STRONGLY DEFINITE POLYNOMIALS
D. J. Lewis

A polynomial F(X) = F(x,, X,, **, Xp) over a ring R will be said to be a definite
polynomial over R provided it has the property that its only zero in R is the trivial
one; that is, provided for all a; in R, the equation F(a,, a,, -+, a,) = 0 holds if and
only if a; =0 for i=1, 2, ---, n. Chevalley [2] proved that, for definite polynomials
over finite fields, the number of indeterminates cannot exceed the degree of the
polynomial. Brauer [1] demonstrated the existence of a function $y such that if
F(X) is a definite, homogeneous polynomial of degree d over a p-adic field K, then
n < &(d). No expression or bound for ®(d) has been determined, except that when
d < 3, then &(d) = d? (see[3, p 128], [4]).

Let K be a field which is complete under a discrete valuation, and which has a
finite residue class field. Let o be the ring of integers of K, p the prime ideal in
0, T a prime in p, and g the number of elements in the residue class field n/ p.

If F(X) is definite over p, then the compactness of o implies the existence of a
rational integer m such that, for a; in o, F(a,, a,, ***, a,) = 0 (mod p™) only if each
a; = 0 (mod p). This suggests a definition: A polynomial F(X) of degree d over »
will be said to be strongly definite over o provided that, for a; in o,

F(av a, **°, an) =0 (mod pd)

if and only if a; = 0 (mod p) (i=1, 2, ---, n). While we are unable to determine an
explicit formula for &g, we are able to obtain some results for strongly definite
polynomials.

THEOREM. Theve exist polynomials ¢4(y), of degree d - 1 over the ring of
vational integers, such that if F(X) is a strongly definite polynomial over v, of de-
gree d (A< q), then n < d®¢4(q - 1).

Our method of proof is analogous to that used in [2]. Let 8B, be the set of all
n-tuples of o/p, and let 9%, be the ring of all functions from g, to o/ »°. A poly-
nomial S(X) in n mdetermmates over o will be said to represent a functlon in %,
if, whenever a; =b; (mod p) (i=1, 2, ..., n), then S(a,, a,, -, a,) = S(b,, b,, ***, bn)
(mod P! d). For the remalnder of this paper, all polynomials have coefficients in o,
unless the contrary is stated.

Let H(x) = 1 - x4-1, Clearly the polynomial G(x) = H4x), with d < q, represents
a function in 3% ,; for

1 (mod y%)  if a=0 (modp),
V) G(a) = {

0 (mody?) if a#0 (mod}).

Consequently W(X) = II G(x;) represents the bas1c idempotent function in the ring
9, for
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(2) W(an Az, "**y an)

I

{ 1 (mod ’Ed) if each a = 0 (mod p),
0 (mod pY)  if some a £ 0 (mod y).

Let R be a complete residue system of p, modulo pd. Let p be the canonical map
of o/p° onto R. I t is any function in 9, then

(3) T(X) = > plt(a;, ag, ==+, ay)] Wix, - a,, X, - 85, ==+, X, - ap)

(a;,a501an)€B

is a polynomial over » which represents the function t. Thus every function in %,
may be considered to arise from a polynomial.

A polynomial over o which represents a function in 9, will be said to be 7e-
duced if there does not exist a polynomial over o of lower degree which represents
the same function of %,. It was shown in [5] that a polynomial S(X) over p may be
expressed uniquely in the form

S® = T X P, 4 ®alP,
52_0 0'(5)320

where 0(s) ranges over certain partitions of s into n nonnegative integers, where
the Pj s g(s)(X) are polynomials over v such that the degree of each x; in each
j,8,0(s) is less than g and the nonzero coefficients of the P; 5 o(s) are not in p,
and where the AU(S) are polyn0m1als over o such that the functlons represented by
them map o(n) into pS. (o (n) denotes the Cartesian product of o by itself n times.)

If S represents a function in 9% ,, then the polynomial

@) s*X) = L X op,_ @AEX

j+s<d ofs) Jro(e)

represents the same function of 3%,. If the polynomials S* and
UX) = = T o Qje0s)XAIE)X)

j+s<d o(s)

represent the same function of #,, then

S¥-U= T 3 [Pjop(s)- Qj,so(s)] 7725
j+s<d o(s)

is in B3, where 3By denotes the set of polynomials over o which, as functions, map
o(n) into pd. Theorem III of [5] implies that each of the polynomials
Pis.0(s) = R,s,0(s)

is the zero polynomial; hence U = S*. It follows that the reduced polynomials are of
the form (4), and that each polynomial which represents a function of %, is asso-
ciated with a unique reduced form.
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Suppose that the polynomial S* given in (4) represents a function of % ;. Suppose
that-M(X) is a polynomial over o such that 7-®M(X) represents that same function
of %,. Then the polynomial M(X) - 7¢8*(X) = L(X) is in By,.; that is,

LK = T ¥ 7P 0®@al®®.
jts>d+e o(s)

It follows that the degree of M(X) can not be smaller than the degree of S*(X).

Since G(x) is a monic polynomial of degree (q - 1)d, it follows that when d < q,
then G(x) can be expressed as in (4) and therefore G(x) is reduced. This can also
be seen by the following argument. I U(x) and G(x) represent the same function in
%,, then U - G=C isin Bg; it follows from Theorem II of [5] that if d < q, then
either the degree of C is at least dq, or all of the coefficients of C are in p. In
either case, the degree of U cannot be less than the degree of G. )

However, it is not likely that W(X) is reduced. Suppose that W* is the reduced
polynomial which represents the same function of %, as does W; then (3) remains
valid if W is replaced by W*. Consequently, the degree of W* can not be smaller
than that of any other reduced polynomial. When d < q, the polynomial wd‘lni‘ﬂ xfi"l
is reduced. Hence the degree of W* cannot be smaller than (q - 1)n.

Define ¥,(x) = 1; and inductively for m > 1, define

m-1
Ym® = 1+x 3 (m-j ;).
j=0
Let a; = dlpj(q - 1), and set
d-1 . .
(5) E(x) = )] Hi(@tdx).
j=0

Let d=k+ r+ 1. As a function from o to o, E maps pk 0<k< d) into p?%, where

r.-1 r-1
z2=a,+@-DE (-0 =d[vla-D-@-DE ¢-Dya-D] = a.
J=0 j=0

Clearly, E maps pd into 1+ pd. Thus we have

1 (mod p9)  if a =0 (mod »9),
(6) E(a) E{
0 (mod p%)  if a# 0 (mod 9),
d-1
and the degree of E is (q - 1)d T yj;(a - 1).
j=0

If F(X) is strongly definite over o, the polynomials W(X) and E[F(X)] represent
the same function of %,. Thus the degree of E[F(X)] must be as large as the degree
of W*, We have
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d-1
@a-1 X yjla-1 >nla-1.
j=0
d-1
Let ¢4(y) = X Y (v); then d?¢4(q - 1) > n, and the theorem is proved.
j=0
REMARKS

1. We give two examples of strongly definite polynomials over ».

(a) If k is the field of degree d over »/p, the norm function N from k to o/p
may be considered to be a homogeneous, definite polynomial over o/p of degree d in
d indeterminates. Let o be the homomorphic map of o[X] onto o/p[X] which agrees
with the natural map of o onto 9/p and whichleaves the x; invariant. If G(X) is in
o[X] and if the image of G under o is N, then G satisfies the following condition:

(N G(a,, a, ***, ag) = 0 (mod p)  if and only if each a; = 0 (mod »).

Let G,, G,, =+, Gq be polynomials over » satisfying (7); then the polynomial
F(X) = Gy(xy1, X12, 5 X19) + 7Ga(X5), X555 =25 X5 )

+ oo+ 791G (%41, 42, =5 Xgq)

is a strongly definite polynomial over o.

(b) If o is the ring of 3-adic integers and

G(X) = 2y, + ¥+ Yt + V2V + VPV + V2 YsS + 6Y,Yos + 3(VE + YaYs + 2¥5%)2 s

then the polynomial F(X) = G(x,, X,, **+, X5) + 9G(Xg, Xy, ***, X;¢) iS strongly definite
over o.

2. If d > q, there exist polynomials which satisfy (6); however, their degree is
much larger in comparison with the case above. It is for this reason that we re~
stricted our attention to the case d < q.

3. The polynomials satisfying (6) are exactly those polynomials which are neces-
sary for showing that every continuous function from » to o can be approximated by
a polynomial over K.

4, ¥ A(X) is a polynomial over K, the content c(A) of A(X) is the largest power
of 7 dividing every coefficient of A(X). Determine rational integers b; such that

cE)+d= 3 bya*-1D/a-1 (by,#0,0<b;<q.

i=1

Results in [5] show that there exists a polynomial over K which satisfies (6) and has
degree Ziz;b;gi. Also, Ii-;x?" " Ag4.1(x]) is a reduced polynomial of degree

(q- 1)n+ (d - 1)q, and we have a larger bound on the degree of W* than the one used
in the proof. Thus to some extent the bound on n could be decreased. However,
even this last bound appears to be excessively large, and we have not tried for the
best possible result in this direction.
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5. Let & be the set of all functions from n/pd to D/pd; then E(x) represents the
basic idempotent in &. If f is in &, then

F)= Y p[f(@]EX-a)
aeo/pd

is a polynomial over » representing the function /. Many of the results obtained in
[6] follow as a consequence of this last fact, as do the structure theorems for &.
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