ON THE PROPERTIES OF A SINGULAR STURM-LIOUVILLE EQUATION DETERMINED BY ITS SPECTRAL FUNCTIONS

Avner Friedman

1. INTRODUCTION. Consider the equation

(1)
$$y'' + [\lambda - q(x)]y = 0$$
 $(0 < x < \infty)$

with the boundary condition

(2)
$$y(0) \sin \alpha - y'(0) \cos \alpha = 0.$$

As is well known (see, for instance, [1]), if q(x) is integrable on finite intervals, then the system (1), (2) determines spectral functions $\rho(\lambda)$ (in the sense of [3]).

Considering the inverse problem, Gelfand and Levitan [3] proved that if $\rho(\lambda)$ $(-\infty < \lambda < \infty)$ is a monotone increasing function such that

(i)
$$\int_{-\infty}^{0} e^{\sqrt{|\lambda|}x} d\rho(\lambda) < \infty \text{ for all real } x, \text{ and}$$

(ii) one of the functions

(3)
$$F_{i}(x, y) = \int_{-\infty}^{\infty} \frac{\sin \sqrt{\lambda} x \sin \sqrt{\lambda} y}{\lambda} d\sigma_{i}(\lambda) \qquad (i = 1, 2)$$

belongs to C^{n+3} ,

then $\rho(\lambda)$ is a spectral function of a *uniquely* determined system (1), (2). Here,

$$\sigma_1(\lambda) = \rho(\lambda) - \frac{2}{\pi} \sqrt{\lambda} \qquad (\lambda > 0),$$

$$\sigma_2(\lambda) = \rho(\lambda) - \frac{2}{3\pi} \lambda^{3/2} \qquad (\lambda > 0),$$

$$\sigma_{i}(\lambda) = \rho(\lambda)$$
 (i = 1, 2; $\lambda \leq 0$).

Defining $f_i(x, y) = \frac{\partial^2 F_i(x, y)}{\partial x \partial y}$, they showed that there exists a unique solution $K_i(x, y)$ of the integral equation

(4)
$$f_{i}(x, y) + K_{i}(x, y) + \int_{0}^{x} f_{i}(y, t) K_{i}(x, t) dt = 0 \quad (x \ge 0, y \ge 0),$$

Received January 16, 1957.

This paper was written under Office of Naval Research Contract N58304.

and that

(5)
$$K_1(x, x) = \operatorname{tg} \alpha + \frac{1}{2} \int_{0}^{x} q(t) dt \quad (\alpha \neq \pi/2)$$

if $F_1 \in C^{n+3}$, and

(6)
$$K_2(x, x) = \frac{1}{2} \int_0^x q(t) dt \qquad (\alpha = \pi/2)$$

if $F_2 \in \mathbb{C}^{n+3}$.

This paper deals mainly with the following problem. Given some properties of $\rho(\lambda)$ or of $f_i(x,y)$, to determine some properties of q(x). Results of this kind were recently announced by Neigauz [4] for $\alpha=\pi/2$; but his assumptions on $\rho(\lambda)$ are very restrictive. In Section 2 we give a method for estimating $K_i(x,x)$ and its derivatives in terms of $f_i(x,y)$ and its derivatives, under a very mild assumption on $\rho(\lambda)$. In Section 3 it is proved that if $f_i(x,y)$ has a series development in x and y about the origin, then the same holds for q(x). We also give a lower bound for the radius of convergence of the power series of q(x). In Section 4 we give an application of the Gelfand-Levitan results to the problem of moments.

2. It will be sufficient to consider the case where $F_1 \in C^{n+3}$, so that (5) holds. For simplicity, we write $f_1 = f$, $\sigma_1 = \sigma$, and so forth.

Assumption 1. If $\lambda > 0$, then

(7)
$$d\sigma(\lambda) \geq -\theta \frac{2}{\pi} d\sqrt{\lambda},$$

where $\theta < 1$ is a constant. We note that the relation $d\sigma(\lambda) \geq -\frac{2}{\pi} d\sqrt{\lambda}$ always holds. We also remark that in the case where $F_2 \in C^{n+3}$, (7) is replaced by

$$\mathrm{d}\sigma(\lambda) \geq -\theta \frac{2}{3\pi} \mathrm{d}\lambda^{3/2}$$
.

We shall now estimate K(x, x) and its derivatives in terms of f(x, y) and its derivatives, under Assumption 1. Consider first the integral

$$\int_{0}^{x} \int_{0}^{x} f(y, t) h(y) h(t) dy dt,$$

where h(t) is any real continuous function. Since F(x, y) has continuous derivatives of the second order,

$$f(x, y) = \frac{\partial^{2} F(x, y)}{\partial x \partial y}$$

$$= \lim_{\varepsilon \to 0} \frac{F(x + \varepsilon, y + \varepsilon) - F(x - \varepsilon, y + \varepsilon) - F(x + \varepsilon, y - \varepsilon) + F(x - \varepsilon, y - \varepsilon)}{4\varepsilon^{2}}$$

$$= \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} \left(\frac{\sin \sqrt{\lambda} \varepsilon}{\sqrt{\lambda} \varepsilon}\right)^{2} \cos \sqrt{\lambda} x \cos \sqrt{\lambda} y \, d\sigma(\lambda),$$

and the limit is obtained uniformly in x and y in finite intervals. It follows that

The first integral on the right side of (9) is nonnegative, since $d\sigma(\lambda) \geq 0$ if $\lambda \leq 0$. The second integral is greater than

$$-\theta \int_{0}^{\infty} \left(\int_{0}^{x} h(t) \cos \sqrt{\lambda} t \, dt \right)^{2} d\left(\frac{2}{\pi} \sqrt{\lambda}\right) = -\theta \int_{0}^{x} [h(t)]^{2} dt,$$

by Assumption 1 and Parseval's equation. Thus

(10)
$$\int_0^x \int_0^x f(y, t) h(y) h(t) dy dt \ge -\theta \int_0^x [h(t)]^2 dt.$$

Multiplying (4) (with $f_i = f$, $K_i = K$) by K(x, y), integrating with respect to y (0 < y < x) and using (10), we get

$$\int_{0}^{x} f(x, y) K(x, y) dy + (1 - \theta) \int_{0}^{x} [K(x, y)]^{2} dy \leq 0.$$

Using Schwarz's inequality, we conclude that

(11)
$$\left(\int_0^x [K(x, y)]^2 dy \right)^{1/2} \leq (1 - \theta)^{-1} \left(\int_0^x [f(x, y)]^2 dy \right)^{1/2}.$$

Taking y = x in (4) and using (11), we derive the following estimate for K(x, x):

(12)
$$|K(x, x)| \leq |f(x, x)| + (1 - \theta)^{-1} \int_{0}^{x} [f(x, t)]^{2} dt.$$

To estimate $\frac{d}{dx}K(x, x)$, we take y = x in (4) and differentiate with respect to x. We obtain

(13)
$$\frac{d}{dx}f(x, x) + \frac{d}{dx}K(x, x) + f(x, x)K(x, x) + \int_{0}^{x} f_{x}(x, t)K(x, t) dt + \int_{0}^{x} f(x, t)K_{x}(x, t) dt = 0,$$

and it is clearly sufficient to estimate

$$I = \left(\int_{0}^{x} [K_{x}(x, t)]^{2} dt \right)^{1/2}$$
.

To do this, we differentiate (4) with respect to x, multiply the resulting equation by $K_x(x, y)$ and integrate with respect to y $(0 \le y \le x)$. Using (10) and Schwarz's inequality, we obtain

(14)
$$I \leq (1 - \theta)^{-1} \left(\int_{0}^{x} [f_{x}(x, t)]^{2} dy \right)^{1/2} + |K(x, x)| \left(\int_{0}^{x} [f(x, y)]^{2} dy \right)^{1/2}.$$

Bounds on the higher derivatives of K(x, x) can be derived in a similar way. This will become clear, from the proof of Theorem 1 below.

Let $\{M_n\}$ be a sequence of nonnegative numbers. We denote by $C^p\{M_n;a\}$ (a>0) the class of all infinitely differentiable functions g(x) $(x=(x_1,\cdots,x_p))$ defined in the domain $0\le x_i\le a$ $(i=1,\cdots,p)$ and possessing the following property: To every function g(x) there correspond constants H_0 and H such that if $x_i\in(0,a)$ $(i=1,\cdots,p)$, then

$$\left|\frac{\partial^{n}g(x)}{\partial x_{1}^{i_{1}}\cdots\partial x_{n}^{i_{p}}}\right| \leq H_{0}H^{n}M_{n} \quad (n = 1, 2, \cdots).$$

THEOREM 1. If $f(x, y) \in C^2\{M_n; a\}$ then $q(x) \in C^1\{M_{n+1}; a\}$, provided that $\sigma(\lambda)$ satisfies Assumption 1 and that, for some A>0, the M_n satisfy the monotonicity condition

(15)
$$\binom{n}{i} M_i M_{n-i} \leq A M_n \quad (i = 1, \dots, n; n = 1, 2, \dots).$$

Note that if f(x, y) is infinitely differentiable, the same is true of K(x, y) and q(x). Theorem 1, with $M_n = n!$, shows that if f(x, y) is analytic, the same is true of q(x).

Proof. We shall prove by induction that if $x \in (0, a)$, then

$$\left(\int\limits_{0}^{a} \left(\frac{\partial^{\,\mathrm{m}} K(x,\,t)}{\partial x^{\,\mathrm{m}}} \right)^{\,2} dt \, \right)^{\,1/2} \, \leq \, H_{0} \, H^{\,\mathrm{m}} \, M_{\,\mathrm{m}} \, ,$$

(16₂)
$$\left| \frac{d^{j}}{dx^{j}} \left(\left[\frac{\partial^{m-j}}{\partial x^{m-j}} K(x, t) \right]_{t=x} \right) \right| \leq H_{0} H^{m} M_{m} \quad (j = 0, 1, \dots, m).$$

The theorem then follows from (5).

Assuming (16_i) (i = 1, 2) to hold for $m = 1, 2, \dots, n-1$, we shall prove it for m = n. In the sequel, A_i will be used to denote appropriate constants independent of n. For simplicity, we write

$$\frac{\partial^{i}K(x, x)}{\partial x^{i}} = \frac{\partial^{i}K(x, t)}{\partial x^{i}}\bigg|_{t=x}, \quad \frac{\partial^{i}f(x, x)}{\partial x^{i}} = \frac{\partial^{i}f(x, t)}{\partial x^{i}}\bigg|_{t=x}.$$

Differentiating (4) n times with respect to x, multiplying the resulting equation by $\frac{\partial^n K(x,y)}{\partial x^n}$, integrating with respect to y $(0 \le y \le x)$ and using (10), we obtain, after using Schwarz's inequality,

$$(1 - \theta) \left(\int_{0}^{x} \left[\frac{\partial^{n} K(x, y)}{\partial x^{n}} \right]^{2} dy \right)^{1/2}$$

$$\leq \left(\int_{0}^{x} \left[\frac{\partial^{n} f(x, y)}{\partial x^{n}} \right]^{2} dy \right)^{1/2} + \sum_{i=0}^{n-1} \left(\int_{0}^{x} \left[\frac{\partial^{n-1-i}}{\partial x^{n-1-i}} \left(f(y, x) \frac{\partial^{i} K(x, x)}{\partial x^{i}} \right) \right]^{2} dy \right)^{1/2}.$$

Now, by assumption,

$$\left| \frac{\partial^{m} f(x, y)}{\partial x^{m}} \right| \leq A_{1} A_{2}^{m} M_{m}, \quad \left| \frac{d^{j}}{dx^{j}} \frac{\partial^{m-j} f(x, x)}{\partial x^{m-j}} \right| \leq A_{1} A_{2}^{m} M_{m}$$

$$(x, y \in (0, a); m = 1, 2, \cdots),$$

and therefore

$$\left\{ \int\limits_{0}^{a} \left[\frac{\partial^{m} f(x, y)}{\partial x^{m}} \right]^{2} dy \right\}^{1/2} dy \leq A_{3} A_{2}^{m} M_{m}.$$

If we take $H > 2A_2$, and make use of (15) and of the inductive assumption, we get

$$\begin{split} \left| \frac{\partial^{n-1-i}}{\partial x^{n-1-i}} \Big(f(y, x) \frac{\partial^{i} K(x, x)}{\partial x^{i}} \Big) \, \right| &\leq \sum_{j=0}^{n-1-i} \, \binom{n-1-i}{j} \, A_{1} A_{2}^{n-1-i-j} \, M_{n-1-i-j} \, H_{0} \, H^{i+j} \, M_{i+j} \\ &\leq A_{4} \, H_{0} \, H^{n-1} \, M_{n-1} \, , \end{split}$$

and from (17) it follows that

(19)
$$\left\{ \int_{0}^{a} \left[\frac{\partial^{n} K(x, y)}{\partial x^{n}} \right]^{2} dy \right\}^{1/2} \leq A_{5} H_{0} H^{n-1} M_{n}.$$

To prove (16_2) for m = n, we differentiate (4) n - j times with respect to x, then substitute y = x and finally differentiate the resulting equation j times with respect to x. We get

$$\frac{d^j}{dx^j}\frac{\partial^{n-j}f(x,\,x)}{\partial x^{n-j}} + \frac{d^j}{dx^j}\frac{\partial^{n-j}K(x,\,x)}{\partial x^{n-j}} + \sum_{i=0}^{n-j-1}\frac{d^j}{dx^j}\left\{\left[\frac{\partial^{n-1-j-i}}{\partial x^{n-1-j-i}}\!\!\left(\,f(y,\,x)\frac{\partial^iK(x,\,x)}{\partial x^i}\right)\,\,\right]_{y=x}\right\}$$

$$+\sum_{i=0}^{j-1}\frac{d^{j-1-i}}{dx^{j-1-i}}\left\{\left[\frac{\partial^{i}}{\partial x^{i}}\left(f(x, t)\frac{\partial^{n-j}K(x, t)}{\partial x^{n-j}}\right)\right]_{t=x}\right\}+\int_{0}^{x}\frac{\partial^{j}}{\partial x^{j}}\left(f(x, t)\frac{\partial^{n-j}K(x, t)}{\partial x^{n-j}}\right)dt=0.$$

If j = n, the first sum does not appear, and if j = 0, the second sum does not appear. Using (15), (18₁), (18₂), (19) and the inductive assumption, we obtain, after some calculations,

$$\left|\frac{d^{j}}{dx^{j}}\frac{\partial^{n-j}K(x, x)}{\partial x^{n-j}}\right| \leq A_{6} H_{0} H^{n-1} M_{n},$$

where A_6 does not depend on j. We take $H > \max(A_5, A_6)$, and the proof is complete.

Example. In addition to Assumption 1, assume also that $d\sigma(\lambda) = 0$ if $\lambda < 0$ and $\int_{0}^{\infty} \left| d\sigma(\lambda) \right| = \left| \sigma \right| < \infty.$ Using (12), we obtain

$$\lim_{x\to\infty}\sup_{\infty}\left|\frac{1}{x}\int_{0}^{x}q(t)\,dt\right|\leq (1-\theta)^{-1}|\sigma|^{2}.$$

Similarly, if

$$\int_{0}^{\infty} \lambda^{k} |d\sigma(\lambda)| < \infty \qquad (k = 1, 2, \cdots),$$

then the following inequalities hold:

$$\lim_{x\to\infty}\sup_{x\to\infty}x^{-(n+2)}\left|q^{(n)}(x)\right|<\infty\qquad(n=0,\,1,\,\cdots).$$

3. Consider again the integral equation

(20)
$$f(x, y) + K(x, y) + \int_{0}^{x} f(y, t) K(x, t) dt = 0,$$

where $f(x, y) = f_1(x, y)$, and assume that f(x, y) has a series development about the origin, namely,

$$f(x, y) = \sum_{m,n=0}^{\infty} f_{mn} x^m y^n \quad (|x| \le A, |y| \le A).$$

Substituting formally $K(x, y) = \sum K_{mn}x^my^n$ into (20), we find that the following system of equations must be satisfied:

(21)
$$K_{mn} = -f_{mn} + \sum_{i+j+k=m-1} \frac{-f_{nk}}{j+k+1} K_{ij} \quad (m \ge 1).$$

Note that (21) can be used to define K_{mn} recursively, since K_{mn} is given in terms of K_{ij} and $i+j \leq m-1 < m$. It follows that if $\{L_{mn}\}$ is an infinite matrix of numbers which satisfy (21) with K_{mn} replaced by L_{mn} and $-f_{mn}$ replaced by F_{mn} , where $F_{mn} \geq \left|f_{mn}\right|$, then $L_{mn} \geq \left|K_{mn}\right|$, and consequently if $\sum L_{mn} \, x^m \, y^n$ converges, then also $\sum K_{mn} x^m y^m$ converges.

To define F_{mn} , assume that the series $\Sigma f_{mn} x^m y^n$ is majorized by the product $\Sigma a_n x^n \Sigma a_n y^n$, for $|x| \leq B$, $|y| \leq B$ ($B \leq A$); and write $f(x) = \sum_{n=0}^{\infty} a_n x^n$ ($|x| \leq B$). It is clear that if the (majorant) integral equation

(22)
$$-f(x) f(y) + L(x, y) - \int_{0}^{x} f(y) f(t) L(x, t) dt = 0$$

has a solution $L(x, y) = \sum L_{mn} x^m y^n$, and if the series converges for |x| < B, |y| < B, then also K(x, y) has a series development for |x| < B, |y| < B, and consequently $q(x) = \sum q_n x^n$ (|x| < B). Since the solution of (22) is

$$L(x, y) \equiv \frac{f(x) f(y)}{1 - \int_{0}^{x} [f(t)]^{2} dt},$$

the following result is proved.

THEOREM 2. If $f(x, y) = \sum f_{mn} x^m y^n$ is majorized by $f(x) f(y) \equiv \sum a_n x^n \sum a_n y^n$ for $|x| \leq B$, $|y| \leq B$, and if $\int_0^B [f(x)]^2 dx \leq 1$, then

$$q(x) = \sum_{n=0}^{\infty} q_n x^n,$$

and the power series converges for |x| < B.

Theorem 2 gives a sharp lower bound on the radius of convergence R of q(x), in the sense that there are cases in which R = B. As an example, define

$$\rho(\lambda) = \begin{cases} \frac{2}{\pi} \sqrt{\lambda}, & (\lambda \ge 0) \\ -a, & (\lambda < 0), & (a > 0). \end{cases}$$

Then f(x, y) = a and K(x, y) = -a/(ax + 1), so that R = 1/a. On the other hand, for the majorant of f(x, y) determined by $f(x) = \sqrt{a}$, $\int_0^B [f(x)]^2 dx = 1$ becomes B = 1/a = R.

4. Consider the following problem of moments:

$$(a) \qquad \begin{cases} \int_{-\infty}^{\infty} \lambda^n d\sigma(\lambda) = c_n & \text{ ($n=0$, 1, \cdots; $c_n=0$ if $n>N$ and $c_N\neq 0$),} \\ \\ \int_{-\infty}^{\infty} e^{1/\left|\lambda\right| \times \left|d\sigma(\lambda)\right|} & \text{ is finite for all positive x,} \\ \\ d\sigma(\lambda) \geq 0 & \text{if } \lambda < 0; \qquad d[\sigma(\lambda) + \frac{2}{\pi} \sqrt{\lambda}] \geq 0 & \text{if } \lambda \geq 0. \end{cases}$$

Suppose (a) has a solution $\sigma = \sigma(\lambda)$. Since the function

$$\rho(\lambda) = \begin{cases} \sigma(\lambda) & (\lambda < 0), \\ \sigma(\lambda) + \frac{2}{\pi} \sqrt{\lambda} & (\lambda \ge 0) \end{cases}$$

satisfies the conditions of Gelfand and Levitan (with $\alpha \neq \pi/2$), the function $K_1(x, y)$ which satisfies (4) exists for all nonnegative values of x and y. Since the function

$$f_1(x, y) = \int_{-\infty}^{\infty} \cos V \lambda x \cos \sqrt{\lambda} y \, d\sigma(\lambda)$$

is analytic by our assumptions, we conclude from the relation

$$\left.\frac{\partial^{i+j}f_1(x,\,y)}{\partial x^i\,\partial y^j}\right|_{(0,0)} = \begin{cases} 0 & \text{if either i or j is odd,} \\ \\ (-1)^nC_n & \text{if both i and j are even and } i+j=2n, \end{cases}$$

that the function $f_1(x, y)$ must be of the form

$$\sum_{i+j \le N} a_{ij} x^{2i} y^{2j} \quad \text{or} \quad \sum_{i=0}^{N} a_{i}(x^{2}) y^{2i},$$

where $a_i(z)$ is a polynomial in z of exact degree N-i and with coefficients that are uniquely determined from the c_n . It follows that the integral equation

(23)
$$\sum_{i=0}^{N} a_i(x^2) y^{2i} + K(x, y) + \sum_{i=0}^{N} y^{2i} \int_{0}^{x} a_i(t^2) K(x, t) dt = 0 \qquad (0 \le y < \infty)$$

has a unique solution K(x, y) for every fixed positive x.

From the theory of integral equations with degenerate kernels [2], it follows that

(24)
$$A(x) = \det\left(\int_{0}^{x} a_{i}(s^{2}) s^{2j} ds + \delta_{ij}\right)$$

must be either positive or negative for all x. We conclude that if (a) has a solution, then necessarily $A(x) \neq 0$ for $0 < x < \infty$.

In the case $c_n = 0$ $(n = 0, 1, \cdots)$ we have $f_1(x, y) \equiv K_1(x, y) \equiv 0$. Consequently, $q(x) \equiv 0$ and $tg \alpha = 0$. Since the function $\rho(\lambda)$ corresponding to $\sigma(\lambda)$ is a spectral function, and since in the limit-point case there is only one spectral function (see [1; p. 259]), we conclude that $\rho(\lambda) = (2/\pi)\sqrt{\lambda}$, so that $\sigma(\lambda) \equiv 0$. Thus we have proved that if all the c_n vanish, then (a) has no nontrivial solutions $\sigma(\lambda)$.

REFERENCES

- 1. E. A. Coddington and N. Levinson, *Theory of ordinary differential equations*, New York, 1955.
- 2. R. Courant and D. Hilbert, Methods of mathematical physics, I, New York, 1953.
- 3. I. M. Gelfand and B. M. Levitan, On the determination of a differential equation from its spectral function, Izvestiya Akad. Nauk SSSR. Ser. Mat. 15 (1951), 309-360.
- 4. M. G. Neigauz, On determination of the asymptotic behavior of a function q(x) by properties of the spectral function of the operator -y'' + q(x)y. Dokl. Akad. Nauk SSSR (N.S.) 102 (1955), 25-28.

University of Kansas