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1. Introduction

LetX be ann-dimensional, smooth, irreducible, algebraic variety overC and letL
be an ample divisor onX. LetMX,L(r; c1, . . . , cmin(r,n)) denote the moduli space of
rank-r, L-stable (in the sense of Mumford and Takemoto) vector bundlesE onX
with Chern classesci(E) = ci ∈H 2i(X,Z). Moduli spaces for stable vector bun-
dles on smooth, irreducible, algebraic projective varieties were constructed in the
1970s. Many interesting results have been proved regarding these moduli spaces
when the underlying variety is a surface, but very little is known if the variety has
dimension greater than or equal to three. Until now there have been no general re-
sults about these moduli spaces concerning the number of connected components,
dimension, smoothness, rationality, topological invariants, and so forth.

A major result in the theory of vector bundles on an algebraic surfaceS was the
proof that, for largec2, MS,L(r; c1, c2) is irreducible, generically smooth, and of
the expected dimension 2rc2− (r −1)c2

1 − (r 2−1)χ(OS). For moduli spaces of
vector bundles on a higher-dimensional variety, the situation differs drastically.
The smoothness and irreducibility turn out to be false when dimX ≥ 3. For in-
stance, in [BM, Thm. 0.1], Ballico and Miró-Roig prove that, under certain tech-
nical restrictions onc1, the number of irreducible components of the moduli space
MX,L(2; c1, c2) of L-stable, rank-2 vector bundles on a smooth projective 3-fold
X, with fixed c1 andc2L going to infinity, grows to infinity. See [MO] for exam-
ples of singular moduli spaces of vector bundles onP2n+1 with c2� 0.

Let X = P(E ) → C be aP d -bundle over a smooth projective curveC of
genusg ≥ 0. The goal of this paper is to compute the dimension, prove the
irreducibility and smoothness, and describe the structure of the moduli space
MX,L(2; c1, c2) for a suitable polarizationL closely related toc2. More precisely,
we will cover the study of all moduli spacesMX,L(2; c1, c2) such that the gen-
eral point [E ] ∈ MX,L(2; c1, c2) is given as a nontrivial extension of line bun-
dles (Theorems 3.4, 3.5, 3.8, and Remark 3.9). In particular, for rational nor-
mal scrolls (i.e.,P d -bundles overP1) and for a certain choice ofc1, c2 andL,
we have that the moduli spaceMX,L(2; c1, c2) is rational (Corollary 3.6). There-
fore, the geometry of the underlying variety and of the moduli spaces are intimately
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related.We hope that phenomena of this sort will be true for other high-dimensional
varieties.

Next, we outline the structure of the paper. In Section 2 we recall some basic
facts onP d -bundles over a smooth projective curve of genusg ≥ 0 that will be
needed later on. A crucial result in the proof of our main results is the existence
of a sections of a suitable twist of a rank-2 vector bundleE on aP d -bundle,X =
P(E ) → C, whose zero scheme,(s)0, has codimension≥ 2 (Proposition 2.6).
Section 3 contains our main results on moduli spaces: the irreducibility, smooth-
ness, and structure of the moduli spaceMX,L(2; c1, c2) of L-stable, rank-2 vector
bundles on aP d -bundleX = P(E )→ C with certain Chern classes and a suitable
polarizationL. Our approach is to writeL-stable, rank-2 vector bundlesE onX
as an extension of two line bundles. A well-known result for vector bundles over
curves is that any vector bundle of rankr ≥ 2 can be written as an extension of
lower-rank vector bundles. For higher-dimensional varieties we may not be able
to attain such a nice result (e.g., it is not true forX = P n with n ≥ 2). However,
it turns out to be true for certainL-stable, rank-2 vector bundlesE onP d -bundles
X. In Section 4, we illustrate by means of an example the changes of the moduli
spaceML(2; c1, c2) that occur when the polarizationL varies (Theorem 4.4).

2. Generalities

Throughout this paper, we fix a smooth, irreducible, projective curveC of genus
g ≥ 0 and canonical divisorKC. For anye ∈Z, we usee ande′ to denote divisors
onC of degreee. Let E be a rank-(d +1) vector bundle onC and consider

X = P(E ) = Proj(SymE ) π−→ C,

the projectivized vector bundle associated toE . The projective bundleX is a
(d+1)-dimensional variety called aP d -bundle overC. Two vector bundlesE and
E ′ onC define the sameP d -bundle if and only if there is an invertible sheafL on
C such thatE ∼= E ′ ⊗ L. Whend = 1, we simply say thatX is a ruled surface.

LetH := OP(E )(1) be the tautological line bundle; for any pointp ∈C we write
Fp := π∗OC(p) andFp := π∗p. Let H (resp.F ) be the numerical equivalence
class associated to the tautological line bundleH (resp.Fp) onX. We have

Pic(X) ∼= ZH ⊕ π∗ Pic(C), Num(X) ∼= Z2 ∼= ZH ⊕ ZF ;
H d+1= deg(E ), H dF = 1, F 2 = 0.

The canonical divisor ofX isKX ∼ −(d +1)H + π∗(det(E )+KC).
Moreover, ifD ∼ aH + π∗b with a ∈ Z, thenD ≡ aH + bF ; if, in addition,

a ≥ 0, thenπ∗D = S a(E ) ⊗ OC(b), whereS a(E ) is theath symmetric power
of E .
Example 2.1. LetE =⊕d

i=0OP1(ai) be a rank-(d +1) vector bundle onP1 and
assume that 0= a0 ≤ a1 ≤ · · · ≤ ad with ad > 0. The line bundleOP(E )(1) is
generated by its global sections and defines a birational map
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Y(a0, . . . , ad) := P(E ) f−→ PN

withN := d+∑d
i=0 ai. The image of this map is a variety of dimensiond+1 and

minimal degreec =∑d
i=0 ai; it is called arational normal scroll.SometimesY

is also called a rational normal scroll. In cased = 1, we get the so-called Hirze-
bruch surfaces.

Remark 2.2. GivenX = P(E ) a P d -bundle overC, we write γ = γ (E ) :=
max{−µ−(E ) + 1,1}. By [Miy, Thm. 3.1], the divisorL ≡ H + γF is ample.
Hence, the following inequality holds for any effective divisorD ≡ nH +mF :

0 ≤ (nH +mF )(H + γF )d = nH d+1+ ndγ +m.
Lemma 2.3. For anyb∈Pic(C), we have

H i(X,OX(aH + π∗b))

=


0 if − d − 1< a < 0,

H i(C, S a(E )⊗OC(b)) if a ≥ 0,

H d+1−i(C, S−d−1−a(E )⊗OC(b̃)) if a ≤ −d − 1,

whereb̃ := −b+ det(E )+KC.
Lemma 2.4. LetX = P(E ) be aP d -bundle overC and letL be the irreducible
family of codimension-2closed subschemesZ ofX that are complete intersections
of type(H, Fp). ThendimL = h0E + h0OC(p)− h0E(−p)− 2. Moreover, if E
is normalized(i.e., ifh0E 6= 0 buth0E(L) = 0 for all L∈Pic(C) with deg(L) <
0), thendimL = h0E + h0OC(p)− 2.

Proof. From the exact sequence

0→ OX(−H − Fp)→ OX(−H )⊕OX(−Fp)→ IZ → 0, (1)

we deduce

dimL = dim Hom(OX(−H − Fp),OX(−H )⊕OX(−Fp))
− dim Aut(OX(−H − Fp))
− dim Aut(OX(−H )⊕OX(−Fp))+ dimIf ,

wheref ∈Hom(OX(−H − Fp),OX(−H )⊕OX(−Fp)) is a general element and
If denotes its isotropy group under the action of

Aut(OX(−H − Fp))×Aut(OX(−H )⊕OX(−Fp)).
From Lemma 2.3 we obtain

dim Aut(OX(−H )⊕OX(−Fp)) = 2h0OX + h0OX(H − Fp)
= 2+ h0E(−p),

dim Aut(OX(−H − Fp)) = h0OX = 1,

dim Hom(OX(−H − Fp),OX(−H )⊕OX(−Fp)) = h0OX(H )+ h0OX(Fp).
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Finally, sinceh0OX(H ) = h0E, h0OX(Fp) = h0OC(p), and dimIf = 1, it fol-
lows that dimL = h0E + h0OC(p) − h0E(−p) − 2. If E is normalized then we
haveH 0E(−p) = 0 and hence dimL = h0E + h0OC(p)− 2.

We end this section with two results that will be very useful in the sequel.

Lemma 2.5. Let E be a rank-2 vector bundle onP d . If c2(E) ≤ 0, then
H 0(P d , E) 6= 0.

Proof. Sincec2(E) ≤ 0, we havec2
1(E) − 4c2(E) ≥ 0. Schwarzenberger’s in-

equality(c2
1−4c2 < 0 for stable rank-2 vector bundles onP2) together with Barth’s

theorem (which states that the restriction of a stable rank-2 vector bundle onP d
to a general hyperplane is again stable, with the exception of the null-correlation
bundle onP3) implies thatE is not stable.

SinceE∗ ∼= E(−c1), c1(E
∗) = −c1(E), andc2(E

∗) = c2(E),we may assume
thatc1(E) ≤ 0 andc2(E) ≤ 0. Letnbe the least integer such thatH 0(P d , E(n)) 6=
0. We have to show thatn ≤ 0. Take 0 6= s ∈ H 0E(n). Then the scheme of
zeros ofs represents the second Chern class ofE(n). Hence, 0≤ c2(E(n)) =
c2(E)+ nc1(E)+ n2. Sincec2(E) ≤ 0 it follows thatn(c1(E)+ n) ≥ 0. If n >
0, thenc1(E) + 2n > c1(E) + n ≥ 0. Let us see that, in such case,E is stable.
Toward this end, we take a rank-1 subbundleOP d (r) ofE. Sinceh0E(−r) 6= 0 we
haven ≤ −r. Therefore, 2r ≤ −2n < c1(E) andE is stable, which is a contra-
diction. Therefore,n ≤ 0 and the lemma follows.

Let E be a rank-2 vector bundle on aP d -bundleX. SinceH 2(X,Z) is gener-
ated byH andF and sinceH 4(X,Z) is generated byH 2 andHF, one may write
c1(E) ≡ aH + bF andc2(E) ≡ xH 2 + yHF for a, b, x, y ∈ Z. We may as-
sume without loss of generality thatc1(E) is numerically equivalent to one of the
following classes:H, H + F, F, or 0.

The following proposition is the key point for proving our main results on mod-
uli spaces of vector bundles onP d -bundles. It assures us the existence of sections
vanishing in codimension≥ 2, sections that allow us to prove the irreducibility
and smoothness of the moduli spaces we deal with.

Proposition 2.6. LetX be aP d -bundle overC, c2 ∈Z, L ≡ dH + bF an am-
ple divisor onX, e ∈ {0,1}, andE a rank-2,L-stable vector bundle onX. Assume
that either:

(i) c1E ≡ H + eF, c2E ≡ (c2 + e)HF, b = 2c2 − H d+1+ e − 1, andc2 >

(dγ +H d+1)/2+ 1; or
(ii) c1E ≡ eF, c2E ≡ −H 2+ (2c2+ e)HF, b = c2−H d+1+ e−1, andc2 >

dγ +H d+1+ 2.

ThenE(−H + π∗c2) has a nonzero section whose scheme of zeros has codimen-
sion≥ 2.

Proof. We prove case (i) and then leave the other case to the reader. By [Miy;
Thm. 3.1],L ≡ dH +bF with b = 2c2−H d+1+e−1, and 2c2 > dγ +H d+1+2
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is an ample divisor onX. For anyL-stable rank-2 vector bundleE on X with
c1E ≡ H + eF andc2E ≡ (c2 + e)HF, we considerĒ := E(−H + π∗c2).

We havec1(Ē) ≡ −H + (2c2 + e)F and c2(Ē) = 0. Sincec2(Ē) = 0 and
F ∼= P d , from Lemma 2.5 we deduce thath0(F, Ē|F ) 6= 0. Hence, there exists
an integera ≥ 0 such thatOP d (a) ↪→ Ē|P d . This injection induces an injection
OX(aH+π∗b′) ↪→ Ē for some divisorb′ onC. Take 0 6= s ∈H 0Ē(−aH−π∗b′)
and letY be its scheme of zeros. LetA be the maximal effective divisor contained
in Y. Thens can be regarded as a section ofĒ(−aH − π∗b′ −A), and its scheme
of zeros has codimension≥ 2. If l ′H + π∗m′ ≡ aH + π∗b′ + A with l ′ ≥ 0,
thenĒ(−l ′H − π∗m′) with l ′ ≥ 0 has a nonzero section whose scheme of zeros
has codimension≥ 2. Therefore,E(−lH − π∗m) with l > 0 has a nonzero sec-
tion whose scheme of zeros has codimension≥ 2. To end the proof of (i) we need
only show thatl = 1 andm = −c2.

SinceE isL-stable andOX(lH + π∗m) ↪→ E, we have

(lH +mF )Ld = d d(lH d+1+ lb +m) < c1(E)L
d

2
= d d(H d+1+ b + e)

2
,

which is equivalent to 2m < −2(2l − 1)c2 − (2l − 1)(e − 1) + e. On the other
hand, sinceE(−lH−π∗m) has a nonzero section whose scheme of zeros has codi-
mension≥ 2, we obtain

0 ≤ c2(E(−lH − π∗m))H d−1

= ((c2 + e + 2lm−m− el)HF + l(l −1)H 2)H d−1

= c2 + e(1− l )+ (2l −1)m+ l(l −1)H d+1.

Therefore,m(2l − 1) ≥ −l(l − 1)H d+1− c2 + e(l − 1). By hypothesis, 2c2 >

dγ +H d+1+ 2. We thus have

−2l(l −1)c2

2l −1
− c2

2l −1
+ l(l −1)dγ

2l −1
+ 2l(l −1)

2l −1
+ e(l −1)

2l −1

≤ m
< −(2l −1)c2 − (2l −1)(e −1)

2
+ e

2
, (2)

which implies thatl2(2c2 + dγ + 2e) − l(2c2 + dγ + 2e) − 1
2 < 0 with l ≥ 1.

Hencel = 1, and using (2) again we obtainm = −c2, which proves (i).

3. Moduli Spaces of Vector Bundles onPd-Bundles

We will denote byMX,L(2; c1, c2) the moduli space ofL-stable, rank-2 vector bun-
dles onX with Chern classesc1 andc2. If there is no possible confusion then we
will write ML(2; c1, c2) instead ofMX,L(2; c1, c2). The goal of this section is to
compute the dimension, prove the irreducibility and smoothness, and describe the
structure of moduli spacesML(2; c1, c2) of L-stable, rank-2 vector bundles with
certain Chern classes and for a suitable polarizationL closely related toc2. We
want to stress that the polarizationL that we choose depends strongly onc2; our
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results turn out to be false if we fixc1 andL and if c2L
d−1 goes to infinity. In-

deed, ford = 2 and fixedL, the minimal number of irreducible components of
the moduli spaceML(2; c1, c2) of L-stable, rank-2 vector bundles with fixedc1

andc2L going to infinity grows to infinity [BM, Thm. 0.1].
One way to study rank-2 vector bundles over an algebraic varietyX is to use

extensions of line bundles. Using this idea, we construct the following families.

Construction 3.1. Forc1≡ H + eF with

e ∈ {0,1} and Z3 c2 > (H d+1+ dγ )/2+1,

we construct a rank-2 vector bundleE onX as a nontrivial extension

ε : 0→ OX(H − π∗c ′2)→ E→ OX(π
∗c2 + π∗e)→ 0, (3)

wherec2, c
′
2 ∈ Pic(C) are divisors onC of degreec2 ande ∈ Pic(C) is a divisor

of degreee. We shall callF the irreducible familyof rank-2 vector bundles con-
structed in this way.

Proposition 3.2. LetX be aP d -bundle overC, letZ3 c2 > (H d+1+dγ )/2+1,
and letL ≡ dH + bF be an ample divisor onX with b = 2c2−H d+1− (1− e),
e ∈ {0,1}. For anyE ∈F, we have the following.

(a) H 0E(−π∗c2 − π∗e) = 0.
(b) E is a rank-2, L-stable vector bundle withc1(E) ≡ H + eF and c2(E) ≡

(c2 + e)HF.
(c) F is aPN -bundle overPic0(C)× Pic0(C), where

N = dim Ext1(OX(π
∗c2 + π∗e),OX(H − π∗c ′2))− 1.

In particular, dimF = h1OX(H − π∗c2 − π∗c ′2 − π∗e)+ 2g − 1.

Proof. Observe first of all that, sinceb = 2c2−H d+1− (1− e) > dγ, it follows
(by [Miy, Thm. 3.1]) thatL is an ample divisor onX.

(a) We start proving thatH 0OX(H − π∗c2 − π∗c ′2 − π∗e) = 0. By [Miy,
Thm. 3.1],L̄ ≡ H +γF is an ample divisor. IfH 0OX(H −π∗c2−π∗c ′2−π∗e) 6=
0, applying Remark 2.2 we get 0≤ (H − (2c2 + e)F )(H + γF )d = H d+1+
dγ −2c2−e,which contradicts the assumption 2c2 > dγ +H d+1+2. Therefore,
H 0OX(H − π∗c2 − π∗c ′2 − π∗e) = 0.

We consider the exact cohomology sequence associated to (3). Since

H1OX(H − π∗c2 − π∗c ′2 − π∗e) = Ext1(OX(π
∗c2 + π∗e),OX(H − π∗c ′2)),

the mapδ : H 0OX → H1OX(H −π∗c2−π∗c ′2−π∗e) given byδ(1) = ε is an in-
jection. This fact, together withH 0OX(H − π∗c2 − π∗c ′2 − π∗e) = 0, gives us
H 0E(−π∗c2 − π∗e) = 0, which proves (a).

(b) It is easy to see thatc1(E) ≡ H + eF andc2(E) ≡ (c2+ e)HF for anyE ∈
F. Let us see thatE is L-stable; that is, for any rank-1 subbundleOX(D) of E ∈
F, we obtainDLd < (c1(E)L

d)/2. For any subbundleOX(D) of E we have

(i) OX(D) ↪→ OX(H − π∗c ′2) or
(ii) OX(D) ↪→ OX(π

∗c2 + π∗e).
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In the first case,D ≡ H − c2F − C, with C numerically equivalent to an ef-
fective divisor. Hence,

DLd = (H − c2F − C)Ld ≤ (H − c2F )L
d = d d(H d+1+ b − c2)

<
d d(H d+1+ b + e)

2
= c1(E)L

d

2
.

AssumeOX(D) ↪→ OX(π
∗c2+π∗e). From (a) we haveH 0E(−π∗c2−π∗e) =

0. Therefore,D ≡ (c2+ e)F −C ′, with C ′ ≡ nH +mF numerically equivalent
to a nonzero effective divisor. Consequently,

DLd = ((c2 + e)F − C ′)Ld = ((c2 + e)F − nH −mF )Ld
= d d(c2 + e − 2nc2 + n(1− e)−m)

<
c1(E)L

d

2
= d d(2c2 + 2e −1)

2
if and only if −4nc2 + 2n(1− e) − 2m < −1. SinceC ′ is numerically equiv-
alent to a nonzero effective divisor, we have−m ≤ n(H d+1 + dγ ) andn >
0 or n = 0 andm > 0. By hypothesis,c2 > (H d+1 + dγ )/2 + 1; therefore,
−4nc2 + 2n(1− e)− 2m < −1 andE isL-stable.

(c) Let p1 andp2 be the projections ofX × Pic0(C) × Pic0(C) to X and
Pic0(C)× Pic0(C), respectively. We defineG1 := p∗1OX(H − π∗c ′2) andG2 :=
p∗1OX(π∗c2+ π∗e). SetH := Ext1p2

(G2,G1), where Ext1p2
(G2, ·) is the right de-

rived functor of Homp2(G2, ·) := p2∗ Hom(G2, ·). Note thatH is a locally free
sheaf over Pic0(C)×Pic0(C) of rankh1OX(H −π∗c2−π∗c ′2−π∗e) and is com-
patible with arbitrary base change. Consider the projective bundleγ : P(H) →
Pic0(C) × Pic0(C) and the morphismp := γ × idX : P(H) × X → Pic0(C) ×
Pic0(C)×X. OverP(H)×X there is a tautological extension

0→ p∗(G1)→ V → p∗(G2)⊗OP(H)(−1)→ 0

such that, for eacht ∈P(H), the restriction to{t} ×X is isomorphic to the exten-
sion corresponding tot. That is,

0→ OX(H − π∗c ′2)→ E→ OX(π
∗c2 + π∗e)→ 0

and hence there is a natural bijective morphismP(H) → F. Thus, F is a
PN -bundle over Pic0(C) × Pic0(C), whereN = dim Ext1(OX(π∗c2 + π∗e),
OX(H − π∗c ′2))−1 and

dimF = dim Ext1(OX(π
∗c2 + π∗e),OX(H − π∗c ′2))+ 2 dim Pic0(C)−1

= h1OX(H − π∗c2 − π∗c ′2 − π∗e)+ 2g −1.

Remark 3.3. The existence of large families of indecomposable rank-2 vector
bundles overP d -bundles of arbitrary dimension faces up to Hartshorne’s conjec-
ture [H] on the nonexistence of indecomposable rank-2 vector bundles on projec-
tive spacesP n, n ≥ 6.

Theorem 3.4. Given the assumptions of Proposition 3.2, the moduli space
ML(2;H + eF, (c2+ e)HF ) is aPN -bundle overPic0(C)× Pic0(C) withN :=
h1OX(H − π∗c2 − π∗c ′2 − π∗e)− 1.
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Proof. Using Proposition 3.2 and the universal property ofML(2;H + eF,

(c2 + e)HF ), we obtain a morphism

φ : F → ML(2;H + eF, (c2 + e)HF ),
which is a bijective map. In fact, we first prove thatφ is injective. Assume that
there are two nontrivial extensions:

0−→ OX(H − π∗c ′2) α1−→ E
β1−→ OX(π

∗c2 + π∗e) −→ 0;
0−→ OX(H − π∗ c̄ ′2) α2−→ E

β2−→ OX(π
∗ c̄2 + π∗ ē))→ 0.

Since

Hom(OX(H − π∗c ′2),OX(π∗ c̄2 + π∗ ē))
= Hom(OX(H − π∗ c̄ ′2),OX(π∗c2 + π∗e)) = 0

(Lemma 2.3), we haveβ2 B α1 = β1 B α2 = 0. Consequently, there must exist a
λ∈Aut(OX(H − π∗c ′2)) ∼= C such thatα2 = α1 B λ. Therefore,φ is an injection.

Let us see thatφ is surjective. TakeE ∈ ML(2;H + eF, (c2 + e)HF ). By
Proposition 2.6,E(−H + π∗c ′2) has a nonzero sections whose scheme of zeros
has codimension≥ 2. Sincec2E(−H +π∗c ′2) = 0, the sections defines an exact
sequence

0−→ OX(H − π∗c ′2) −→ E −→ OX(π
∗c2 + π∗e) −→ 0

of type (3). Therefore,φ is surjective and it follows thatφ is bijective.

Claim. For anyE ∈ML(2;H + eF, (c2 + e)HF ) we have

dimT[E ]ML(2;H + eF, (c2 + e)HF )
= h1OX(H − π∗c2 − π∗c ′2 − π∗e)+ 2g − 1.

Proof. By deformation theory,T[E ]ML(2;H + eF, (c2 + e)HF ) ∼= Ext1(E,E).
Let us compute dim Ext1(E,E).We have already seen that anyE∈ML(2;H+eF,
(c2 + e)HF ) sits in an extension of type (3). Applying Hom(·, E) to the exact
sequence (3) yields

0→ Hom(OX(π
∗c2 + π∗e), E)→ Hom(E,E)

→ Hom(OX(H − π∗c ′2), E)→ Ext1(OX(π
∗c2 + π∗e), E)

→ Ext1(E,E)→ Ext1(OX(H − π∗c ′2), E)
→ Ext2(OX(π

∗c2 + π∗e), E)→ · · · . (4)

Sinceh1OX = g, H 2OX(H − π∗c ′2 − π∗c2 − π∗e) = H 2OX = 0, and also
H 0E(−π∗c2 − π∗e) = 0 (Proposition 3.2(a)), we have

h1E(−π∗c2 − π∗e) = h1OX(H − π∗c ′2 − π∗c2 − π∗e)+ g −1,

Ext2(OX(π
∗c2 + π∗e), E) = H 2E(−π∗c2 − π∗e) = 0.

(5)
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Consider the exact cohomology sequence associated to the exact sequence (3).
SinceH 0OX(−H + π∗c ′2+ π∗c2+ π∗e) = H1OX(−H + π∗c ′2+ π∗c2+ π∗e) =
0 and sinceh1OX = g, we haveh0E(−H + π∗c ′2) = 1 andh1E(−H + π∗c ′2) =
g. Therefore, from the exact sequence (4) we obtain

dim Ext1(E,E) = h1E(−π∗c2 − π∗e)+ h1E(−H + π∗c ′2)
− h0E(−H + π∗c ′2)+ dim Hom(E,E)

= h1OX(H − π∗c ′2 − π∗c2 − π∗e)+ 2g −1,

where the second equality follows from (5) and the fact thatE is L-stable (and
thus simple), proving our Claim.

Sinceφ is a bijective map and dimF = h1OX(H − π∗c ′2− π∗c2− π∗e)+ 2g−1
(Proposition 3.2), it follows from the Claim that the moduli spaceML(2;H + eF,
(c2+ e)HF ) is smooth. Finally, we may now deduce from Proposition 3.2(c) that
ML(2;H +eF, (c2+e)HF ) is aPN -bundle over Pic0(C)×Pic0(C),whereN :=
h1OX(H − π∗c ′2 − π∗c2 − π∗e)− 1. In particular,ML(2;H + eF, (c2 + e)HF )
is a nonempty, smooth, irreducible, and projective variety whose dimension is
h1OX(H −π∗c ′2−π∗c2−π∗e)+2g−1. Thus we have proved Theorem 3.4.

Theorem 3.5. LetX be aP d -bundle overC with d > 1 andZ 3 c2 > H d+1+
dγ + 2. We fix the ample divisorL ≡ dH + bF onX, b = c2−H d+1− (1− e),
and e ∈ {0,1}. ThenML(2; eF,−H 2 + (2c2 + e)HF ) is a PM -bundle over
Pic0(C)× Pic0(C) withM := h1OX(2H − π∗c2 − π∗c ′2 − π∗e)− 1.

Proof. We consider the irreducible familyG of rank-2 vector bundlesE on X
given by a nontrivial extension,

ε : 0→ OX(H − π∗c ′2)→ E→ OX(−H + π∗c2 + π∗e)→ 0. (6)

Arguing as in Theorem 3.4, we prove thatML(2; eF,−H 2 + (2c2 + e)HF ) is a
PM -bundle over Pic0(C)×Pic0(C)withM = h1OX(2H−π∗c ′2−π∗c2−π∗e)−1.

As a corollary, we obtain the rationality of the following moduli spaces of stable
vector bundles on rational normal scrolls.

Corollary 3.6. Let Y := Y(a0, . . . , ad) be a (d + 1)-dimensional, rational,
normal scroll. LetL = dH + bF be an ample divisor,c2 ∈Z, ande ∈ {0,1}.
(a) If d > 0, c2 > (H d+1 + d)/2+ 1, and b = 2c2 − H d+1 − (1− e), then

ML(2;H + eF, (c2 + e)HF ) ∼= PN with

N = 2(d + 1)c2 −H d+1+ e(d + 1)− (d + 2).

(b) If d > 1, c2 > H d+1 + d + 2, and b = c2 − H d+1 − (1 − e), then
ML(2; eF,−H 2 + (2c2 + e)HF ) ∼= PM with

M = 2(ed + 1)c2 − e(d + 2)H d+1+ 2(e − 1).
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Remark 3.7. Using Bogomolov’s inequality(c1(E)
2− 4c2(E))H

d−1 < 0, one
can see that the hypothesis 2c2 > H d+1+ dγ + 2 (resp.,c2 > H d+1+ dγ + 2)
whenc1(E) ≡ H + eF (resp.,c1(E) ≡ eF ) with e ∈ {0,1} is not too restrictive.

In the following theorem we generalize Theorems 3.4 and 3.5 to other classes of
c2. Since the proof is essentially the same, we will omit it.

Theorem 3.8. LetX be aP d -bundle overC with d > 1 and integersb, a, e,
with e ∈ {0,1}. Fix an ample divisorL ≡ αH + βF. Assume

0> −2a > −d − 1, α = ad, β = −b − aH d+1+ e − 1,

and−ab > a2H d+1+ a2dγ + a(a + 2) (respectively,

0> 1− 2a > −d − 1, α = (2a − 1)d, β = −2b − (2a − 1)H d+1+ e − 1,

and−2ab > (2a − 1)aH d+1+ (2a − 1)adγ + a(2a − 1)+ 1.)
ThenML(2; eF,−a2H 2+(ae−2ab)HF ) (resp.,ML(2;H+eF, a(1−a)H 2+

(b+ ae−2ab)HF )) is aPN-bundle(resp.,PM-bundle) overPic0(C)×Pic0(C),

whereN := h1OX(2aH + π∗(b+ b′ − e))− 1 (resp.,M := h1OX((2a − 1)H +
π∗(b+ e))− 1).

Remark 3.9. We want to stress that with Theorem 3.8 we have covered the study
of all moduli spacesML(2; c1, c2) such that the general point [E ] of ML(2; c1, c2)

is given as a nontrivial extension of line bundles. Indeed, the Chern classes of vec-
tor bundlesE studied in Theorem 3.8 are the only ones that can be obtained as
Chern classes of a vector bundleE constructed as a nontrivial extension of line
bundles.

We will finish this section by computing the Kodaira dimension and the Picard
group of moduli spaces studied previously.

Corollary 3.10. Under the assumptions of Theorems 3.4 and 3.5, we have:

Kod(ML(2;H + eF, (c2 + e)HF )) = −∞;
Kod(ML(2; eF,−H 2 + (2c2 + e)HF )) = −∞.

ThatML(2;H + eF, (c2+ e)HF ) (resp.,ML(2; eF,−H 2+ (2c2+ e)HF )) is a
PN -bundle (resp.,PM -bundle) over Pic0(C)×Pic0(C) with natural projection5
(resp.,5′) allows us to prove the following corollary.

Corollary 3.11. Under the assumptions of Theorems 3.4 and 3.5, we have:

Pic(ML(2;H + eF, (c2 + e)HF )) ∼= Z⊕5∗ Pic(Pic0(C)× Pic0(C));
Pic(ML(2; eF,−H 2 + (2c2 + e)HF )) ∼= Z⊕5′∗ Pic(Pic0(C)× Pic0(C)).

In particular, ifX is a rational normal scroll then

Pic(ML(2;H + eF, (c2 + e)HF )) ∼= Pic(ML(2; eF,−H 2 + (2c2 + e)HF ))
∼= Z.
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4. Change of Polarizations

LetX be a smooth, irreducible, projective variety of dimensionn. In [Q], Qin con-
sidered the following problem: What is the difference betweenMX,L1(2; c1, c2)

andMX,L2(2; c1, c2) whereL1 andL2 are two different polarizations? In Sec-
tion 3 we studied the moduli spaceML(2; c1, c2) for fixed c1, c2 and a suitable
polarizationL on aP d -bundleX over a smooth projective curve. In this section,
we will illustrate some of the changes of the moduli spaceML(2; c1, c2) that occur
when the polarizationL varies.

We keep the notation introduced in Sections 2 and 3. For technical reasons, we
also assume thatE is normalized. Hence, for any integern� 0 we have

(i) deg(OC(−n− n′ + p + p ′ +KC)) < 0,
(ii) h0E + h0OC(p

′′) ≤ h1E(−n− n′),
(iii) n > (H d+1+ dγ )/2+ 3,

wheren, n′ ∈ Pic(C) are divisors onC of degreen and wherep, p ′, p ′′ ∈ C are
points ofC.

We start by recalling some results (due to Qin [Q]) about walls and chambers.

Definition 4.1. (i) LetS ∈Ad−1
num(X) andξ ∈Num(X)⊗Rwith d+1= dimX.

We defineW(ξ,S) := CX ∩ {x ∈Num(X)⊗ R | xξS = 0}.
(ii) DefineW(c1, c2) to be the set whose elements consist ofW(ξ,S), whereS

is a complete intersection surface inX and whereξ is the numerical equivalence
class of a divisorG onX such thatG+ c1 is divisible by 2 in Pic(X), G2S < 0,
andc2+(G2−c2

1)/4= [Z ] for some locally complete intersection codimension-2
cycleZ in X.

(iii)A wall of type(c1, c2) is an element inW(c1, c2).A chamber of type(c1, c2)

is a connected component ofCX \W(c1, c2). A Z-chamber of type(c1, c2) is the
intersection of Num(X) with some chamber of type(c1, c2).

We say that a wallW(ξ,S) of type(c1, c2) separates two polarizationsL andL′ if
and only ifξSL < 0< ξSL′.

Remark 4.2. In [Q, Cor. 2.2.2], Qin proves thatMX,L(2; c1, c2) depends only
on the chamber ofL and that the study of moduli spaces of rank-2 vector bundles
stable with respect to a polarization lying on walls may be reduced to the study of
moduli spaces of rank-2 vector bundles stable with respect to a polarization lying
in Z-chambers.

Example 4.3. LetX be aP d -bundle overC. We fix c1≡ H ∈Num(X) and, for
anyZ 3 n > (H d+1+ dγ )/2+ 3, c2 ≡ nHF ∈H 4(X,Z). We considerS, S ′ ∈
Ad−1

num andξ ∈Num(X)⊗ R defined by

S := dH d−1+ βH d−2F, S ′ := dH d−1+ (β − 2)H d−2F, ξ := H − 2nF,

with β = (2n − H d+1)(d − 1) + 2. It is easy to see thatW(ξ,S) andW(ξ,S ′ ) de-
fine a wall of type(c1, c2). Moreover,W(ξ,S) andW(ξ,S ′ ) are nonempty. In fact,
we have
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L̃ ≡ dH + (2n−H d+1− 2)F ∈W(ξ,S),

L̃′ ≡ dH + (2n−H d+1)F ∈W(ξ,S ′ ).

Finally, consider the ample divisors onX;
L ≡ dH + (2n−H d+1−1)F,

L′ ≡ dH + (2n−H d+1− 3)F,

L′′ ≡ dH + (2n−H d+1+1)F.

SinceL′ξS < 0 < LξS andLξS ′ < 0 < L′′ξS ′, it follows that the wallW(ξ,S)

separatesL andL′ and that the wallW(ξ,S ′ ) separatesL andL′′. We will denote
by C (resp.,C ′ andC ′′) the chamber containingL (resp.,L′ andL′′).

Now we determine and compare the moduli spacesML(2;H, nHF ) correspond-
ing to polarizationsL lying in the chambersC, C ′, andC ′′ (respectively). Keeping
the notation introduced in Example 4.3, we have the following theorem.

Theorem 4.4. LetX be aP d -bundle overC and let0� n∈Z.
(a) For all L̄′′ ∈ C ′′, ML̄′′(2;H, nHF ) is empty.
(b) For all L̄∈ C, ML̄(2;H, nHF ) is aPN -bundle overPic0(C)× Pic0(C) with

N := h1OX(H − π∗n′ − π∗n)− 1.
(c) For all L̄′∈ C ′,ML̄′(2;H, nHF ) is a nonempty open subset ofML̄(2;H, nHF )

and

dim(ML̄(2;H, nHF ) \ML̄′(2;H, nHF )) = h0E + h0OC(p)+ 2(g − 1),

with p a point ofC.

Proof. (a) follows from Proposition 4.5 and Remark 4.6. (b) follows from Theo-
rem 3.4 and Remark 4.2. (c) follows from Proposition 4.7 and Remark 4.2.

We now discuss what happens for polarizations lying on the chamberC ′′.
Proposition 4.5. Let X be a P d -bundle overC, let 0 < a ∈ Z, let
(H d+1 + dγ )/2 + 3 < n ∈ Z, and letL0 ≡ aH + bF be an ample divisor
such thatb/a ≥ (2n−H d+1)/d. ThenML0(2;H, nHF ) is empty.

Remark 4.6. Keeping the notation introduced in Example 4.3, we have that
b/a ≥ (2n − H d+1)/d is equivalent toξS ′L0 ≥ 0. Hence,ML(2;H, nHF ) is
empty for anyL∈ C ′′.
Proof of Proposition 4.5.Let E be a rank-2,L0-stable vector bundle onX with
c1E ≡ H andc2E ≡ nHF. Sincec2(E(−H + π∗n)) = 0, we may argue as in
Proposition 2.6 to obtain thatE(−lH −π∗m), l > 0, has a nonzero section whose
scheme of zeros has codimension≥ 2.

SinceE is L0-stable and sinceOX(lH + π∗m) ↪→ E, it follows that 2am <

−a(2l−1)H d+1− (2l−1)db. Sinceb/a ≥ (2n−H d+1)/d by hypothesis, we get
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m < −(2l−1)n. On the other hand, sinceE(−lH − π∗m) has a nonzero section
whose scheme of zeros has codimension≥ 2, we have

0 ≤ c2(E(−lH − π∗m))H d−1= ((n+ 2lm−m)HF + l(l −1)H 2)H d−1

= n+ (2l −1)m+ l(l −1)H d+1.

Hencem ≥ (−l(l − 1)H d+1 − n)/(2l − 1), and since (by hypothesis) 2n >

H d+1+ dγ + 6 we obtainl2(2n+ dγ + 6)− l(2n+ dγ + 6) < 0. Sincel > 0,
we arrive at a contradiction and thusML0(2;H, nHF ) is empty.

In the next proposition, we compare moduli spaces corresponding to polarizations
L lying in the chambersC andC ′.
Proposition 4.7. Let X be a P d -bundle overC and let 0 � n ∈ Z. We
fix an ample divisorL̄′ ≡ dH + bF ∈ C ′ on X with b = 2n − H d+1 − 3.
ThenML̄′(2;H, nHF ) is a nonempty open subset ofML̄(2;H, nHF ) with L̄ ≡
dH + (2n− H d+1− 1)F ∈ C. In particular,ML̄′(2;H, nHF ) is a smooth, irre-
ducible, quasiprojective variety of dimension

h1OX(H − π∗n− π∗n′)+ 2g − 1= h1E(−π∗n− π∗n′)+ 2g − 1.

Proof. We consider the open subsetU of ML̄(2;H, nHF ) defined by

U := {E ∈ML̄(2;H, nHF ) | H 0E(−π∗(n− p ′)) = 0},
withp ′ a point ofC. To prove the proposition it is enough to see thatU is nonempty,
U ∼= ML̄′(2;H, nHF ), and

dim(ML̄(2;H, nHF )\U ) = h0E +h0OC(p
′′)+2g−2< dimML̄(2;H, nHF ),

wherep ′′ is a point ofC.

Claim 1. U is a nonempty open subset ofML̄(2;H, nHF ) and

dim(ML̄(2;H, nHF ) \ U ) = h0E + h0OC(p
′′)+ 2g − 2,

wherep ′′ is a point ofC.

Proof. For anyE ∈ML̄(2;H, nHF ) \ U, we take 06= s ∈ H 0E(−π∗(n − p ′))
and the associated exact sequence

0→ OX(D + π∗(n− p ′))→ E→ IZ(H − π∗(n′ − p)−D ′)→ 0. (7)

HereD ′ ≡ D ≡ xH + yF are numerically equivalent to an effective divisor,
n′ − p is a divisor onC of degreen− 1, and [Z ] is a codimension-2 closed sub-
scheme ofX. TheL̄-stability ofE implies that 4xn− 2x + 2y −1< 0. SinceD
is numerically equivalent to an effective divisor, it follows thatx = 0 andy ≥ 0
or x > 0 and−y ≤ x(H d+1+ dγ ) (see Remark 2.2). By hypothesisn � 0; in
particular,n > (H d+1+ dγ )/2+ 3 and so the only solution isx = y = 0. Thus
D ≡ D ′ ≡ 0 and we have the exact sequence

0→ OX(π
∗(n− p ′))→ E→ IZ(H − π∗(n′ − p))→ 0, (8)
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where [Z ] = c2(E(−π∗(n − p ′))) is a complete intersection of type(H, Fp ′′),
with p ′′ a point ofC and wheren′ −p andn−p ′ are two divisors onC of degree
n−1.

Let us callM the irreducible family of rank-2 vector bundles given by an exact
sequence of type (8). We have

dim(ML̄(2;H, nHF ) \ U )
= dimM = dim Ext1(IHF (H − π∗(n′ − p)),OX(π∗(n− p ′)))

− h0E(−π∗(n− p ′))+ 2 dim Pic0(C)+ dimL,
whereL is the family of codimension-2 closed subschemesZ of X and complete
intersections of type(H, Fp ′′),with p ′′ a point ofC. Applying Lemma 2.4, we ob-
tain dimM = h0E + h0OC(p

′′) + 2g − 2. By hypothesis,h0E + h0OC(p
′′) ≤

h1E(−n− n′) and so

h0E + h0OC(p
′′)+ 2g − 2= dimM < dimML̄(2;H, nHF )

= h1E(−n− n′)+ 2g −1.

HenceU is a nonempty, open dense subset ofML̄(2;H, nHF ) and so we have
dim(ML̄(2;H, nHF ) \ U ) = h0E + h0OC(p

′′)+ 2g − 2, which proves Claim 1.

Claim 2. For E ∈ML̄(2;H, nHF ), E is L̄′-stable if and only ifE ∈U .
Proof. Arguing as in Proposition 3.2(b), we can see that anyE ∈ U is L̄′-stable.
Assume thatE ∈ML̄(2;H, nHF ) \ U . Let us show thatE is notL̄′-stable. Since
E ∈ML̄(2;H, nHF ) \ U, we haveOX(π∗(n− p ′)) ↪→ E with n− p ′ ∈ Pic(C)
of degreen−1. If E is L̄′-stable then

(n−1)FL̄′d = d d(n−1) <
c1(E)L̄

′d

2
= d d(2n− 3)

2
,

which is a contradiction. Therefore,E is notL̄′-stable and we have proved Claim 2.

Claim 3. AnyE ∈ML̄′(2;H, nHF ) sits in a nontrivial exact sequence

0→ OX(H − π∗n′)→ E→ OX(π
∗n)→ 0.

In particular,ML̄′(2;H, nHF ) ⊂ ML̄(2;H, nHF ).
Proof. Sincec2(E(−H +π∗n′)) = 0, it follows thatE(−lH −π∗m), l > 0, has
a nonzero section whose scheme of zeros has codimension≥ 2. To end the proof
of Claim 3 we need only show thatl = 1 andm = −n.

SinceE is L̄′-stable and sinceOX(lH + π∗m) ↪→ E, it follows thatm <

−(2l−1)n+3(2l−1)/2. On the other hand, sinceE(−lH −π∗m) has a nonzero
section whose scheme of zeros has codimension≥ 2, we get

0 ≤ c2(E(−lH − π∗m))H d−1= ((n+ 2lm−m)HF + l(l −1)H 2)H d−1

= n+ (2l −1)m+ l(l −1)H d+1.
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Therefore,m ≥ (−l(l − 1)H d+1 − n)/(2l − 1). Using the hypothesis 2n >

H d+1+ dγ + 6, we obtainm = −n+1 orm = −n.
In the first case, letn1 ∈ Pic(C) be a divisor onC of degreen − 1. Since

c2(E(−H + π∗n1)) ≡ Z ≡ HF and sinceE(−H + π∗n1) has a nonzero section
whose scheme of zeros has codimension≥ 2, we have the exact sequence

0→ OX(H − π∗n1)→ E→ IZ(π
∗n′1)→ 0,

wheren1, n
′
1 ∈ Pic(C) are two divisors onC of degreen − 1. Hence,c3(E) =

c3(IZ(π
∗n′1))+c2(IZ(π

∗n′1))c1(OX(H −π∗n1)) ≡ 2H 2F,which contradicts the
fact thatc3(E) = 0 for any rank-2 vector bundleE. Therefore,m = −n andE
sits in the exact sequence

0→ OX(H − π∗n′)→ E→ OX(π
∗n)→ 0,

wheren andn′ are divisors onC of degreen.
Sincen > (H d+1+ dγ )/2+ 1, by Proposition 3.2,E is L̄-stable; this proves

Claim 3.

Proof of Proposition 4.7 (cont.).From Claims 2 and 3, we deduce that

ML̄′(2;H, nHF ) ∼= U ⊂ ML̄(2;H, nHF )
is a nonempty open dense subset. Indeed,

dim(ML̄(2;H, nHF ) \ U ) = h0E + h0OC(p̄)+ 2g − 2

< dim(ML̄(H, nHF ))

= h1E(−π∗n− π∗n′)+ 2g −1,

and this proves what we want.

Final Remark. Let X be a 3-dimensional rational normal scroll and letL =
H + 2F be an ample divisor onX. It follows from [BM, Thm. 0.1] that the
number of irreducible components of the moduli spaceMH+2F (2;H, c2HF ) ∼=
MH+2F (2;H + 2F, (c2+1)HF ) grows to infinity whenc2 goes to infinity. This
shows again that the moduli spaceML(2;H, c2HF ) strongly depends on the fixed
polarizationL. The authors hope to describe (in a forthcoming paper) different
irreducible components of the moduli spaceML(2;H, c2HF ), whereL is a po-
larization lying on a chamber far from the chamberC described in Example 4.3.
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