. For instance, relations similar to (49) exist for any momenta $\int s^{\nu} dv$, $\int s^{\nu} d\sigma$ ($\nu \geq 0$) provided that the convex surface has a center.

Another application of (18) improves inequalities, first derived by G. Bol [1] concerning the integrals $\int a^n \, dv$ ($n \geq 0$), where a denotes the shortest distance of an interior point from the boundary of a convex body K_1 (which is not assumed to have a center). Denoting by s the distance of an interior point from a support plane, we consider the integrals

$$I_{\mathbf{n}} = \int \mathbf{s} \mathbf{a}^{\mathbf{n}} d\mathbf{v}.$$

We have already shown that a, and therefore a^n , are logarithmically convex functionals, and that s is a convex functional. The relation (18) is therefore applicable to (51) if we substitute $\sigma_K = s$, $\rho_K = a^n$. In our case, K_2 is a sphere (of R) possessing the same $\int a^n \, dv$ as K_1 . From (18) we conclude again that

$$\frac{\mathrm{dI}_{\mathrm{n}}}{\mathrm{d}\theta}\Big|_{\theta=0}\geq 0,$$

or that

$$-(n+4)I_n + R \int a^n dv + nR \int sa^{n-1} dv \ge -I_n + \left(\int sa^n dv\right)_{K_2}.$$

Because of the relations

$$\left(\int sa^n dv\right)_{K_2} = R\left(\int a^n dv\right)_{K_2} = R\left(\int a^n dv\right)_{K_1}$$

the inequality (52) can be written

$$-(n+3)I_n + nR \int sa^{n-1} dv \ge 0$$
.

We introduce the notation

$$\int a^n dv = V_n,$$

and denote by σ_n the distance of the center of gravity of the body (covered with the mass density a^n) from the support plane. Since

$$V_n = \int a^n dv = \frac{8\pi R^{n-3}}{(n+1)(n+2)(n+3)},$$

we obtain

(53)
$$\frac{n^{(n+3)}(n+1)(n+2)}{8\pi(n+3)^{n+2}} \cdot \frac{V_{n-1}^{n+3}}{V_n^{n+2}} \ge \left(\frac{\sigma_n}{\sigma_{n-1}}\right)^{n+3}.$$

(53) improves Bol's inequalities, just as (43) improves the classical isoperimetric inequality.

REFERENCES

- 1. G. Bol. Zur Theorie der Eikörper, Jber. Deutsch. Math. Verein. 52 (1942), 250-266.
- 2. G. Bol and H. Knothe, Uber konvexe Körper mit Ecken und Kanten, Arch. Math. 1 (1948/49), 427-431.
- 3. A. Dinghas, Verschärfung der isoperimetrischen Ungleichung für konvexe Körper mit Ecken, Math. Z. 47 (1942), 669-575.
- 4. H. Knothe, Verallgemeinerungen des Hauptsatzes der Brunn-Minkowskischen Theorie, Berichte Mathematiker-Tagung Tübingen, 1946, 91-92; Math. Rev. 9 (1948), 155-156.

Holloman Air Development Center