TERNARY RELATIONS IN GEOMETRY
' AND ALGEBRA

by G.-Y. Rainich

One. of the simplest sets of axioms used in
Mathematics is the. set of propositions defining an
equivalence relation. We will express the assertion
that.a is equivalent to b by writing (ab)'. For our
presen,t purposes it is convenient to state that this
binary. relation possesses the properties (the symbol
> means "implies' in what follows):

(Se) Symmetry, that is, (ab)' > (ba)'
(Te) Transitivity, that is, (ab)', (bc)' > (ac)'.

The starting point of the followingdiscussion
was the observation that in many places in Mathe-
matics similar although more complicated proposi-
tions occur, or that it is often possible to reformulate
 the discussion so that it can be stated in similar-
terms. An example of a ternary relation is that of
collinearity. If we denote the fact thatthe points A,
B, C lie on a straight line by writting (ABC)* we can
say that this relation possesses the property

(Sg) Symmetry, that is (ABC)* > (BCA)*, (BAC)*etc.
and the property

(Tg) If A and B are distinct points
(ABC)*, (ABD)* > (ACD)¥.

Clearly, the last property is of the same general
type as the transitivity property of the equivalence
relation; the difference. is essentially that there - we
deal with a binary relation and three elements and
here, in the case of collinearity, with aternary re-
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lation and four elements. There is also the differ-
ence —we wi1ll discuss it later—that here we must
. assume that the elements are distinct.

Geometry. It is possible to present the whole pro-

jective geometry inthe plane as the study of properties
of this relation of collinearity. To begin with we
shall consider the propositions of Pappus and Desar-
gues. The first states that if a hexagon is inscribed
into a ‘degenerate conic (that means, a conic consist-
ing of two straight lines) the meets of its opposite
sides are collinear. If the vertices of the hexagon
are denoted by A,B,C,D,E, F the fact that it is in-
scribed into a degenerate conic is e‘xpressed by the
collinearities (ACE)* and (BDF)¥; if we denote the
meets of the opposite sides by X,Y and Z we have
six further collinearities, namely (AXB)*, (DXE)¥*,
(BYC)*, (EYF)*, (CZD)*, (FZA)*. The conclusion.
is that (XYZ)*. Again, a proposition of type Tg.

The Desargues propositionstates that if the
joins of corresponding vertices of two triangles are
concurrent then the meets of the corresponding sides
are collinear. ‘Dénoting the vertices of the two tri -
angles by A,B,C, and P,(QQ, R respectively the con-
currence of the joins of corfesponding vertices is
expressed by (OAP)¥*, (OBQ)™*, (OCR)* and if the meets
of corresponding sides are denoted by X, Y, Zwehave
the further collinearities

(AXB)*, (PXQ)*, (BYC)_*, (QYR)*, (CZA)*, (RZP)*,

and the conclusion is (XYZ)¥*. Again a proposition of
type Tg (in both Pappus and Desargues propositions
it is assumed that all points are distinct.
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A very important conceptinprojective geometry
is that of harmonlc pairs. Consider a quadrifigure
consisting of the four points A, B, C,D and the four
lines AB, BC, CD, DA. The lines AC and BD are’
usually called diagonal lines; we shall call the meet
E of AB.and CD, and the meet F of BC and DA dia-
gonal points of the quadrifigure. The pairsofpoints.
E, F is said to be harmonic to the pair of intersections.
of the diagonals with the line EF.' In order for the
concept of harmonicity to make sense we mustbe sure
that these four points are distinct, that is that the -
meet of the diagonal lines is not collinear with the
diagonal points. This then is an important proposi -
tion of projective geometry (that might be taken as an
axiom), and we want to compare its structure asex-
pressing a property of the relation of collinearity
with the structure of other propositions giving pro-
perties of ternary relations. At first glance this .
seems to be a proposition of a different type -in that
its conclusion appears as a negation. @ However, it
turns out that the situation is this: denote the meet
of the diagonals AC and BD by G; then what we are

given are the collinearities

(1) (EAB)*, (ECD)*, (FBC)*, (FDA)*, (ACG)* and (BDG)*
It seemed that we want these relations to imply that
E,F,G are not collinear; but there is a case when

E, F,G, are collinear inspite of the above collinearities
holding; this happens when the quadrifigure collapses
into one line, that is, when the points A, B, C,D, are
collinear. The propositionwe wantis thenthat.if the
above collinearities (1) hold and also (EFG)* then all 7
points are collinear. Wehave thus againa proposition

of the same type Tg as those we had before. Here again we
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mustassume that there are no identical points among
the seven. Before we discuss this proviso we turn to
algebra. '

Algebra. We will speak here of addition; we may think
of addition of numbers or, more generally, of. the

group operation of a commutative group. The state-
ment .
(2) a+b=-s

expresses the factthat a, b,s satisfy a certain ternary
relation. This relationdiffers from the relations con-
sidered so far in that it is not symmetric, s plays
here a different role from those played by a and b.
However, it is easy to replace it by a symmetric re-
lation, namely

(3) « a+b+c=0

where c satisfies another relation of the same type,
namely \

(4) c+s+0=0.

We will now try to express the associative property
of the operation of addition in terms of the relation
(3). We write this associativity, as

(5) (a+b)+c=a+(b+c)
and introduces the notation

(6) a+b=p, b+tc=q, p+c=rp
Then' the equality (5) takes the form

(7) | a.+q=r,
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In order to rewrite this in terms of the symmetric
relation (3) we introduce e, f, g which satisfy
(8) p+e+0=0,q+f+0=0, r+ g+ 0 =0;
then we can write (6) as
(9) a+b+e=0,b+c+f=0,p+c+g=0
and the associativity (5) may be expressed by saying
that ‘
(10) a+q+g=0
is a consequence of (8) and (9).

We have thus replaced the relation of addition
(2) by a symmetric relation (3) and we found that the
associativity of addition can be expressed in terms of

that relation. We shall denote the fact that a, b, c sat-
isfy the relation (3) by writing
(abC)”;
then the propefty of associativity may be expressed
as follows:
Propositiona A.
(abe)", (bct)", (peg)™, (pez)", (afz)" > (agg)".
We left out r because leaving it out does not affect

the proposition. Also we denoted 0 by z in order to
bring out the fact that it does not playany preferred

role in the proposition. As a matter of fact, any ele-
ment plays here the same role as any other element.

This can be seen by writing the nine elements as a

tabl
© abe

gcpP
qf =z
and noticing that interchanging the rows or the columns
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does not affect the situation.

We note that the ternary relation ( )" which
we have derived from the operation of addition pos-
sesses a property of the type T whose prototype
was the transitivity property of the equivalence re-
lation, the difference being that the hypothesis of .this
proposition involves 5 assertions .instead of two, and
that the total number of elements is 9 instead of 3, and,
of course, that we have a ternary relation instead of
a binary relation. Unlike the case of geometrical re-
lations there is no additional condition thatthe elements
must be distinct.

We have now translated the properties of com-
mutativity and associativity of additon into properties.
of the ternaryrelation ( )". Corresponding to clo-
sure of the group under addition we will wantanexist-
ence property of our relation, namely

Proposition (E). Given u, v, there exists x such that

(uvx)"

Corresponding to the fact that the sum of two elements
is uniquely determined we now want a proposition say-
ing that x in the above relation is uniquely determined
by u and v. In other words, if there is also y such-
that (uvy)" we want x and y to be identical. How
should we treat the question of identity? I believe
Lieibnitz would have said that x and y are identical if
anything we may assert concerning x may also be
asserted concerning y. Such a statement sounds too
absolutistic, we should be satisfied with much less.
We'll say: x and y are identical with repsect to a re-
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lation R, if whenever R(abx) we also have R(aby), and
conversely This is the relative identity we need. If

we adopt this meaning of identity the uniqueness prop-
erity of our relation " will be

Proposition (U). (uvx)", (uvy)'s (abx)" > (aby)"

We see that we have again a proposition of type T. Is
it independent of proposition (A)? There we have nine
elements, in proposition (U) we have only six, so if
we want to derive (U) from (A) we must make some
identifications in (A). If we identify g withb and f with
p, and write x for e, y for q, v for z and u for p (and
f) it becomes

(abx)", (bcu)", (ucb)", (uvx)", (yuv)" > (ayb)"

This differs from the proposition (U)we wantedto de-
rive only inthat the hypothesis contains (twice) the ex~
tra relation (ucb)". Since this is the only place where
c appears all we need in order to derive (U) from (A)
is the assurance that, giventwo elements band u, there
e xists an. element c which satisfies the relation (bcu)'!
We have the assurance if we accept proposition (E).
This shows that the uniqueness (U) follows from as-
sociativity (A) and existence (E).

In whatprecedes we have been discussing some
properties of addition (or the group operation of a
commutative group) in terms of ternary relation.
We want to see now whether these properties are suf-
ficient to define a (commutative) group. We as-
sume then a ternary relation which possesses the prop—
erties (S), (A) and(E), and we know that, as a conse-—
quence it also has the property (U). We want to see
whether we may introduce the group operation and
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whether we'll have all the properties of a group.

The first thing we'll have to do is to select our
element which is to play the part of identity, that is
zero. If we select such an element—call it zg — we
can, reversing our steps, define s as the sum of the
elements a and bby the relations, analogous to (2) and
(3), namely

(abc)", (cszo)" .
If these relations hold we shall write
a + b = s.

The next question is whether the addition so defined
possesses the necessary properties. Commutativity
is an immediate consequence of A and existence and
uniqueness of the sum also are implied by what pre-
cedes. Butwe must find out whether zo actually plays
the part of zero, that is whether a + z5 = a. With the
above definition of addition this means that we must
check the relations '

(azgyc)' and (cazg)" .

Because of symmetry these relations are actually one
relation and the question reduces to the question wheth-
er there exists ¢ which satisfies it. The answer is
given by (E) and is affirmative. |

Existence and Uniqueness in Geometry. Sofar we have
considered only points in geometry but no lines. Itis

possible to express all geometrical axioms in terms
of points alone butin order to do that we must express
in terms of collinearity of points the statement that
two lines intersector have a pointin common, that is:
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given four points A, B, C, D there exists a pointX such
that (ABX)™* and (CDX)*. We see that this is an exist-
ence type proposition, a proposition of the same type
as the proposition (E) above. |

Itis interesting to remark that if we introduce
in the course of aproof auxiliary points we have to use
the above existence proposition. As a result, two
propositions of type T may be independent in a geom-
etry without existence propositions but if we assume
the above existence proposition one may become de-
rivable from the other, as is the case with the Desar—
gues and Pappus propositions in plane projective geom-
etry.

We come now to the role that the concept of
identity or relative identity plays in geometry=eitis
quite different from the role it plays in algebra.
There it-appeared in connection with uniqueness. In
geometry it isnot needed for this purpose; if we want .
to discuss uniqueness of intersection of two straight .
lines we would have to say that if (ABX)*, (CDX)™ and
(ABY)* and (CDY)* that X is identical with Y; but this
is true only if A, B and C, D are not on the same line.
In other words, if X and Y are not identical and we
have the above collinearities then we have also (ABC)¥*
etc. But if X and Y arenot identical then from (ABX)*
and (ABY)* follows (AXY)* and from (CDX)* and
(CDY)* follows (CXY)*; now (AXY)* and (CXY)*
implies (ACX)* and (ACX)* and (ABX)* implies (ABC)*
so that we have what we want from our proposition of
type Tg. However, we have been usinghere heavily
the concept of non-identity, the same proviso that
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appears in all our geometrical propositions, It 1is
time now to éonsider it. The simplest proposition in
which we used non-identity was: if A and Bare distinct
then (ABC)*, (ABD)* implies (ACD)¥*.

The statementthat A and B are distinct means
that they are not.identi¢al or the negatmn of the state-
ment that they are identical. This last statement as
we understand it now, would mean that for every P
we have (ABP)*.  To deny this we would have to
say that there exists a P such that (ABP)*is false;
we shall write this as (ABP)-*. A complete statement
of our proposition is now

(ABC)*, (ABD)*, there exists P such that (ABP)-*
> (ACD)*.

It is clear that the words ''there exists a P such that"
are superfluous: they merely express the fact that P
appears inthe hypothesis of the proposition but not in
the conclusion; the same thing is true of B; omitting
the above words we arrive at the final form of our
proposition

.(ABC‘)*, (ABD)*, (ABP)-* > (ACD)* .

All the other geometrical propositions of type T must
be supplemented in a similar way by introducing addi-
tional points P, Q etc. and additional assertions, as -
sertions of negation, assertions stating that éé;tain

—— e
collinearities do not hold.

We should note that in order to pass from our
propositions (A) and (E) to group axioms we had to
select an element to'play the part of zero. We have
analogous situations in geometry. For instance, we
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can pass from projective geometry to affine geometry
by selecting a ling which would play the role of the
line at infinity. There are several other situations in
which selectionof an element, or ofa set of elements,
plays an important part in géometry; it, so to say,
marks the boundaries between different geometries.

General Considerations. In what precedes we have

been interested in the type of propositions expressing
properties of ternary relations. We found that the
simplest propos1t10ns are of what may be called gen-’
eralized transitivity type, the hypothe51s in these pro - _
positions consists of anassertion that relations on cer-
tain elements hold and the conclusion is that a relatxon
on three of these elements holds.

In addition, some propositions are of the ex-~
istence type, the conclusion asserts the existence of
an element that together with elements appearing in
the hypothesis satisfies a relation.

Finally, some propertiés are expressed by
propositions whose hypothesis contains a negation of
the truth of a relation. It is interesting to note .that -
such propositions occur in geometry but not in the
situationdealing withalgebra we have been discussing;

It seems to be interesting to see how far we
can go in acertain branch of mathematics if we limit
ourselves to propositions of a certain type. Suchan
attitude is similar to what one does in ge_ometfy when
one tries tofind outhow far we can go if we limit our-
selves to using only some of the axioms, the classical
example being that of Euclid who tried to push his
theory so far as he could before assurhing 'wh‘at we
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now call Euclid's axiom. Of course, there is also a
difference because in geometry we may not only re-
ject an axiom but also replace it by another, possibly

by its ne\gatio‘n, and this does not seem to have a
counterpart in our case. "We may mention also the
analogy between our attitude and the attitude of mathe-
maticians who reject the Law of the Excluded Middle
or the Zermelo Axioms, | .

The question arises: what effect the aititude
described above might have on the concepts of com-
pleteness and categoricity of a system of axioms. What
we mean is the question of whether it is possible, in
some sense, to add to a system of axioms giving
properties of a certain relation additional axioms
dealing with the same relation. It is clear that the
question acquires a new meaning if we limit the type
of these additional axioms. It seems plausible, for
instance, that in order to distinguish real projective
geometry from complexprojective geometry the addi-
tional axiom will have to contain a negation in its con-

clusion. Is the set of axioms of real projective geom-
etry complete in the sense that it is impossible in
some sense to add to it an axiom that does not contain
a negation in its conclusion?

"It seems convenient to speak of a maximal
property rather than of completeness. ~ We shall say -

that a system of propositions S of a certain type is
maximal within this type when it is ''not possible'" to
add to it a proposition of the same type which is nota
' consequence of S; and it remains to say what '""not pos-
sible'"' means in a given situation. As an example
.we'll consider the set of axioms defining the ec'iui—
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valence relation and we will show that this .system is
maximalin the sense that the addition of an independent
axiom results in the system becoming trivial, that
means thatfor the new system the relation is satisfied
identically.

We consider thenthe binary relation(ab)' hav-
ing the properties

1. (aa),
2. (ab)' > (ba)',
3. (ac)', (bc)' > (ab)'.

and we consider anew proposition of the same type in-
dependent of these three. The conclusion of this pro -
position must be of the form (ab)'. The hypothesis
must consists of assertions that the relation nolds for
certain pairs invqlving a,b and other.letters.. We do
not change this new proposition if we add to the hypo-
thesis all the consequences that follow from it on the
basis of 1, 2, and 3. In the hypothesm soenlarged
we replace by a all the letters which appear under the
sign ' together with a, and by b all the other letters.
The relation (ab)' cannot appear in the enlarged hypo-
thesis, otherwise the new proposition would be a con-
sequence of 1, 2, and 3. On the other hand, the
hypothesis consists  now of assertion (aa)' and (bb)'
that are consequences of 1 and therefore the conclu—
sion (ab)' applies to any pair; that is, the relation is

satisfied identically, as asserted

Conclusion. It seems appropr1ate to mention here a

f ew situations in which instead of ternary relations we
have relations involving more variables.

‘One quaternary relationis that of cocircularity,
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the relation expressing the fact that four points (in a
Euclidean space) belong to the same circle; cospheri-
city is a relation expressing the fact that five points
are on a surface of-a sphere. Analagmatic or inver-
sive geometry may be considered as the study of these
relations.

Another relation involving four elements may
be made the basis of the study of rings with commuta-
tive multiplication; it is the symmetric relation

Xyz + Xyu + yzu + xzu = 1.

The ring operations can be obtained from this
by selecting two elements. If we set ug = 0 we obtain

1

xyz = 1

which after selecting a unit of multiplication will fur -~
nish an abelian group as in the earlier part of this-
paper, the difference being only in:notation. Of course,
in order to make a quaternary relation the basis for
the study of a ring it is necessary to impose on the
relation properties that correspond to the associative
laws and to the distributive law.

Finally, we want to mention a relation on six
variables the consideration of which was the starting
point of this investigation. We call six points A, B, C,
D,E,F Pascalian if the meets of the three pairs of
the hexagon ABCDEF are collinear. It is a proposi-
tion of projective geometry which we may (with H.
Liebmann) take as an axiom, that this Pascality re-
lation is symmetric. It is then a theorem (the seven
point theorem) that if, given seven points, two sets of
six points taken from among them are Pascalian the
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r emaining sets of six points are also Pascalian (cer-
tain degenerate cases form exceptions). One notices
that this proposition is of the same type as transitivity
of the equivalence relationor as propositions express-
ing the fundamental property of collinearity.






