ON THE PROPERTIES OF A SINGULAR STURM—LIOUVILLE
EQUATION DETERMINED BY ITS SPECTRAL FUNCTIONS

Avner Friedman

1. INTRODUCTION. Consider the equation
(1) '+ P-a®)]y =0 (0<x<»)
with the boundary condition
(2) y(0) sin @ - y(0) cos ¢ = 0.

As is well known (see, for instance, [1]), if q(x) is integrable on finite intervals,
then the system (1), (2) determines spectral functions p(}) (in the sense of [3]).

Considering the inverse problem, Gelfand and Levitan [3] proved that if p()
(-0 < A < «) is a monotone increasing function such that

0
(1) j eV = dp(A) < « for all real x, and
(ii) one of the functions
w - - A’ .
(3) Fie,y) = | SINYXX SINVAY gou(n) (1= 1, 2)
Zoo
belongs to C™*3,

then p()\) is a spectral function of a uniquely determined system (1), (2). Here,

a,(A) = p(A) - %ﬁ x>0,

1]

() = p0) - 222 (1> 0),

o;(0) = p(N) (i=1,2;1<0).

0%F; (x, y)

ox 9y
of the integral equation

Defining f;(x, y) = , they showed that there exists a unique solution K;(x, y)

p.4

@ G ) + Kiln, 9 + [ 1400, 0Ky, Dt = 0 (x> 0,y > 0),
[}
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and that
1
(%) K, 0) = tgats [a®dt (o n/2)
if Fl €Cn+3, and
(6) K,(x, %) = —;- f adt (@ = 1/2)
0

if F, € Ct3,

This paper deals mainly with the following problem. Given some properties of
p(x) or of f;(x, y), to determine some properties of q(x). Results of this kind were
recently announced by Neigauz [4] for a = 7/2; but his assumptions on p(A) are very
restrictive. In Section 2 we give a method for estimating K j(x, x) and its deriva-
tives in terms of f;j(x, y) and its derivatives, under a very mild assumption on p(x).
In Section 3 it is proved that if f;(x, y) has a series development in x and y about
the origin, then the same holds for q(x). We also give a lower bound for the radius
of convergence of the power series of q(x). In Section 4 we give an application of the
Gelfand-Levitan results to the problem of moments.

2. It will be sufficient to consider the case where F; € C®t3, so that (5) holds.
For simplicity, we write f, = f, o, = 0, and so forth.

Assumption 1. f A > 0, then
(7) do(n) > -02aVa,

where 9 <1 is a constant. We note that the relation do(x) > '72r dyx always holds.

We also remark that in the case where F, € Cn+3, (7) is replaced by
2 3/2
do(®) > -6z-ax™".

We shall now estimate K(x, x) and its derivatives in terms of f(x, y) and its
derivatives, under Assumption 1. Consider first the integral

| | 5, vnene ayat,
(] 0

where h(t) is any real continuous function. Since F(x, y) has continuous deriva-
tives of the second order,
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9%F(x
i, y) = 50ed)
- lim Fx+e,y+€)-Fx-g,y+¢e)-Fx+¢g,y-¢)+Flx-¢g,y -¢)
(8) T g=0 4e”

J°P (sm Ve ) cosl/_)tx cos Vay do(p),.

- 00

and the limit is obtained uniformly in x and y in finite intervals. It follows that

X X

f f f(y, t) h(y) h(t) dy dt =
0

0

9) = 81113 f (ﬂ;—is@) 2( jxh(t) cos VAt dt) 2dcr(h)
+ lim [ ( svmﬁ“) (f h(t) cos VAt dt) do(n) .

0

The first integral on the right side of (9) is nonnegative, since do(x) > 0 if A < 0.
The second integral is greater than

o]

-9f(th(t)cosVXt dt)zd(fl/i) - -Bjx[h(t)]zdt,

0
by Assumption 1 and Parseval’s equation. Thus

X

(10) f f £(y, t) h(y) h(t) dy dt > -9 f [h(t)]2 dt .

Multiplying (4) (with f; = f, K;= K) by K(x, y), integrating with respect to
y (0 <y <x) and using (10), we get

X

f f(x, y)K(x, y)dy + (1 - G)I[K(x, y)I?dy < o0.

[¢]

Using Schwarz’s inequality, we conclude that

(11) ( f{[K(x, ol dy) v <(@-0 ( f[f(x, I? dy) e
o 0

Taking y = x in (4) and using (11), we derive the following estimate for K(x, x):



140 AVNER FRIEDMAN

(12) IK(x, x)| < |f(x, )|+ (1 - 6)2 f [£(x, D] dt.

To estimate dixK(x, x), we take y = x in (4) and differentiate with respect to x. We

obtain

x X
(13) —d—if(x, x) + a—iK(x, x) + £(x, X)K(x, ) + f £ (x, ) K(x, t)dt + f f(x, ) K, (x, t) dt = 0,

and it is clearly sufficient to estimate

= 1/2

I- ( f[Kx(x, t)]2dt)

0

To do this, we differentiate (4) with respect to.x, multiply the resulting equation by
K%, y) and integrate with respect to y (0 <y <x). Using (10) and Schwarz’s in-
equality, we obtain

1/2

1 /2

(14) 1< -0 fx [fx, OFdy )+ [KGx, =) fx [16x, )]2ay )

Bounds on the higher derivatives of K(x, X) can be derived in a similar way. This
will become clear, from the proof of Theorem 1 below.

Let {Mn} be a sequence of nonnegative numbers. We denote by CP{M,; a}
(a > 0) the class of all infinitely differentiable functions g(x) (x = (x,, *--, xp)) de-
fined in the domain 0 < x; <a (i=1, ---, p) and possessing the following property:
To every function g(x) there correspond constants H, and H such that if x; € (0, a)
(i=1, -+, p), then

‘ o"g(x) < H, H"M_ (n=1,2, ).

axil... ain,P

THEOREM 1. If f(x, y) € C3{My; a} then q(x) € C*{My.); a}, provided that o())
satisfies Assumption 1 and that, for some A > 0, the M, satisfy the monotonicity
condition

(15) (?) M;M,_; S AM, i=1,:-,nn=1, 2 «..).

Note that if f(x, y) is infinitely differentiable, the same is true of K(x, y) and
q(x). Theorem 1, with M, = n!, shows that if f(x, y) is analytic, the same is true of

q(x).
Proof. We shall prove by induction that if x € (0, a), then

a 1/2

(16,) (f (i—r%xm—’g)zdt) < HHPM,,,
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m-j

(169 ‘a%( 2 k0] )

3 m_‘] t=x

< H,H"M,, (=01 -, m).

The theorem then follows from (5).

Assuming (16;) (i =1, 2) to hold for m =1, 2, ---, n - 1, we shall prove it for
m = n. In the sequel, A; will be used to denote appropriate constants independent of
n. For simplicity, we write

?iK(x, x) _ 8K(x, 1) oif(x, x) _ oif(x, t)

axi x|’ oxi ~ axi

t=x

Differentiating (4) n times with respect to x, multiplying the resulting equation by
onK(x, y)
axn
using Schwarz’s inequality,

a0 ([[750 o)
n-1

3 ¥ on-1-i 2 1/2
< (221 w) " 5 ([ [ (10 02550) o)

i=0

, integrating with respect to y (0 <y < x) and using (10), we obtain, after

1/2

(17)

Now, by assumption,

omf d gm-jf
’—————(2 Y)\ < AAP M, B2 < a1 AT Mm

dxJ oxm-j

(18,)
(x,ye(0,a)y;m=1,2, ),

and therefore

(18,) {f[ a—m—;-}(-:;—ﬁ]zdy}l/z dy < A3 AP M.

If we take H > 2A,, and make use of (15) and of the inductive assumption, we get

an-l-i

P ( f(y, x)

IN

1K(x, x) nl-in1-d n-1-i- +j

ax,i )| EO ( j )AIA JNIn 1-1_]HO IJMH—_]
J=
< AgHyHIM |,

and from (17) it follows that

1/2
(19) {j ERsgy dy} < A H HO-IM.

Xn

To prove (16,) for m = n, we differentiate (4) n - j times with respect to x, then
substitute y = x and finally differentiate the resulting equation j times with respect
to x. We get
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& i, x) | dd P IK(x, x) . “‘gldj {[ gn-1-j-i (f(y 2 K (x, x)) ] }
y=x

d_xj axn-j dXJ an‘j i=0 dXJ axn‘l'j-i ox!?
-1 .j5-1-i i n-j ; X .j n-j
d {[a ( " K (x t))] } ) ( " IK(x t))
12 | = ) ——= 2 f(x, )Z—22 ) dt = 0.
+iz=:o dxJ~" "t I Llax* &, 9 ox™-J t=x +faxJ G, oxn-)

0

K j = n, the first sum does not appear, and if j = 0, the second sum does not appear.
Using (15), (18,), (18,), (19) and the inductive assumption, we obtain, after some cal-
culations,

i an-j -1
LLEMI < AgHyH ' My,
dx) oxn-J -

where A, does not depend on j. We take H > max (A, A,), and the proof is com-
plete.

Example, In addition to Assumption 1, assume also that do(A) = 0 if A< 0 and

©0
f |do()| = |o| < . Using (12), we obtain
(o]

lim sup
X == %0

X
%f q(t)dt, < (1-01of.
1]

Similarly, if

fhkldo‘(h)|<oo (k=1,2, ),

0

then the following inequalities hold:

lim sup x-(#+2) |q(*}x)| < « (m=0,1, ).

X == 00

3. Consider again the integral equation

(20) f(X, Y) + K(X, Y) + J.Xf(Y) t) K(X, t) dt = 0,

[1]

where f(x, y) = {,(x, y), and assume that f(x, y) has a series development about the
origin, namely,

o0

fx,y) = ¥ faax™y? ([x] <A, |y]<A).

m,n=0

Substituting formally K(x, y) = ZK_ ,x™y" into (20), we find that the following sys-
~ tem of equations must be satisfied:
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Kon = -fon>

R §
(21) nk
Kon = fmnt 2 gy gky @2
i+j+tk=m-1

1l

Note that (21) can be used to define K, recursively, since K, is given in terms
of Kjjand i+ j <m - 1<m. It{follows that if {L,n} is an infinite matrix of num-
bers which satisfy (21) with K,,, replaced by L, ., and -f, , replaced by Fy,,,
where Fp . > [fmn|, then L, > |Kmn| , and consequently if ¥ L, .. x™y" con-
verges, then also ZK,,,x™y™ converges.

T% define F,,,, assume that the series Zf,,,x™y" is majo;.'oized by the product
Tanx Zany", for |x|< B, |y|<B (B < A); and write f(x) = ;-9 a, x* (|x| < B).
It is clear that if the (majorant) integral equation

(22) -£(x)£(y) + L(x, y) - j £(y) £(t) L(x, t)dt = 0

o

has a solution L(x, y) = © Ly, x™y", and if the series converges for |x|< B,
|y| < B, then also K(x, y) has a series development for |x|< B, |y| < B, and con-
sequently g(x) = Z q,x® (|x| < B). Since the solution of (22) is

L(x,y) = £(x) £(y) )

1- Ix[f(t)]z dt

the following result is proved.
THEOREM 2. If f(x,y) = Zf,_  x™y" is majorized by f(x)f(y) = Za, x"T a, y™

B
for |x|<B, |y|<B, andz:ff [tx)]? dx < 1, then
[}

o0

q(x) = X aqnx?,

n=0

and the power series converges for le < B.

Theorem 2 gives a sharp lower bound on the radius of convergence R of q(x), in
the sense that there are cases in which R = B. As an example, define

%VI, (x>0

p(A) =
-a (A<0) (a>0).

Then f(x, y) = a and K(x, y) = -a/(ax + 1), so that R = 1/a. On the other hand, for

=B
the majorant of f(x, y) determined by f(x) = VBT,f [f(x)]?dx = 1 becomes B=1/a=R.
4]
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4. Consider the following problem of moments:
R
f Atdo(d) =c, (@=0,1,+; ¢, =01if n>N and ¢y #0),
~o0

(a) g
f e VA x |do(x)| is finite for all positive x,

do() > 0 if A < 0; d[c(x)+?2r1/i]zo if x> 0.

Suppose (a) has a solution o = o()). Since the function

o) (<o),
oMW+ 2% (> 0)

satisfies the conditions of Gelfand and Levitan (with @ # 7/2), the function K,(x, y)
which satisfies (4) exists for all nonnegative values of x and y. Since the function

f,(x,y) = f cos V¥ xx cos YAy do(x)

is analytic by our assumptions, we conclude from the relation

aitif; (x, y) 0 if either i or j is odd,
0x*9y) l(0,0) (-1)"Cp if both i and j are even and i+ j = 2n,
that the function f,(x, y) must be of the form
- - N 3
> ayxfiyd  or ¥ ajxdy3,
i+j<N i=0
where a;(z) is a polynomial in z of exact degree N - i and with coefficients that are
uniquely determined from the c,. It follows that the integral equation
N . N X
(23) C Y a9yt K, y) + y21f_ 3 (tHKx, hdt=0 (0<y< )
i=0 i=0 4

has a unique solution K(x, y) for every fixed positive x.
From the theory of integral equations with degenerate kernels [2], it follows that
X

(24) A) = det( f a,(s?) s2ids + 5ij)

0
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must be either positive or negative for all x. We conclude that if (a) kas a solution,
then necessarily A(x) #+ 0 for 0 < x < .

In the case ¢, =0 (n=0, 1, --) we have f,(x, y) = K,(x, y) = 0. Consequently,
q(x) = 0 and tg o = 0. Since the function p()) corresponding to o()) is a spectral
function, and since in the limit-point case there is only one spectral function (see
[1; p. 259]), we conclude that p(A) = (2/mV 2, so that o(A) = 0. Thus we have proved
that if all the c,, vanish, then (a) has no nontrivial solutions o(}).
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