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REMARKS ON A PREVIOUS PAPER
by
‘Chandler Davis

1. Raoul Bott suggested that a proof of Theorems 1 and 2 of [3]
which avoided metrical considerations might show the duality relation of
Theorem 2 as a consequence of standard duality theorems for convex
cones. This method is followed here?; it will be seen to shorten the proofs

almost to nothing.

It is convenient to take Theorem 1 in a s'light generalized form:
Let the cones U € EX and V € E® satisfy D{U} =E" .and (D{vh) ="
Then AU =V N D{AU} implies A'VT = Ut n Dy A'V}

Proof. First, AU = VN D{AU gives (AU = vt + (D{AU})"; there-
fore A'(AU)t = A'vt + A" (D{AU})*. Nowforany W C E" onehas Ar(Aaw)t
= W' N A'E™. Also 1n the present case D{AU} = AD{U} = AEK and
D{A'V*} =A'D{VH = A'E™. Therefore A'(AU)* =U' N D{A'V} and
AVt 1 A(D{AU})t = A'Vt + EK+ N A'EDR = A'V+. The statement has been
proved.

Furthermore, A'V+ is affine-equivalent to the geometric polar of AU.

Proof: The latter is (AU)T mod (D{AU})t = (AU)* mod (AEk)+. Naw
A' can be considered as defined on E® mod (AEK)Y, since (AEK)* isits
null-space; so considered, it is one-one, and an affine isomorphism.

Thms. 1 and 2 follow from the above by setting U = pk = gt , V=po
= V+, indeed, DtP } = Ek D{P"} = E", as required.

2. The following simple construction seems, surprisingly enough, to
be new.

Theorem 3. Every pointed convex polyhedral cone is affine-equival-
ent to the intersection of the positive orthant (in space of appropriate di-
mension) with a linear subspace.

Proof. Let the cone be APK c ER (where A may be chosen so that
extreme rays of pk go into extreme rays of AP ) Consider A'En n pk,
This cone may be represented in the form BP™ (with extreme rays of P™
going into extreme -rays of BP™). Now BP™ = PK N D{BP™}, so B'PK

1See: [3]. The present note follows the terminology and notation of [1] and
[3]. Numbers in brackets refer to the Bibliography.

2 The positive polar of a cone may be regarded as a cone in the dual space,
in which case all the proofs in this paper are of affine character. But the
dual space is not distinguished notationally.
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=P™M™ N D{B'Pk} by Theorem 1. The latter cone will be shown affine-
equivalentto APK. For this it is enough to show A and B' have the same
null,-_-spoee, that is, to show A' and B have the same range: BE™ = A'ER,

Now BP™ = A'ER N\ PK implies BE™ = D{BP™} € A'EDR, and e-
quality 'fails only if some element of A'E® fails to be a difference of ele-
ments of A'E™ N PK.. This will be ruled-out if A'E® intersects the inter -
ior of Pk as one can check without difficulty; that is, -if for some 'x we
have that. y ¢ pK implies y'A'x > 0. But the requirement that APK be
poxnted implies the. ex1stence of x such that Ay € APk 1mp11es x'Ay ; > 0.
This completes the proof -

, The point of interest:in -Theorem 3 is not the fact, but the construc-
tion The fact is essentlally the dual of the standard

“M"Theorem" 4. KEvery convex polvhedral cone is affine-equival'ent to

‘a’ pro,]ectlon of é pos1t1ve orthant that is, it is a linear ‘map of a positiv"e

“orthant.

Duality proof of Theorem 3. Write the positive polar of the given
‘cone as -CP™M €-ER. The fact that the given cone (CP™M)* is pointed means
_that En = D{CPm} = CE™,- which in turn means C' has, zero null-space.
'_But C! .carries (CPm)+ onto pPm, N C'En a cone of the desired sort.
"This completes the proof ' '

>

. The construction in the first proof is actually sxmpler To clarify
this it will be stated in terrns of matrices. -If the columns of the matrix.A,
considered as vectors, 11e along the extreme rays of the given cone, then
‘the .desired cone :is constructed as follows. Find a’ matrix B whose col-
umns are linear combinations of the rows of A (and vice versa) and “which
satisfies conditions (1), (2) (3) of [3].. The rows of B, considered as
.vectors, 11e along the extreme rays of the given cone _ This construction
involves (1n f1nd1ng B) an ‘inéquality system in whlch every 1nequa11ty says
a number is non- -negative, and only the equatmns ‘are non-trivial. This is
51mp1er than ‘the more general inequality system to be’ solved in finding C
in.the second proof - » ’ B

, 3. These theorems about pomted cones can be restated as theorems
about convex polytopes in the usual way: the intersection of a p01nted cone
in E" with an (n-1)-space intersecting the interior of each of its facets, is
a convex polytope,. and all convex polytopes are obtained in this way. Thus
‘we have these elementary remarks, which seem not to have been\ made be—

fore3:

Theorem 3'. Every convex polvtope is congruent to a section of a
simplex. To get (metric) congruence here one may have to take a simplex
which is not regular. The simplex may be chosen to have the same number

Proofs are given for special cases in [4], g ? 1.6, 1.13 and elsewhere.
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of faces as the polytope.

Theorem 4'. Every convex polytope is obtainable by orthogonal pro-
jection of a simplex. Again the simplex may not be regular. It may be
chosen to have the same number of vertices as the polytope.
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