RECTILINEAR LIMITS OF A FUNCTION DEFINED
INSIDE A SPHERE

F. Bagemihl

Denote by x, y, z the Cartesian coordinates of a point in three-dimensional
Euclidean space, and set

D={x7v,0:x+y <1}, K ={(x,y,0:+y =1},
S={x,y,z2:+y*+22<1}, T={kxy,2:x+y+2°=1}.

Let £(Q) be an arbitrary single-valued, real-valued function defined for every
point Q € D. It has been shown [1, p. 382] that there are at most enumerably many
points P € K possessing the following property: There exist two Jordan arcs J, and
J, lying wholly in D except for their common end point P, such that

lim f(Q and lim £(Q
Q- P,QE€J, Q- P,Q€J,

exist and are distinct. It is very easy to see that £f(Q) can be defined for Q € S in
such a mamner that there are 2o points P € T possessing the foregoing property
with D replaced by S. Gail S. Young, Jr. asked, in the course of a recent conversa-
tion with the author, if f(Q) can be defined for Q € S so that this property is pos-
sessed by every P € T. The purpose of this note is to show that this is indeed possi-
ble. It is not necessary for the Jordan arcs in question to be complicated: they can
b%ttaken to be rectilinear segments. Moreover, at every point P € T there can be
220 coplanar rectilinear segments along which the function tends to distinct limits.

If P eT, we shall mean by a segment at P a rectilinear segment in S extending
from a point Q € S to the point P; and by a disk at P, the intersection with S of a
plane that passes through P but is not tangent to T.

THEOREM. Theve exists a single-valued, veal-valued function £(Q) defined for
every Q € S and possessing the following property: at every point P € T there is a
disk containing 28, segments at P on each of which f is constant; £ does not as-
sume the same value on any two of these segmenis.

Proof. Let wy be the initial ordinal number of Z(ZNO). Arrange the set of real
numbers in a transfinite sequence

Tgy T'yy *°2y rg, i (R w’}’)'
Let the sequence
P, Pn **%y Pg, wee (E < w'y)

be such that, for every £ < w,, Pg€ T, and, for every P € T, there are 2“0 ordinal
numbers £ < w,, such that Pg = P. We shall define, by transfinite induction, for
every £ < w,,, a disk d¢ at Pg, a segment s¢ at Pg that lies in dg, and the value of
f at every point of s¢.
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Take any disk d, at P, and any segment s, at P, that lies in d,, and define the
value of f at every point of s, to be r,.

Suppose that 0 < @ < wy, and that there have been defined, for every u < a, a
disk.d'“ at PﬁL and a segment s p at Py that lies in dy, satisfying the following
condition (Cgy):

If a point P € T is a term of the sequence {Pli} w<a, then theve is one (and
hence, precisely one) disk d at P that is a tevm of the sequence {d“} p<la and con-
lains a segment at P that is a tevm of the sequence {Sll} u<as and d contains no
tevm of the sequence {s;}u<qa that is not a segment at P. The value of { at every
point of sy (b < @) is ry, and f is undefined at evevy point of S - y Sy

u<la

Condition (Cq) is obviously satisfied if o = 1.

Consider Py; this point of T either is or is not a term of the sequence
{Pu} p<o-

(I) If the first alternative holds, let 7 be the smallest ordinal number such that
P, =Py (so that 7 < o), and set dy = d;. According to the induction hypothesis, s
is a segment at P, that lies in d,, and hence, if, in condition (Cy), we identify Py
with P, then dy plays the role of d, and consequently each term of the sequence
{SH-} p<a is either a segment at Py that lies in dy, or else intersects dy in at
most one point. Thus, since |a| < 2“0, there exists a segment—call it sy—at Py
that lies in dy, does not lie in any disk at Py that both differs from dy and is a
term of the sequence {du}u<a, and does not intersect ,ugx S Define f to have
the value ry at every point of s,.

Condition (Cy+)) is now satisfied. For let P € T, If P is a term of the sequence
{Pu}_ p<la+ls then it is also a term of the sequence {PU-} u<a, because Py = Pr and
T < a. According to (C,), then, there is only one disk d at P that is a term of the
sequence {dy} <o —and hence, of the sequence {dy} y<a+1, since dy = d; and
7 < a—and contains a segment at P that is a term of the sequence SM} p<la. Sup-
pose that d' is a disk at P that is a term of the sequence {d“} p<a+1 (and hence, of
the sequence {d.u} ,u<01), and that sy is a segment at P that lies in d'. By the defini-
tion of sy, we have P = Py and d' = dy. But dy = d, where 7 < a, and hence d'
contains the segment s, at P, so that, according to (Cy), d' =d. We have now shown
that there is only one disk d at P that is a term of the sequence {du} <a+1 and con-
tains a segment at P that is a term of the sequence {s“} p<a+l. By (Cq), d contains
no term of the sequence { s”} u<a that is not a segment at P. Suppose that d con-
tains sy and that sy is not a segment at P. It follows from the definition of sy that
d = dg = d7, and since P # Py = P, d contains s; that is not a segment at P, which
contradicts (Cy). Thus, d contains no term of the sequence {su} p<a+)l that is not a
segment at P. According to (Cgy), the value of f at every pointof s; (1 <a) is ry;
we have defined f to have the value r, at every point of sy; and f is undefined at
every point of S - U sy. Hence, (Ca+1) is satisfied.

pu<a +1

(I1) If, however, the second alternative holds, then, since [a[ < 2“0, there exists
a disk—call it d,—at P, whose frontier contains no point that is a term of the se-
quence {Pu} p<loe Consequently, each term of the sequence {su} u<a, since it is a
segment at a point that is a term of the sequence {P,}u<qa, intersects d, in at
most one point, and so there exists a segment—call it sy—at P, that lies in dgy,
does not lie in any one of the fewer than 2R, disks that are terms of the sequence
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d o, and does not intersect s;. Define f to have the value r, at every
< B a

<o
point of sqy.

Condition (Cy +1) is again satisfied. For let P be a term of the sequence
{Pu]; p<a+1; then either (a) P is a term of the sequence {Pu} u<a or (b) P = Pqg.
If (a) holds, then, according to (Cy) and the facts that sy is not a segment at P and
dy is not a disk at any point of T that is a term of the sequence {Pu} p<a, there is
only one disk d at P that is a term of the sequence {d‘u} p<a +1 and contains a seg-
ment at P that is a term of the sequence {s ”} p<a+1s and, according to (Cq) and
the fact that sy does not lie in any disk that is a term of the sequence {dy} u<a, d
contains no term of the sequence {su} u<a+1 thatis not a segment at P. If (b)
holds, then, for every p < ¢, sy is a segment at Py, + Po = P, and sq is not con-
tained in any term of the sequence {dﬂ} p<as hence, no term of the sequence
{d_u} p<a contains a segment at P that is a term of the sequence {s,u,} p<la+l, and
so dy is the only disk at P that is a term of the sequence {dp} <a+1 and contains
a segment (namely, sy) at P that is a term of the sequence {su p<a+1. The disk
dy was chosen so as to contain no term of the sequence s”} p<oa, and hence dgy
contains no term of the sequence { s_u_} p<a+l that is not a segment at P. The rest
of condition (Cqy 1) is obviously satisfied. :

We now assert that, for every £< wy, a disk dg and a segment s¢ at P¢ that
lies in dg¢ are defined so that (C§+1) is satisfied. For if this is not so, there exists
a smallest ordinal number £, < w, for which the assertion is false; by the remark
immediately following the statement of (Cy) above, £, > 0. For every v < &, then,
a disk d, at P, and a segment s, at P, that lies in d,, are defined so that (C, ;)
is satisfied. We shall show that (C¢) must also be satisfied. This is obvious if &,
is isolated (take v=§,- 1 in (C, +53, and we may therefore assume that &, is a
limit number. Suppose that the point P is a term of the sequence {p Ii} p<éy say
P= PT?’ and that at P there are two disks, say d and d!', that are terms of the
sequence {dli} p<é, and contain segments at P that are terms of the sequence
{su} u<t, say that d=dy and d'=dp, where a < £, and g< &, and that d con-
tains the segment s, at P and d' contains the segment s, at P, where ¢ < §, and
k < &,. Setting ¢ = max (n, @, 8, L, k), we see that { < & and (Cg¢+)) is not satis-
fied, which is a contradiction. Hence, there is only one disk, say d, at P thatisa
term, say dg, of the sequence {du} u<t, and contains a segment at P that is a
term of the sequence {s ﬂ} <y Suppose that d contains a term, say sy, of the
sequence {s “} u<t, that is not a segment at P; setting = max , a, ¢), we have
¢ < £, and a contradiction of (Cy, ,;). Consequently, d contains no term of the se-
quence {su}#<go that is not a segment at P. If v < §,, then, according to (Cp.)),
the value of f at every point of s, is r,. If A is a limit number and {u5}5 ) is an
increasing sequence of ordinal numbers less than &, such that lim s<n M6 = Sos then,
for every 6 < A, according to (C ubﬂ) , T is undefined at every pointof S- | Sps

u<pg+l
and hence f is undefined at every point of

Ne- U spw=s-U U sy=s8- U su.

o< u<pgtl O<x u<p g+l u<é,

Thus, (Cgo) is satisfied. But, by the argument following the statement of condition
(Cq) above, this implies that a disk dgo at P¢ o and a segment s¢; at Pg  that lies
in dgo are defined so that (Cgo+1) is satisfied, which contradicts the definition of &,.
Hence, the assertion made at the beginning of this paragraph is true.
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An argument analogous to one just given shows that f is undefined at every point
of S- U s¢; define f to have the value 0 at every point of this set. Then it is
E<wy
evident that f is a single-valued, real-valued function defined for every point of S.

Let P € T. Then, according to the definition of the sequence {P;;} E<w,y there
are 280 ordinal numbers Po<p; <+ < Pg < <wy (B wy) such that Ppg =P
for every £ < Wy The disk dPo contains 2No distinct segments s, £ (£ < wy) at P,
on each of which f is constant (namely, f = rp £ on Sp £); and f does not assume the
samé value on any two segments sg, s (¢ < &' <wy).

This completes the proof of the theorem.

Remark 1, The proof can evidently be modified so as to yield even more com-
plicated behavior for f at every point of T. Thus, for example, f can be made to
have the following property at every P € T: for every real number r, f is identi-
cally equal to r along each of 2N.o of the segments associated with P.

Remark 2. Is it possible for a function f to be defined and continuous at every
point of S, and to possess the property that, for every point P € T, there exist two
Jordan arcs J; and J, lying wholly in S except for their common end point P, such
that

lim f(Q and lim Q)
Q~P,Q€J, Q-P,Q €7,

exist and are distinct?
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