CONVERGENCE PROPERTIES
OF SEQUENCES OF LINEAR FRACTIONAL TRANSFORMATIONS

G. Piranian and W. J. Thron

1. INTRODUCTION

We are concerned with two aspects of the convergence behavior of arbitrary
sequences of transformations

Az+B

@ Tn=Tl@) = g 73D

(n=1, 2, -).

One aspect is the nature of the point set where such a sequence converges; the
other is the character of the limit function, T(z), on that point set. While the two
aspects of the problem are not quite independent, the connection between them is
surprisingly slight, and they can be treated almost separately.

In order to make the further discussion precise, we mention here some conven-
tions. No cases of interest will be lost through the assumption that all of the trans-
formations T, are nonsingular; we shall therefore assume, throughout, that
A.D, - B,C,# 0. Also, the subject naturally demands that the transformations be
regarded as mappings of the extended plane onto itself; therefore a sequence of
points will be called divergent only if it has at least two limit points in the extended
plane. A point set E will be called a set of convergence provided some sequence
(1) converges everywhere on E and nowhere outside of E. The complement of a set
of convergence will be called a set of divergence, or an SD, for short. In other
words, the statement “E is an SD” shall have the meaning: “there exists a sequence
(1) which diverges everywhere on E and converges everywhere outside of E.”

It happens that the limit function of (1) is very simple, throughout the set of con-
vergence, regardless of how the set of convergence is constituted. In fact, only
finitely many essentially different situations can occur. Therefore we shall first
treat the properties of the limit function (Section 2), and then we shall study the more
difficult problem of finding the point sets which are sets of divergence (Sections 3 and
4). This latter problem is not yet completely solved. The continuity of the linear
fractional transformations implies that every SD is a set of type Ggg (see [1], p.
273). On the other hand we shall prove, for example, that every set of type Gg (but
not every set of type Fg) is an SD, and that not every SD is a set of type Gg. We
shall also show that it is not possible to characterize the SD’s in purely topological
~ terms. The essential reason for this state of affairs is the fact that the level curves
of the function 1/(z - h) are concentric circles.

The present study originated from Thron’s investigations on the convergence be-
havior of continued fractions. If tn(z) =a,/(bn+ z) and

Tn(z) = tl(tz i (tn(z)) eee) ’
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then the sequence {Tn(O)} is the sequence of approximants of the continued fraction

ese

+b,+

Lty
S

This fact has proved very fruitful in the study of continued fractions (for examples,
see[2],[3],[4],[5],[6]), and it is hoped that the present paper will provide informa-
tion useful in the theory of convergence behavior of continued fractions.

2. THE LIMIT FUNCTION

THEOREM 1. On the sel of convergence of a sequence of nonsingulayr linear
JSfractional transformations, the limit function is either

(@) a nonsingular linear fractional function,
(b) a function taking on precisely two distinct values, or
(c) a constant.

In case (a), the sequence converges everywhere in the extended plane; in case (b),
the sequence converges either evevywhere, and to the same value everywhere except
at one point, or it converges at only two points; case (c) can occur with every pos-
si ble set of convergence.

In the proof ‘of the first part of this theorem, we can clearly assume that the se-
quence (1) converges at two distinct points z, and z, (the other cases are trivial).
We can also assume that z; = 0 and z, =«; for if this is not the case, we need only
replace the function T, (z) by the functions

Z,72 + Z
T = Ta(%552),

which are also nonsingular. Similarly, we may assume that T(w) = lim Tn(w) # co.
This assumption implies that C,, # 0, except for at most finitely many indices n; the
exceptional elements T, can be suppressed, since they do not affect the convergence
behavior of the sequence. Our transformations then have the form

A, AD, -B,C,

n
Tn(z) = C, Ciz=+ CoD,

Moreover, since the determinant of T, is not 0, its value may be assumed to be 1,
and the transformations take the form

2 T,(z) = ==-

Two alternatives arise: either the two limits T(0) and T(w) are different, or they
are equal.

Alternative I. We may assume that T(~) = 1 and T(0) = 0, so that

An/Cn >1, CuDn>1.
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If C, approaches a finite limit other than 0, we have case (a) of our theorem. If
Cn>0 or C,> o, we have case (b}, with convergence everywhere. Finally, if the
sequence {Cn} diverges, we have case (b) with convergence at the two points 0 and
o only.

Alternative II. We may assume that T(w) = T(0) = 0, so that
A /C,>0, C,D,>w.
For convenience, we replace the transformations (2) by the transformations

1 _ 1/CnDn .
C:z+CD, zC,/D,+1’

(3) Tn(z) =

this is permissible, since the convergence behavior is not affected by the change.

Suppose first that the sequence {zn} = {—Dn/Cn} converges to some finite or
infinite limit p. Then Ty(z) > 0 for all z, except possibly for z = p (also for z = p,
by hypothesis, if p=0 or p=»). If p # 0 and p+ =, the sequence {Tn(p)} may
converge to a value other than 0 (case (b) of the theorem); or it may converge to 0,
or it may diverge (case (c) of the theorem). The reader will have no difficulty in
constructing relevant examples to show that each of these possibilities can actually
be realized.

Suppose next that the sequence {zn} diverges. It then has at least two distinct
limit points h, and h,. To each of these points h; (i = 1, 2), there corresponds a
subsequence of {Tn(z)} which converges to 0 everywhere except possibly at h;. It
follows that at each point z of the plane the sequence {T,(z)} either converges to 0,
or diverges. In other words, if {z,} diverges, we have case (c) of the theorem.

We have now shown that the limit function of each sequence (1) falls into one of
the three cases described in the theorem. The assertion that case (c) can occur
with every possible set of convergence will follow incidentally from the proof of
Theorem 3 below.

3. GENERAL THEOREMS ON SETS OF DIVERGENCE

THEOREM 2. Every SD is of lype Ggg .

This theorem is an immediate consequence of the fact that the functions T, (z)
are continuous on the extended plane.

THEOREM 3. If E is a set of type Gp, it is an SD.
If E is the extended plane, it is the SD of the sequence {Tn} with

T3y = 2, Tane1 =2+ 1, Tiniz = Vz (n=1,2,-).

If E omits at least one point, we may assume that it omits the point x =, We
shall show that E is then the SD of a sequence of the form

dn

(4) Th(z) = "
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Let E be the intersection of the open sets G¥ (Gl’:D GT<+1’ o £ Gf:, k=1, 2, ¢}
we note that the set E can be represented as such an intersection even if it is empty).
Let Gy denote the intersection of G¥ with the disk |z| < k. Let Hyj denote the set
of points which lie at a distance at least 1/2 from the complement of Gx. And for
j=2, 3, -, let Hkj denote the set of all points whose distance from the complement
of Gy is less than 21-J and at least 2.

In each of the sets Hj, we select a finite set of points zy;p p=1,2,---, pkj)
such that the distance between each point of Hyj and the nearest of these points zy;p
is less than 2-K¥-2], We construct the functions

9-k-2j
Twip@ = 35

Jp
and we arrange the family of functions Tkjp into a simple sequence {Tn}, accord-
ing to any scheme.

If the point z lies in E, it lies in infinitely many of the sets Gy, hence in in-
finitely many sets Hyj (k= ky, ky + 1, +=+; j = j(k, z)). Corresponding to each set
ij which contains the point z, there exists a point Zyip such that

-k-2j
IZ'ijp|<2 ).

Since the corresponding function Ty;, has modulus greater than 1 at z, the sequence
{T,} does not converge to 0 at z. Therefore {Tn} certainly diverges at z if the set
{ijp} has a limit point other than z. In case the set {z kjp has only one limit point,
we adjoin to {T,} the family of functions

1/h2
Ti:-z—_—/T/E (h=1,2, ).

The augmented sequence {Tn} then has a subsequence which converges to 0 every-
where, and therefore it diverges everywhere in E.

Suppose on the other hand that z is not a point of E. Then it lies in at most fi-
nitely many of the sets Gy. If z ¢ Gy, then |Tyjp(z)| < 275721 273 = 27%7J); and if
z € Gy, it is an interior point of Gx, and therefore ]Tkjp(z)| < & except for a finite
number ng of index sets (k, j, p). It follows that the sequence {T,} converges at z.
Therefore E is the SD of a sequence (4), and the proof is complete.

We note that every SD which can arise under Alternative I in the proof of Theo-
rem 1 is a set of type Gg, and that under Alternative II the sequence {Tn} is of the
form (4). It follows now that every SD which does not contain the point z = « is the
SD of a sequence of the form (4). We also note that if an SD omits at least one finite
point other than 0, then every point of the SD is a limit point of the set {zn} asso-
ciated with a corresponding sequence (4).

THEOREM 4. If each of the two sets E, and E, is an SD, then the union E, y E,
is an SD.

In the case where E; y E, omits only two points, the proposition is trivial.
Otherwise, we may assume that each of the sets E; and E, is the SD of a corre-
sponding sequence (4). By combining the two sequences into a single sequence, we
obtain a sequence with the required SD.
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4. DENUMERABLE SETS OF DIVERGENCE

THEOREM 5. Every denumevable set on a line is an SD.
COROLLARY. Not every SD is of type G

The corollary follows from the theorem because a set of type G5 can not be both
denumerable and dense on a line ([1], p. 138).

To prove the theorem, we suppose that E is a set of points x;, on the real axis.
With each point x; we associate a set of functions

1 .
Tyj(2) = i@ = %, < VKD G=1,2, -,

and we arrange the functions Tkj into a sequence {Tn}. If z is not real, the dis-
tance lz - Xy - i/kjl is bounded away from 0, except that it may vanish for one index
pair (k, j); therefore T (z) >0. If z is real, we have two cases: If z is one of the
points of E, say z = x;,, then

i
Thj(z) = FZ_J_/FJ = l/h,

and therefore {T,(z)} diverges. I z is not one of the points x;, let ¢ > 0. Since
|Tkj(z)| < 1/k, for all index pairs (k, j), there exist at most finitely many indices

k for which the inequality ITkj(z)| > & can be satisfied; for each of these indices k,
lim;_ . Tkj (z) = 0, and therefore ITn(z)| < g, except for a finite number of indices
n. This concludes the proof.

THEOREM 6. If the set E is dense in a domain B and is an SD, then the set
E N B is not denumevrable.

COROLLARY. Not every denumevable setl is an SD.

In proving the theorem, we may suppose that E is the SD of a sequence (4), and
that d,,>0. Under these conditions, each point of E is a limit point of the sequence
{s,} associated with (4). Let K, denote the point set where |T, (z)|> 1, that is, the
closed circular disk Iz - zn| < d,; then every open subset of B contains one of the
sets K.

Let Q be one of the disks K in B; then Q contains two disjoint disks Q, and
Q, which belong to the sequence 1?Kn} Similarly, Q, contains two disjoint disks Qq,
and Q,,;, and Q, contains two disjoint disks Q,, and Q,, (all four belonging to the
sequence {Kn}), and so forth. With each dyadic fraction a = 0.a,a,***+ we associate
the point p, which lies in each of the disks Qa1’ Q . - Since p_ # py, for a+ b,

a;a,’ ..
and since each point p, lies in the SD of (4), the theorem is proved.

THEOREM 7. The property of being an SD is not invaviant under topological
transformations of the plane onto itself,

We shall actually prove more than the theorem asserts. We shall show that
there exists a Jordan arc A such that some denumerable set on A is not an SD.
The theorem will then follow trivially from Theorem 5.

The crucial geometric property which we need for our arc A is the following:
the arc must contain a point set {tk}, dense on A, such that, for every arc I in the
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plane which passes through a point ty, the ratio p(z, A)/|z - ti| (where p(z, A) de-
notes the distance between the point z and the arc A) tends to zero as z >ty along
I'. An example of such an arc is given by the graph of the function

y=Fx = Zfx-x)/k (0<x<1),

where

i(t)

n

|t]*#2 sin 1/t  (t= 0),
f(O) = 07

and where {x)} is dense on [0, 1].

Let A and {tk} be an arc and a point set on the arc which have the required
geometric property. We shall establish the theorem by proving that {tk} is not the
SD of any sequence (4).

Suppose that the sequence (4) converges to zero on the complement of A, and that
it diverges on { tx}. If every subarc of A contains points of the set {z,} associated
with (4), then the SD of (4) is not denumerable (proof as in the preceding theorem),
and therefore it contains points which do not belong to {tk} .

If some open subarc A* of A contains no points of {zn}, then to each point tx
on A* there corresponds a subsequence {Ty(x )} (i=1, 2, **-) which has the two
properties that z;(x,j)->-tx and that ITn(k,j)((tk | > ax, where ay is some positive
constant. Because of the special geometric property of A, there exists a closed arc
B on A* on which the inequality |Ty(z)| > 1 is satisfied, for some n = n(B). Since
B contains in its interior at least two points of the sequence {t k}, the argument can
be repeated to establish two disjoint closed subarcs B, and B, of B on which two
corresponding elements of T,(z), with n(B,) and n(B,) both greater than n(B), have
modulus greater than 1. The remainder of the proof is similar to the proof of
Theorem 6.

One might suspect that if the Jordan arc A used in our proof is sufficiently
wicked, then no denumerable set which is dense on A is an SD. The following theo-
rem shows that this is not the case.

THEOREM 8. If the set F is closed and nowheve dense in the plane, then there
exists a denumevrable subset of ¥ which is dense on ¥ and which is an SD.

To prove this theorem, we choose a sequence { tk} of points which is dense in
the plane and lies in the complement of F. From each of the points t), we draw a
line segment L to one of the nearest points of F, and we denote the endpoint of L
by zy. As in the proof of Theorem 5, it is easy to construct a sequence {Tn} whose
SD is the set {z,}.

THEOREM 9. If the closure of the set E is denumerable, then E is an SD.

In the proof, we may assume that E omits the point z =, Suppose then that
E={td (k=1,2, -,
and let
{za} = {ty to b, by ty, =}

We can assume that t, belongs to E. Let
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Th(2) = ¢,/(z -2,) if z, €E,

T,(z) = ¢,/(z - 2,) if z £ E.

Here the positive constants ¢, are chosen so that |T,(z,)| < 1/n for
k=1,2,-,n-1and 2z, #2, if z €k,
k=1,2,:n and z, # z,, if z £E.

Since cp >0, Tn(z) > 0 for every z in the complement of E. If z is a fixed point in
E, and if {Ty(z)}* denotes the subsequence of {T(z)} for which z, = z, then the
elements of {T,(z)}* have the value » if z, € E; otherwise, they tend to 0. In either
case, the sequence complementary to {Tn(z)}* is a null sequence. This completes
the proof.

5. UNSOLVED PROBLEMS

1. Is the intersection of two SD’s an SD?
2. Is every subset of a denumerable SD an SD?

3. What are necessary and sufficient conditions on a denumerable set in order
that it be an SD?

4, Although the SD’s can not be characterized in terms of topological properties
alone, it may be possible to find all the topological restrictions which a point set
must satisfy in order to be an SD. More precisely: it may be possible to find a
topological property P such that every SD has the property P, and such that every
set with the property P can be transformed into an SD by means of an appropriate
topological mapping of the plane onto itself.
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