RECTILINEAR LIMITS OF A FUNCTION DEFINED INSIDE A SPHERE

F. Bagemihl

Denote by x, y, z the Cartesian coordinates of a point in three-dimensional Euclidean space, and set

$$D = \{(x, y, 0): x^2 + y^2 < 1\}, K = \{(x, y, 0): x^2 + y^2 = 1\},$$

$$S = \{(x, y, z): x^2 + y^2 + z^2 < 1\}, T = \{(x, y, z): x^2 + y^2 + z^2 = 1\}.$$

Let f(Q) be an arbitrary single-valued, real-valued function defined for every point $Q \in D$. It has been shown [1, p. 382] that there are at most enumerably many points $P \in K$ possessing the following property: There exist two Jordan arcs J_1 and J_2 lying wholly in D except for their common end point P, such that

$$\lim_{Q \to P, Q \in J_1} f(Q) \quad \text{and} \quad \lim_{Q \to P, Q \in J_2} f(Q)$$

exist and are distinct. It is very easy to see that f(Q) can be defined for $Q \in S$ in such a manner that there are 2^{N_0} points $P \in T$ possessing the foregoing property with D replaced by S. Gail S. Young, Jr. asked, in the course of a recent conversation with the author, if f(Q) can be defined for $Q \in S$ so that this property is possessed by *every* $P \in T$. The purpose of this note is to show that this is indeed possible. It is not necessary for the Jordan arcs in question to be complicated: they can be taken to be rectilinear segments. Moreover, at every point $P \in T$ there can be 2^{N_0} coplanar rectilinear segments along which the function tends to distinct limits.

If $P \in T$, we shall mean by a segment at P a rectilinear segment in S extending from a point $Q \in S$ to the point P; and by a disk at P, the intersection with S of a plane that passes through P but is not tangent to T.

THEOREM. There exists a single-valued, real-valued function f(Q) defined for every $Q \in S$ and possessing the following property: at every point $P \in T$ there is a disk containing 2^{\aleph_0} segments at P on each of which f is constant; f does not assume the same value on any two of these segments.

Proof. Let ω_{γ} be the initial ordinal number of $Z(2^{\aleph_0})$. Arrange the set of real numbers in a transfinite sequence

$$\mathbf{r}_0, \mathbf{r}_1, \cdots, \mathbf{r}_{\xi}, \cdots \qquad (\xi < \omega_{\gamma}).$$

Let the sequence

$$P_0, P_1, \cdots, P_{\xi}, \cdots$$
 $(\xi < \omega_{\gamma})$

be such that, for every $\xi < \omega_{\gamma}$, $P_{\xi} \in T$, and, for every $P \in T$, there are 2^{\aleph_0} ordinal numbers $\xi < \omega_{\gamma}$ such that $P_{\xi} = P$. We shall define, by transfinite induction, for every $\xi < \omega_{\gamma}$, a disk d_{ξ} at P_{ξ} , a segment s_{ξ} at P_{ξ} that lies in d_{ξ} , and the value of f at every point of s_{ξ} .

Received February 13, 1957.

Take any disk d_0 at P_0 and any segment s_0 at P_0 that lies in d_0 , and define the value of f at every point of s_0 to be r_0 .

Suppose that $0<\alpha<\omega_{\gamma}$, and that there have been defined, for every $\mu<\alpha$, a disk d_{μ} at P_{μ} and a segment s_{μ} at P_{μ} that lies in d_{μ} , satisfying the following condition (C_{α}) :

If a point $P \in T$ is a term of the sequence $\{P_{\mu}\}_{\mu < \alpha}$, then there is one (and hence, precisely one) disk d at P that is a term of the sequence $\{d_{\mu}\}_{\mu < \alpha}$ and contains a segment at P that is a term of the sequence $\{s_{\mu}\}_{\mu < \alpha}$; and d contains no term of the sequence $\{s_{\mu}\}_{\mu < \alpha}$ that is not a segment at P. The value of P at every point of P is P and P is P and P is undefined at every point of P and P is P and P and P are P are P and P are P are P and P are P and P are P are P and P are P are P and P are P are P are P and P are P are P are P and P are P are P and P are P and P are P are

Condition (C_{α}) is obviously satisfied if $\alpha = 1$.

Consider P_{α} ; this point of T either is or is not a term of the sequence $\{P_{\mu}\}_{\mu<\alpha}$.

(I) If the first alternative holds, let τ be the smallest ordinal number such that $P_{\tau} = P_{\alpha}$ (so that $\tau < \alpha$), and set $d_{\alpha} = d_{\tau}$. According to the induction hypothesis, s_{τ} is a segment at P_{τ} that lies in d_{τ} , and hence, if, in condition (C_{α}) , we identify P_{α} with P, then d_{α} plays the role of d_{α} , and consequently each term of the sequence $\{s_{\mu}\}_{\mu < \alpha}$ is either a segment at P_{α} that lies in d_{α} , or else intersects d_{α} in at most one point. Thus, since $|\alpha| < 2^{\aleph_0}$, there exists a segment—call it s_{α} —at P_{α} that lies in d_{α} , does not lie in any disk at P_{α} that both differs from d_{α} and is a term of the sequence $\{d_{\mu}\}_{\mu < \alpha}$, and does not intersect $\bigcup_{u < \alpha} s_{\mu}$. Define f to have

the value r_{α} at every point of s_{α} .

Condition $(C_{\alpha+1})$ is now satisfied. For let $P \in T$. If P is a term of the sequence $\{P_{\mu}\}_{\mu < \alpha}$, then it is also a term of the sequence $\{P_{\mu}\}_{\mu < \alpha}$, because $P_{\alpha} = P_{\tau}$ and $\tau < \alpha$. According to (C_{α}) , then, there is only one disk d at P that is a term of the sequence $\{d_{\mu}\}_{\mu < \alpha}$ —and hence, of the sequence $\{d_{\mu}\}_{\mu < \alpha}$, since $d_{\alpha} = d_{\tau}$ and $\tau < \alpha$ —and contains a segment at P that is a term of the sequence $\{s_{\mu}\}_{\mu < \alpha}$. Suppose that d' is a disk at P that is a term of the sequence $\{d_{\mu}\}_{\mu < \alpha}$, and hence, of the sequence $\{d_{\mu}\}_{\mu < \alpha}$, and that s_{α} is a segment at P that lies in d'. By the definition of s_{α} , we have $P = P_{\alpha}$ and $d' = d_{\alpha}$. But $d_{\alpha} = d_{\tau}$, where $\tau < \alpha$, and hence d' contains the segment s_{τ} at P, so that, according to (C_{α}) , d' = d. We have now shown that there is only one disk d at P that is a term of the sequence $\{d_{\mu}\}_{\mu < \alpha + 1}$ and contains a segment at P that is a term of the sequence $\{s_{\mu}\}_{\mu < \alpha + 1}$. By (C_{α}) , d contains no term of the sequence $\{s_{\mu}\}_{\mu < \alpha}$ that is not a segment at P. Suppose that d contains s_{α} and that s_{α} is not a segment at P. It follows from the definition of s_{α} that $d = d_{\alpha} = d_{\tau}$, and since $P \neq P_{\alpha} = P_{\tau}$, d contains s_{τ} that is not a segment at P. Thus, d contains no term of the sequence $\{s_{\mu}\}_{\mu < \alpha + 1}$ that is not a segment at P. According to (C_{α}) . Thus, d contains no term of the sequence $\{s_{\mu}\}_{\mu < \alpha + 1}$ that is not a segment at P. According to P the value of P at every point of P that is undefined at every point of P and P thence, P and P is satisfied.

(II) If, however, the second alternative holds, then, since $|\alpha| < 2^{\aleph_0}$, there exists a disk-call it d_{α} -at P_{α} whose frontier contains no point that is a term of the sequence $\{P_{\mu}\}_{\mu < \alpha}$. Consequently, each term of the sequence $\{s_{\mu}\}_{\mu < \alpha}$, since it is a segment at a point that is a term of the sequence $\{P_{\mu}\}_{\mu < \alpha}$, intersects d_{α} in at most one point, and so there exists a segment-call it s_{α} -at P_{α} that lies in d_{α} , does not lie in any one of the fewer than 2^{\aleph_0} disks that are terms of the sequence

 $\{d_{\mu}\}_{\mu<\alpha}$, and does not intersect $\bigcup_{\mu<\alpha} s_{\mu}$. Define f to have the value r_{α} at every point of s_{α} .

Condition $(C_{\alpha+1})$ is again satisfied. For let P be a term of the sequence $\{P_{\mu}\}_{\mu<\alpha}$ or (b) $P=P_{\alpha}$. If (a) holds, then, according to (C_{α}) and the facts that s_{α} is not a segment at P and d_{α} is not a disk at any point of T that is a term of the sequence $\{P_{\mu}\}_{\mu<\alpha}$, there is only one disk d at P that is a term of the sequence $\{d_{\mu}\}_{\mu<\alpha+1}$ and contains a segment at P that is a term of the sequence $\{s_{\mu}\}_{\mu<\alpha+1}$; and, according to (C_{α}) and the fact that s_{α} does not lie in any disk that is a term of the sequence $\{d_{\mu}\}_{\mu<\alpha}$, d contains no term of the sequence $\{s_{\mu}\}_{\mu<\alpha+1}$ that is not a segment at P. If (b) holds, then, for every $\mu<\alpha$, s_{μ} is a segment at $P_{\mu}\neq P_{\alpha}=P$, and s_{α} is not contained in any term of the sequence $\{d_{\mu}\}_{\mu<\alpha}$; hence, no term of the sequence $\{d_{\mu}\}_{\mu<\alpha+1}$, and so d_{α} is the only disk at P that is a term of the sequence $\{s_{\mu}\}_{\mu<\alpha+1}$, and so d_{α} is the only disk at P that is a term of the sequence $\{s_{\mu}\}_{\mu<\alpha+1}$. The disk d_{α} was chosen so as to contain no term of the sequence $\{s_{\mu}\}_{\mu<\alpha}$, and hence d_{α} contains no term of the sequence $\{s_{\mu}\}_{\mu<\alpha}$, and hence d_{α} contains no term of the sequence $\{s_{\mu}\}_{\mu<\alpha}$, and hence d_{α} contains no term of the sequence $\{s_{\mu}\}_{\mu<\alpha}$, and hence d_{α} contains no term of the sequence $\{s_{\mu}\}_{\mu<\alpha}$, and hence d_{α} contains no term of the sequence $\{s_{\mu}\}_{\mu<\alpha}$, and hence d_{α} contains no term of the sequence $\{s_{\mu}\}_{\mu<\alpha+1}$ that is not a segment at P. The rest of condition $(C_{\alpha+1})$ is obviously satisfied.

We now assert that, for every $\xi < \omega_\gamma$, a disk $\mathrm{d}\xi$ and a segment $\mathrm{s}\xi$ at $\mathrm{P}\xi$ that lies in $\mathrm{d}\xi$ are defined so that $(\mathrm{C}\xi_{+1})$ is satisfied. For if this is not so, there exists a smallest ordinal number $\xi_0 < \omega_\gamma$ for which the assertion is false; by the remark immediately following the statement of (C_α) above, $\xi_0 > 0$. For every $\nu < \xi_0$, then, a disk d_ν at P_ν and a segment s_ν at P_ν that lies in d_ν are defined so that $(\mathrm{C}_{\nu+1})$ is satisfied. We shall show that $(\mathrm{C}\xi_\nu)$ must also be satisfied. This is obvious if ξ_0 is isolated (take $\nu = \xi_0 - 1$ in $(\mathrm{C}_{\nu+1})$), and we may therefore assume that ξ_0 is a limit number. Suppose that the point P is a term of the sequence $\{\mathrm{P}\mu\}\,\mu < \xi_0$, say $\mathrm{P} = \mathrm{P}_\eta$, and that at P there are two disks, say d and d', that are terms of the sequence $\{\mathrm{d}\mu\}\,\mu < \xi_0$ and contain segments at P that are terms of the sequence $\{\mathrm{s}\mu\}\,\mu < \xi_0$ say that $\mathrm{d} = \mathrm{d}_\alpha$ and $\mathrm{d}^1 = \mathrm{d}_\beta$ where $\alpha < \xi_0$ and $\beta < \xi_0$, and that d contains the segment s_ι at P and d' contains the segment s_κ at P , where $\iota < \xi_0$ and $\kappa < \xi_0$. Setting $\xi = \max(\eta, \alpha, \beta, \iota, \kappa)$, we see that $\xi < \xi_0$ and $(\mathrm{C}\xi_1)$ is not satisfied, which is a contradiction. Hence, there is only one disk, say d, at P that is a term of the sequence $\{\mathrm{s}\mu\}\,\mu < \xi_0$ that is not a segment at P ; setting $\psi = \max(\eta, \alpha, \beta)$, we have $\psi < \xi_0$ and a contradiction of $(\mathrm{C}_{\psi+1})$. Consequently, d contains no term of the sequence $\{\mathrm{s}\mu\}\,\mu < \xi_0$ that is not a segment at P . If $\nu < \xi_0$, then, according to $(\mathrm{C}_{\nu+1})$, the value of f at every point of s_ν is r_ν . If λ is a limit number and $\{\mu_0\}_0 < \lambda$ is an increasing sequence of ordinal numbers less than ξ_0 such that $\lim_{\delta < \lambda} \mu_\delta = \xi_0$, then, or every $\delta < \lambda$, according to $(\mathrm{C}\mu_{\delta+1})$, f is undefined at every point of $\mathrm{S} - \mu < \mu_0$

and hence f is undefined at every point of

$$\bigcap_{\delta < \lambda} (S - \bigcup_{\mu < \mu_{\delta} + 1} s_{\mu}) = S - \bigcup_{\delta < \lambda} \bigcup_{\mu < \mu_{\delta} + 1} s_{\mu} = S - \bigcup_{\mu < \xi_{\mathbf{0}}} s_{\mu}.$$

Thus, (C_{ξ_0}) is satisfied. But, by the argument following the statement of condition (C_{α}) above, this implies that a disk d_{ξ_0} at P_{ξ_0} and a segment s_{ξ_0} at P_{ξ_0} that lies in d_{ξ_0} are defined so that (C_{ξ_0+1}) is satisfied, which contradicts the definition of ξ_0 . Hence, the assertion made at the beginning of this paragraph is true.

An argument analogous to one just given shows that f is undefined at every point of S - \bigcup s ξ ; define f to have the value 0 at every point of this set. Then it is $\xi < \omega_{\gamma}$ evident that f is a single-valued, real-valued function defined for every point of S.

Let $P \in T$. Then, according to the definition of the sequence $\{P_{\xi}\}_{\xi < \omega_{\gamma'}}$ there are 2^{\aleph_0} ordinal numbers $\rho_0 < \rho_1 < \cdots < \rho_{\xi} < \cdots < \omega_{\gamma'} \ (\xi < \omega_{\gamma'})$ such that $P_{\rho_{\xi}} = P$ for every $\xi < \omega_{\gamma}$. The disk d_{ρ_0} contains 2^{\aleph_0} distinct segments $s_{\rho_{\xi}} \ (\xi < \omega_{\gamma})$ at P, on each of which f is constant (namely, $f = r_{\rho_{\xi}}$ on $s_{\rho_{\xi}}$); and f does not assume the same value on any two segments s_{ξ} , $s_{\xi'}$ $(\xi < \xi' < \omega_{\gamma})$.

This completes the proof of the theorem.

Remark 1. The proof can evidently be modified so as to yield even more complicated behavior for f at every point of T. Thus, for example, f can be made to have the following property at every $P \in T$: for every real number r, f is identically equal to r along each of 2^{\aleph_0} of the segments associated with P.

Remark 2. Is it possible for a function f to be defined and continuous at every point of S, and to possess the property that, for every point $P \in T$, there exist two Jordan arcs J_1 and J_2 lying wholly in S except for their common end point P, such that

$$\begin{array}{cccc} \lim & f(Q) & \text{ and } & \lim & f(Q) \\ Q + P, Q \in J_1 & & Q + P, Q \in J_2 \end{array}$$

exist and are distinct?

REFERENCE

1. F. Bagemihl, Curvilinear cluster sets of arbitrary functions, Proc. Nat. Acad. Sci. U. S. A. 41 (1955), 379-382.

University of Notre Dame