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Higher-Dimensional Varieties
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1. Introduction

Let X be amm-dimensional, smooth, irreducible, algebraic variety @and letL

be an ample divisor oN. Let Mx . (r; c1, ..., Cmin¢-,n)) denote the moduli space of
rank+, L-stable (in the sense of Mumford and Takemoto) vector bunélles X

with Chern classes(E) = ¢; € H?(X, Z). Moduli spaces for stable vector bun-

dles on smooth, irreducible, algebraic projective varieties were constructed in the
1970s. Many interesting results have been proved regarding these moduli spaces
when the underlying variety is a surface, but very little is known if the variety has
dimension greater than or equal to three. Until now there have been no general re-
sults about these moduli spaces concerning the number of connected components,
dimension, smoothness, rationality, topological invariants, and so forth.

A major result in the theory of vector bundles on an algebraic sufagas the
proof that, for large,, My 1(r; c1, c2) is irreducible, generically smooth, and of
the expected dimension2, — (r — 1)c2 — (r2 — 1) x(Os). For moduli spaces of
vector bundles on a higher-dimensional variety, the situation differs drastically.
The smoothness and irreducibility turn out to be false whenXlim 3. For in-
stance, in [BM, Thm. 0.1], Ballico and Mir6-Roig prove that, under certain tech-
nical restrictions o, the number of irreducible components of the moduli space
My, 1.(2; c1, cp) of L-stable, rank-2 vector bundles on a smooth projective 3-fold
X, with fixed ¢; andc, L going to infinity, grows to infinity. See [MO] for exam-
ples of singular moduli spaces of vector bundledt* with ¢, > 0.

Let X = P(£) — C be aP%-bundle over a smooth projective curge of
genusg > 0. The goal of this paper is to compute the dimension, prove the
irreducibility and smoothness, and describe the structure of the moduli space
My 1.(2; c1, cp) for a suitable polarizatiofi closely related t@,. More precisely,
we will cover the study of all moduli spacédy ;(2; c1, c2) such that the gen-
eral point [E] € My, 1(2; c1, ¢2) is given as a nontrivial extension of line bun-
dles (Theorems 3.4, 3.5, 3.8, and Remark 3.9). In particular, for rational nor-
mal scrolls (i.e.P?-bundles ovei!) and for a certain choice af;, c, and L,
we have that the moduli spadéx ;. (2; c1, c2) is rational (Corollary 3.6). There-
fore, the geometry of the underlying variety and of the moduli spaces are intimately
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related. We hope that phenomena of this sort will be true for other high-dimensional
varieties.

Next, we outline the structure of the paper. In Section 2 we recall some basic
facts onP?-bundles over a smooth projective curve of gegus 0 that will be
needed later on. A crucial result in the proof of our main results is the existence
of a sectiory of a suitable twist of a rank-2 vector bundieon aP“-bundle, X =
P(€) — C, whose zero scheméy)o, has codimensior» 2 (Proposition 2.6).
Section 3 contains our main results on moduli spaces: the irreducibility, smooth-
ness, and structure of the moduli spaég 1.(2; c1, c2) of L-stable, rank-2 vector
bundles on @7-bundleX = P(£) — C with certain Chern classes and a suitable
polarizationL. Our approach is to writé.-stable, rank-2 vector bundlgson X
as an extension of two line bundles. A well-known result for vector bundles over
curves is that any vector bundle of rank>= 2 can be written as an extension of
lower-rank vector bundles. For higher-dimensional varieties we may not be able
to attain such a nice result (e.g., it is not true o= P”" with n > 2). However,
it turns out to be true for certaib-stable, rank-2 vector bundl@onP¢-bundles
X. In Section 4, we illustrate by means of an example the changes of the moduli
spaceM(2; c1, c2) that occur when the polarizatidnvaries (Theorem 4.4).

2. Generalities

Throughout this paper, we fix a smooth, irreducible, projective cared genus
g > 0 and canonical divisoK . For anye € Z, we usex ande’ to denote divisors
on C of degreee. Let £ be a rankéd + 1) vector bundle orC and consider

X =P(€) = ProjSym¢é) = C,

the projectivized vector bundle associatedétoThe projective bundleX is a

(d +1)-dimensional variety called&’-bundle ovelC. Two vector bundleg and

& onC define the samB?-bundle if and only if there is an invertible she@bn

C such that = £ ® L. Whend = 1, we simply say thaX is a ruled surface.
LetH := Op) (D) be the tautological line bundle; for any pome C we write

F, == 7*0c(p) andF, := n*p. Let H (resp.F) be the numerical equivalence

class associated to the tautological line burfdl@esp.F,) on X. We have

Pic(X) = ZH & =* Pic(C), Num(X) = Z° = ZH ® ZF;
H*l=degé), HF =1 F?=0.
The canonical divisor oK is Ky ~ —(d + D H + w*(det(€) + K¢).
Moreover, if D ~ aH + n*b with a € Z, thenD = aH + bF; if, in addition,

a > 0, thenm,D = S4E) ® Oc(b), whereS4(£) is theath symmetric power
of £.

ExaMPLE 2.1. Let€ = @,»d:o Op1(a;) be aranké&d + 1) vector bundle oiP* and
assume that 8= ag < a1 < --- < ag with a; > 0. The line bundleOp (D) is
generated by its global sections and defines a birational map
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Y(ao. ....ay) i=PE) 1> PV

with N = d+2f=o a;. The image of this map is a variety of dimensib# 1 and
minimal degree: = Z?:o a;; itis called arational normal scroll. Sometimes
is also called a rational normal scroll. In case- 1, we get the so-called Hirze-
bruch surfaces.

REMARK 2.2. GivenX = P(£) aP?-bundle overC, we writey = y(€) :=
maXx—u (£) + 1, 1}. By [Miy, Thm. 3.1], the divisorL = H + yF is ample.
Hence, the following inequality holds for any effective dividdr= nH + mF':

0< (nH +mF)(H + yF)* = nH™* + ndy + m.

LemmMma 2.3. For anyb € Pic(C), we have
H'(X, Ox(aH + m*b))
0 if —d—1<a<0,
=1 H'(C,$E) ® Oc(b)) if a >0,
Hi(C, s 4£) ® Oc(b)) if a < —d—1,
whereb := —b + det(£) + K.
LEMMA 2.4. LetX = P(&) be aP¢-bundle overC and let£ be the irreducible
family of codimensior2-closed subschem&sof X that are complete intersections
of type(H, F,). Thendim £ = h°E + h°0¢(p) — h°E(—p) — 2. Moreover, if €
is normalized(i.e., if h°€ # 0buth®E(L) = 0 for all L € Pic(C) withdeg L) <
0), thendim £ = h°& + h°0¢(p) — 2.
Proof. From the exact sequence
0— Ox(—H — F,) > Ox(—H) ® Ox(—F,) —> Iz — 0, @
we deduce
dim£ = dimHom(Ox(—H — F,), Ox(—H) ® Ox(—F)))
—dimAut(Ox(—H — F,))
— dim Aut(Ox(—H) ® Ox(—F,)) +dim Iy,

where f e Hom(Ox(—H — F,), Ox(—H) @ Ox(—F,)) is ageneral element and
I; denotes its isotropy group under the action of

Aut(Ox(—H — F,)) x Aut(Ox (—H) ® Ox(—F))).
From Lemma 2.3 we obtain
dim Aut(Ox (—H) @ Ox (—F,)) = 2h°0x + h°Ox(H — F,)
=2+ h%(—p),
dim Aut(Ox (—H — F,)) = h°0x =1,
dimHom(Ox (—H — F,), Ox(—H) ® Ox(—F,)) = h°0x(H) 4+ h°0x (F,).
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Finally, sinceh®Ox (H) = h°E, h°0x(F,) = h°0¢(p), and dim/; = 1, it fol-
lows that dimZ = h°E + h%0¢(p) — h°E(—p) — 2. If £ is normalized then we
haveH°E(—p) = 0 and hence dint = h° + k0 (p) — 2. O

We end this section with two results that will be very useful in the sequel.

LeEmMA 2.5. Let E be a rank2 vector bundle orP?. If ¢,(E) < 0, then
HOPY E) £0.

Proof. Sincec,(E) < 0, we haveclz(E) — 4c¢y(E) = 0. Schwarzenberger’s in-
equality(c?—4c, < Ofor stable rank-2 vector bundlesBR) together with Barth’s
theorem (which states that the restriction of a stable rank-2 vector bund#té on
to a general hyperplane is again stable, with the exception of the null-correlation
bundle onP®) implies thatE is not stable.

SinceE* = E(—c1), ci(E*) = —c1(E), andca(E*) = c2(E), we may assume
thatc1(E) < 0andea(E) < 0. Letn bethe leastinteger such ti&P(P<¢, E(n)) #
0. We have to show thai < 0. Take 0# s € H°E(n). Then the scheme of
zeros ofs represents the second Chern clas£6f). Hence, 0< cy(E(n)) =
co(E) + nci(E) + n?. Sinceco(E) < 0 it follows thatn(ci(E) +n) > 0. If n >
0, thenci(E) + 2n > c1(E) +n > 0. Let us see that, in such cage,s stable.
Toward this end, we take a rank-1 subbun@ile: (r) of E. Sinceh®E(—r) # 0 we
haven < —r. Therefore, 2 < —2n < c¢1(E) andE is stable, which is a contra-
diction. Thereforep < 0 and the lemma follows. O

Let E be a rank-2 vector bundle on®-bundle X. Since H%(X, Z) is gener-
ated byH andF and since (X, Z) is generated byf? and HF, one may write
c1(E) = aH + bF andcy(E) = xH? + yHF fora, b, x,y € Z. We may as-
sume without loss of generality thef( £) is numerically equivalent to one of the
following classes:H, H + F, F, or 0.

The following proposition is the key point for proving our main results on mod-
uli spaces of vector bundles @f-bundles. It assures us the existence of sections
vanishing in codimensior 2, sections that allow us to prove the irreducibility
and smoothness of the moduli spaces we deal with.

ProposITION 2.6. Let X be aP?-bundle overC, ¢, € Z, L = dH + bF an am-
ple divisor onX, e € {0, 1}, and E arank2, L-stable vector bundle oK. Assume
that either.
() c1tE = H 4 eF, c;E = (co +e)HF, b = 2c; — H' + e —1 andc, >
(dy + H*h/2+1; or
(i) c1E = eF, coE = —H?+ 2co4+e)HF, b =cy— H' ™' +¢—1 andc, >
dy + H*t 42,
ThenE(—H + m*c) has a nonzero section whose scheme of zeros has codimen-
sion> 2.

Proof. We prove case (i) and then leave the other case to the reader. By [Miy;
Thm.3.1],L = dH +bF withb = 2c;— H*'+e—1, and 2, > dy + H¥14-2
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is an ample divisor orX. For any L-stable rank-2 vector bundlE on X with
c1E = H + eF andcE = (c2 + ¢)HF, we considerE = E(—H + m*cy).
We haveci(E) = —H + (2¢2 + e)F andco(E) = 0. Sinceco(E) = 0 and
F = P4, from Lemma 2.5 we deduce tha(F, E| ;) # 0. Hence, there exists
an intege > 0 such thatOpa(a) — E|pa. This injection induces an injection
Ox(aH +7*b') — E for some divisob’ onC. Take 0 s € HOE(—aH —*b')
and letY be its scheme of zeros. Latbe the maximal effective divisor contained
in Y. Thens can be regarded as a sectior&tf-aH — n*b’ — A), and its scheme
of zeros has codimension 2. If I'H + n*m’ = aH + 7*b’ + A with I’ > 0,
thenE(—I’H — w*m’) with I’ > 0 has a honzero section whose scheme of zeros
has codimensior- 2. Therefore,E(—IH — 7*m) with [ > 0 has a nonzero sec-
tion whose scheme of zeros has codimensica To end the proof of (i) we need
only show that = 1 andm = —c,.

SinceE is L-stable andy (IH + n*m) — E, we have

c(E)L! _ dU(H +b+e)
2 o 2 ’
which is equivalentto 2 < —2(2] — D¢y, — (21 — 1)(e — 1) + e. On the other

hand, sincé& (—IH — 7 *m) has a nonzero section whose scheme of zeros has codi-
mension> 2, we obtain

0 < co(E(—IH — n*m))H ™t
=((ca+e+2lm—m—el)HF +1(1 —1)H*>H?
=co+el—D+ @ —hm+11-DH

(IH+mF)L = d*(IH™ +1b+m) <

Thereforem(2l — 1) > —I(l — ))H** — ¢, 4 e(I — 1). By hypothesis, 2, >
dy + H?*1 + 2. We thus have

—2[(l = Decy c2 Il-Ddy 200-1) e(l-1D

20—-1 2—-1' 2i—-1 20—1 ' 21-1
<m
@2l —De—-1 e
—@l =Dy — — = T4~ 2
< —( )Co > 5 2
which implies that?(2c, + dy + 2¢) — 1(2¢2 + dy + 2e) — % < Owithl > 1
Hencel = 1, and using (2) again we obtaim = —c,, which proves (i). O

3. Moduli Spaces of Vector Bundles of®¢-Bundles

We will denote byMy ;.(2; c1, c2) the moduli space df-stable, rank-2 vector bun-

dles onX with Chern classes, andc,. If there is no possible confusion then we

will write M1.(2; c1, ¢2) instead ofMx 1(2; c1, c2). The goal of this section is to
compute the dimension, prove the irreducibility and smoothness, and describe the
structure of moduli space¥; (2; c1, c2) of L-stable, rank-2 vector bundles with
certain Chern classes and for a suitable polarizatiariosely related te@,. We

want to stress that the polarizatidnthat we choose depends strongly@n our
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results turn out to be false if we fix andL and if c,L¢~* goes to infinity. In-
deed, ford = 2 and fixedL, the minimal number of irreducible components of
the moduli spaceé1, (2; c1, c») of L-stable, rank-2 vector bundles with fixed
andc,L going to infinity grows to infinity [BM, Thm. 0.1].

One way to study rank-2 vector bundles over an algebraic vakiet/to use
extensions of line bundles. Using this idea, we construct the following families.

CoNSTRUCTION 3.1. Forcy = H + eF with
ec{0,1} and Zsc, > (H™" +dy)/2+1,
we construct a rank-2 vector bundieon X as a nontrivial extension
€:0—> Ox(H —¥c)) > E — Ox(n*ca+ %) —> O, 3)

wherecy, ¢; € Pic(C) are divisors orC of degreer; ande € Pic(C) is a divisor
of degreee. We shall callF theirreducible familyof rank-2 vector bundles con-
structed in this way.

ProposITION 3.2, LetX be aP?-bundle ovelC, letZ > ¢ > (H4-dy)/2+1,

and letL = dH + bF be an ample divisor o withb = 2¢, — Ht1 — (1—e),

e €{0,1}. For any E € F, we have the following.

(@) HOE(—m*c; — m*e) = 0.

(b) E is arank2, L-stable vector bundle withy(E) = H + eF andca(E) =
(co + e)HF.

(c) FisaP"-bundle overPic’(C) x Pic%(C), where

N = dim Ext(Ox (7 *c2 4 w*¢), Ox (H — m*cy)) — L.
In particular, dimF = h'Ox(H — w*c; — w*ch — w*e) +2g — 1.

Proof. Observe first of all that, sinde= 2c, — H?*1 — (1—¢) > dy, it follows
(by [Miy, Thm. 3.1]) thatL is an ample divisor oiX.

(@) We start proving thatf °0Ox(H — m*c; — m*c, — n*e) = 0. By [Miy,
Thm. 3.1],L = H +yF is an ample divisor. IH°0x (H —n*c; — *c)—m*e) #
0, applying Remark 2.2 we get & (H — (2c2 + e)F)(H + yF)¢ = H*1 +
dy — 2c5 — e, which contradicts the assumption2> dy + H¢*1+2. Therefore,
HOOx(H — ¢y — m*ch — w*e) = 0.

We consider the exact cohomology sequence associated to (3). Since

HOx(H — 1t*cy — *ch — m*e) = Ext(Ox (% ca + w*¢), Ox(H — m*ch)),

the maps: H%Ox — HOx(H — n*cp; — m*c, — w*e) given bys(l) = ¢ is an in-
jection. This fact, together witlt °Ox (H — m*cp — w*c, —m*e) = 0, gives us
HCE(—n*c; — m*e) = 0, which proves (a).

(b) Itiseasytoseethai(E) = H +eF andcy(E) = (co+e)HF foranyE €
F. Let us see thak is L-stable; that is, for any rank-1 subbundg (D) of E €
F, we obtainDL? < (cy(E)L?)/2. For any subbundl®y (D) of E we have

(i) Ox(D) — Ox(H — m*c;) or
(i) Ox(D) = Ox(;w*cy + m*e).
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In the first caseD = H — ¢, F — C, with C numerically equivalent to an ef-
fective divisor. Hence,

DLY = (H —c;F —C)LY < (H — coF)LY = d‘(H™ Y + b — ¢))
dYH Y +b+e) c(E)L?
2 2

AssumeOy (D) — Ox(m*ca+m*e). From (a) we haved °E(—m*c, — *e) =
0. Therefore,D = (c; + ) F — C’, with C' = nH + mF numerically equivalent
to a nonzero effective divisor. Consequently,

DLY = ((c2+e)F —C")L? = ((co+ e)F —nH —mF)L?
=d%co+e—2nco +nl—e) —m)
ci(EYLY  d¥(2cy+2e —1)
=T 2 T 2
if and only if —4nc, + 2n(1—e) — 2m < —1 SinceC’ is numerically equiv-
alent to a nonzero effective divisor, we haven < n(H9** + dy) andn >
Oorn = 0 andm > 0. By hypothesis¢, > (H + dy)/2 + 1; therefore,
—4ncy, +2n(l—e) — 2m < —1landE is L-stable.

(c) Let p1 and p, be the projections ok x Pic®(C) x Pic%(C) to X and
Pic%(C) x Pic(C), respectively. We defin€, := piOx(H — n*c}) andG, :=
PiOx(m*cy + w*e). SetH = EXt;Z(GZ, G1), where EX},Z(GZ, -) is the right de-
rived functor of Hom, (G2, -) = p2, Hom(G2, -). Note that# is a locally free
sheaf over Pi(C) x Pic%(C) of rankh'Ox (H — m*cp — w*ch, — m*e¢) and is com-
patible with arbitrary base change. Consider the projective bund®(H) —
Pic®(C) x Pic®(C) and the morphisnp = y x idy: P(H) x X — Pic%(C) x
Pic%(C) x X. OverP(H) x X there is a tautological extension

0— p*(Gy) =V — p*(G2) ® Op3y(-1) — 0O

such that, for eache P(H), the restriction tqs} x X is isomorphic to the exten-
sion corresponding ta That is,

0— Ox(H —n*¢y) > E - Ox(n¥ca+7%) - 0

and hence there is a natural bijective morphiBit#{) — F. Thus, F is a
PV¥-bundle over PiXC) x Pic%(C), where N = dimExt(Ox(w*ca + 7*e),
Ox(H —m*¢y)) —1and
dim F = dim Ext(Ox (7 *c2 4 7*¢), Ox (H — m*¢cy)) + 2dimPid(C) — 1
= h'Ox(H — m*cy — w¥ch —m*e) + 2g — L O
ReMARK 3.3. The existence of large families of indecomposable rank-2 vector
bundles oveP?-bundles of arbitrary dimension faces up to Hartshorne’s conjec-

ture [H] on the nonexistence of indecomposable rank-2 vector bundles on projec-
tive space®", n > 6.

TueoreMm 3.4. Given the assumptions of Proposition 3.2, the moduli space
M (2; H + ¢F, (c2 + e)HF) is aP"-bundle ovePic’(C) x Pic%(C) with N :=
hOx(H — m*cp — ¥y — m¥e) — L
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Proof. Using Proposition 3.2 and the universal property Mf(2; H + eF,
(c2 + e)HF), we obtain a morphism

¢ F = M (2, H+eF, (co+e)HF),

which is a bijective map. In fact, we first prove thais injective. Assume that
there are two nontrivial extensions:

0 — Ox(H —7*cy) LN NN Ox(m*co + 7% e) — 0;
0— Ox(H — 7% <2 E L2 0y(n*t + %)) — O.
Since
Hom(Ox (H — *c5), Ox(*ta + 7€)
= Hom(Ox(H — 1t*¢5), Ox(7¥c2 + 7¥¢)) =0

(Lemma 2.3), we havg, o a1 = 10 ap = 0. Consequently, there must exist a
A eAut(Ox(H — m*c5)) = C such thatr; = ay o 1. Thereforeg is an injection.

Let us see thap is surjective. TakeE € M (2; H + eF, (c2 + e)HF). By
Proposition 2.6 E(—H + n*¢;) has a nonzero sectiorwhose scheme of zeros
has codimensior 2. Sincec,E(—H +m*¢5) = 0, the sections defines an exact
sequence

0— Ox(H —n*cy) > E — Ox(n*ca+7*e) — 0

of type (3). Thereforep is surjective and it follows tha is bijective.

CLam. ForanyE e My (2; H + eF, (c2 + ¢) HF ) we have
dimTigyM(2; H + eF, (c2 + e)HF)
= hOx(H — m*cy — w*ch — m¥e) +2g — 1.
Proof. By deformation theoryliz) M (2; H + eF, (c2 + e)HF ) = Exti(E, E).
Letus compute dim EXCE, E). We have already seen that aliy M (2; H +¢F,

(c2 + e)HF) sits in an extension of type (3). Applying HEmME) to the exact
sequence (3) yields

0 — Hom(Ox(m*co + ¥e), E) — HOM(E, E)
— Hom(Ox (H — *ch), E) — Ext(Ox(7*ca + 7*e), E)
— ExtY(E, E) — Ext{(Ox(H — m*ch), E)
— Ext?(Ox(n*co+7%e), E) > --- . (4)
SincehOyx = g, H?Ox(H — m*c) — w*c; — w*¢) = H?0x = 0, and also

HCE(—n*c; — m*¢) = 0 (Proposition 3.2(a)), we have

RWE(—m*cy — m*e) = h'Ox(H — m*ch — ¥y — w¥e) + g — 1,
(5)
Ext?(Ox (n*cp + m¥e), E) = H?E(—7*cy — %¢) = 0.
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Consider the exact cohomology sequence associated to the exact sequence (3).
SinceH°0x(—H + T, +rer+wte) = HOx(—H + T, +mFer+wte) =
0 and sincéi'Ox = g, we haveh®E(—H + n*c,) = Landh'E(—H + n*c)) =
g. Therefore, from the exact sequence (4) we obtain

dimExt(E, E) = W' E(—n*c; — w*e) + h*E(—H + 7*c))
— h°E(—H + *¢y) + dimHom(E, E)
= h'Ox(H — T, — ¥y —wte) +2¢g — 1,

where the second equality follows from (5) and the fact thas L-stable (and
thus simple), proving our Claim. O

Sinceg is a bijective map and ditk = h'Ox(H — T, — ¥ —nte)+2¢g—1
(Proposition 3.2), it follows from the Claim that the moduli spa€g(2; H + eF,
(c2+e)HF) is smooth. Finally, we may now deduce from Proposition 3.2(c) that
My (2; H+¢F, (co+e)HF) is aP"-bundle over Pi(C) x Pic%(C), whereN :=
hOx(H — *chy — m*c; — m¥e) — L In particular,M(2; H + eF, (c2 + e)HF)

is a nonempty, smooth, irreducible, and projective variety whose dimension is
hox(H — w*c, — ey — *e) + 2¢ — 1L Thus we have proved Theorem 3.4]

THEOREM 3.5. LetX be aP¢-bundle overC withd > 1andZ > ¢, > H*t1 4
dy + 2. We fix the ample divisat = dH + bF onX, b =c, — H*1 — (1—e),
ande € {0,1). Then M (2; eF, —H? + (2c2 + e)HF) is a P”-bundle over
Pic%(C) x Pic%(C) with M := h'Ox(2H — w*cp — m*c) — w¥e) — L

Proof. We consider the irreducible familg of rank-2 vector bundle€ on X
given by a nontrivial extension,

€:0— Ox(H —n*c}) > E = Ox(—H +n*c2+7%e) > 0. (6)

Arguing as in Theorem 3.4, we prove thel} (2; eF, —H? + (2co, + ¢)HF) is a
P¥-pbundle over Pi(C) x Pic®(C) with M = h'Ox (2H —r*c)—m*co—m*e) — 1

O
As a corollary, we obtain the rationality of the following moduli spaces of stable
vector bundles on rational normal scrolls.

COROLLARY 3.6. LetY := Y(ao,...,a,) be a(d + 1)-dimensional, rational,
normal scroll. Letl. = dH + bF be an ample divisor, € Z, ande € {0, 1}.

@1fd >0 c> H+d)/2+1 andb = 2¢c; — H*1 — (1—¢), then
M (2; H + eF, (co + e)HF) = PN with

N=2d+Dc,— H" +ed+1) — d+2).

) Ifd > 1 c; > H* 4+d +2 andb = ¢; — H* — (1 — e), then
M (2;eF, —H?+ (2cy + e)HF) = PM with

M =2(ed +Dcy —e(d + 2)H™ + 2(e — 1).
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REmARK 3.7.  Using Bogomolov’'s inequalite1(E)? — 4co(E))H?™ < 0, one
can see that the hypothesig,2> H*1 + dy + 2 (resp.c2 > H* 1 +dy +2)
whenci(E) = H + eF (resp.,c1(E) = eF) with e € {0, 1} is not too restrictive.

In the following theorem we generalize Theorems 3.4 and 3.5 to other classes of
¢2. Since the proof is essentially the same, we will omit it.

TueEOREM 3.8. Let X be alP?-bundle overC with d > 1 and integers, a, e,

with e € {0, 1}. Fix an ample divisol. = «H + BF. Assume
0>—-2a>-d-1 a=ad, B= —b—aH 41,

and—ab > a?H 1 + a?dy + a(a + 2) (respectively,

0>1-2a>-d-1 a=QRa—-1d, B=-2b—(a—-DH" ' +e—-1

and—2ab > (2a — D)aH*** + (2a — Dady +a(Ra —1) + 1)

ThenM, (2; eF, —a’H?+ (ae—2ab)HF) (resp.., M (2; H+¢eF,a(l—a)H?*+
(b4 ae —2ab)HF)) is aP"-bundle(resp.,P¥-bundlg overPic®(C) x Pic®(C),
whereN := h'Ox(2aH + (b + b’ —¢)) — 1 (resp.,M := h'Ox((2a — ) H +
7*(b+e¢)) — 1.
REMARK 3.9. We want to stress that with Theorem 3.8 we have covered the study
of all moduli spaced/1; (2; c1, c2) such that the general point] of M, (2; c1, ¢2)
is given as a nontrivial extension of line bundles. Indeed, the Chern classes of vec-
tor bundlesE studied in Theorem 3.8 are the only ones that can be obtained as
Chern classes of a vector bundteconstructed as a nontrivial extension of line
bundles.

We will finish this section by computing the Kodaira dimension and the Picard
group of moduli spaces studied previously.
CoroLrLary 3.10. Under the assumptions of Theorems 3.4 and 3.5, we:have
Kod(M(2; H + eF, (c2 + e)HF)) = —o0;
Kod(M.(2; eF, —H? + (2c2 + ¢)HF)) = —o0.
ThatM;(2; H + eF, (co + e)HF) (resp.,M;(2; eF, —H? 4+ (2c, + e)HF)) is a
PV -bundle (respP™-bundle) over Pi&(C) x Pic®(C) with natural projectior1
(resp.,IT") allows us to prove the following corollary.
CoroLLARY 3.11. Under the assumptions of Theorems 3.4 and 3.5, we: have
Pic(ML(2; H + ¢F, (c2 + e)HF)) = Z @ IT* Pic(Pic®(C) x Pic%(C));
Pic(M,(2; eF, —H? + (2¢2 + e)HF)) = Z @ IT"* Pic(Pic®(C) x Pic%(C)).
In particular, if X is a rational normal scroll then
Pic(M.(2; H + eF, (c2 + e)HF)) = Pic(M,(2; eF, —H? + (2¢; + ¢)HF))
=7Z.
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4. Change of Polarizations

Let X be a smooth, irreducible, projective variety of dimensioin [Q], Qin con-
sidered the following problem: What is the difference betwagn, ,(2; c1, ¢2)
and My 1,(2; c1, c2) whereL; and L, are two different polarizations? In Sec-
tion 3 we studied the moduli spadé;(2; ci, ¢2) for fixed c1, c, and a suitable
polarizationL on aP¢-bundleX over a smooth projective curve. In this section,
we will illustrate some of the changes of the moduli spaG&2; ¢, ¢») that occur
when the polarizatioiL varies.

We keep the notation introduced in Sections 2 and 3. For technical reasons, we
also assume thatis normalized. Hence, for any integers> 0 we have

(i) degOc(—n—n'+p+p'+Kc¢)) <0,
(i) hOE + h%0c(p") < WE(—n — 1),
(i) n> (H™* +dy)/2+3,
wheren, n’ € Pic(C) are divisors orC of degreen and wherep, p’, p” € C are
points ofC.

We start by recalling some results (due to Qin [Q]) about walls and chambers.

DerINITION 4.1, (i) LetS € A2 L (X) andé € Num(X) @ R withd +1= dim X.
We definew ¢S := Cxy N {x e Num(X) @ R | x&S = 0}.

(i) Define W(c1, ¢2) to be the set whose elements consistof ), wheres
is a complete intersection surfaceXnand where is the numerical equivalence
class of a divisoiG on X such thaiG + ¢, is divisible by 2 in Pi¢X), G2S < 0,
andc,+(G2—c?)/4 = [ Z]for some locally complete intersection codimension-2
cycleZin X.

(iii) A wall of type(cs, ¢2) isanelementim(cy, c2). A chamber of typécy, c2)
is a connected component@f \ W(ci, ¢2). A Z-chamber of typécy, ¢») is the
intersection of NuriX) with some chamber of type, ¢2).

We say that a walW ¢S of type (c1, ¢») Separates two polarizatiodsand L’ if
and only iféSL < 0 < ESL'.

REMARK 4.2. In [Q, Cor. 2.2.2], Qin proves thafx ;(2; c1, c2) depends only

on the chamber of and that the study of moduli spaces of rank-2 vector bundles
stable with respect to a polarization lying on walls may be reduced to the study of
moduli spaces of rank-2 vector bundles stable with respect to a polarization lying
in Z-chambers.

ExAMPLE 4.3. LetX be aP¢-bundle ovelC. We fix c; = H € Num(X) and, for
anyZsn > (H"' +dy)/2+ 3, c; = nHF € H*(X, Z). We considels, S’
Ad-L andé e Num(X) ® R defined by

num
S:=dH Y+ BH*%F, S :=dH' '+ (B—2)H"%F, &:=H —2nF,
with 8 = (2n — H™Y(d — 1) + 2. It is easy to see thav &S and W& 5" de-

fine a wall of type(cy, c2). Moreover,W &%) andWw¢-5) are nonempty. In fact,
we have
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L=dH +@2n—H - 2)Few&9,
L'=dH + @2n— H"™YFew®S),
Finally, consider the ample divisors of
L=dH + (2n — H*—1F,
L'=dH + (2n — H™** - 3)F,
L'=dH + (2n — H" D F.

SinceL’eS < 0 < LES andL&S’ < 0 < L7&S’, it follows that the wallw &5
separates. andL’ and that the walW ¢-5") separates. andL”. We will denote
by C (resp.,C’ andC”) the chamber containing (resp.,L’ andL").

Now we determine and compare the moduli spadeé2; H, nHF) correspond-
ing to polarizationd. lying in the chamber§, C’, andC” (respectively). Keeping
the notation introduced in Example 4.3, we have the following theorem.

THEOREM 4.4. Let X be aP4-bundle overC and let0 « n € Z.

(@) Forall L" € C”, M;.(2; H,nHF) is empty.

(b) Forall L eC, M;(2; H,nHF) is aP"-bundle overPic’(C) x Pic%(C) with
N = h'0x(H — n*w — 7*n) — L

(c) Forall L'e C', M;,(2; H, nHF)is anonempty open subset\df (2; H, nHF)
and

dim(M;(2; H, nHF)\ M;,(2; H,nHF)) = h°€ 4+ h%0¢(p) + 2(g — 1),
with p a point ofC.

Proof. (a) follows from Proposition 4.5 and Remark 4.6. (b) follows from Theo-
rem 3.4 and Remark 4.2. (c) follows from Proposition 4.7 and Remark 4.2]

We now discuss what happens for polarizations lying on the chaéiber

ProposITION 4.5. Let X be a P?-bundle overC, let 0 < a € Z, let
(H™*1 +dy)/)2+3 < neZ,and letLy = aH + bF be an ample divisor
such thath/a > (2n — H*Y)/d. ThenM, ,(2; H, nHF) is empty.

REMARK 4.6. Keeping the notation introduced in Example 4.3, we have that
b/a > (2n — H**1)/d is equivalent tc€S’Ly > 0. Hence,M,(2; H,nHF) is
empty for anyL € C".

Proof of Proposition 4.5Let E be a rank-2 L y-stable vector bundle ok with
c1E = H andc,E = nHF. Sincecy(E(—H + 7*n)) = 0, we may argue as in
Proposition 2.6 to obtain th@(—!H —z*m), [ > 0, has a nonzero section whose
scheme of zeros has codimensior?.

SinceE is Lo-stable and sinc®y (IH + 7*m) — E, it follows that 2am <
—a(2l —1)H**— (21 —1)db. Sinceb/a > (2n — H4*Y)/d by hypothesis, we get
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m < — (21 — 1)n. On the other hand, sind&(—/H — 7*m) has a nonzero section
whose scheme of zeros has codimensio, we have

0 < co(E(—IH — m*m)H? ™ = (n + 2lm — m)HF +1(1 —)H>H?
=n+ Q@ —Ym+I11—-DH"
Hencem > (—I(I — DH ' — n)/(2] — 1), and since (by hypothesisy2>

H' 4+ dy + 6 we obtain?(2n + dy + 6) — 1(2n +dy + 6) < 0. Sincel > 0,
we arrive at a contradiction and thi ,(2; H, nHF) is empty. O

In the next proposition, we compare moduli spaces corresponding to polarizations
L lying in the chamber§ and(C’.

ProprosiTION 4.7. Let X be aP?-bundle overC and let0 <« n € Z. We
fix an ample divisorL’ = dH + bF € C' on X with b = 2n — H4! — 3,

ThenM;,(2; H,nHF) is a nonempty open subsetMf; (2; H, nHF ) with L=

dH + 2n — H*Y — 1)F e C. In particular, M;,(2; H, nHF) is a smooth, irre-
ducible, quasiprojective variety of dimension

WOx(H —n*n—a*n)+2g —1=h*&(—n*n—7*n') +2g — 1
Proof. We consider the open subsébf M;(2; H, nHF ) defined by
U:={EeM;@2; H nHF)| HE(—n*(n — p')) = 0},

with p’ apointofC. To prove the proposition itis enough to see tiié nonempty,
U= M; (2, H nHF), and

dim(M;(2; H, nHF)\U) = h°E + h°0c(p”) +2¢g — 2 < dmM;(2; H, nHF),
wherep” is a point ofC.

Cramm 1. U is a nonempty open subsetMf (2; H, nHF ) and
dim(M;(2; H,nHF)\U) = h°E + h0c(p") + 2g — 2,
wherep” is a point ofC.

Proof. For anyE € M;(2; H,nHF) \ U, we take 0#£ s € HE(—m*(n — p'))
and the associated exact sequence

0— Ox(D+n*n—p")) > E— I;(H—a*0 —p)—D')— 0. (7)

Here D’ = D = xH + yF are numerically equivalent to an effective divisor,
n — pis adivisor onC of degreen — 1, and [Z] is a codimension-2 closed sub-
scheme ofX. The L-stability of E implies that 4n — 2x + 2y —1 < 0. SinceD

is numerically equivalent to an effective divisor, it follows that= 0 andy > 0
orx > 0and—y < x(H? + dy) (see Remark 2.2). By hypothesiss 0; in
particular,n > (H%+! + dy)/2 + 3 and so the only solution is= y = 0. Thus

D = D’ = 0 and we have the exact sequence

0— Ox(n*(n—p") > E - Iz(H —7*(n' — p)) > 0, 8)
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where Z] = c2(E(—n*(n — p’))) is a complete intersection of tygé?, F,»),
with p” a point ofC and wherev' — p andn — p’ are two divisors orC of degree
n—1

Let us callM the irreducible family of rank-2 vector bundles given by an exact
sequence of type (8). We have

dim(M;(2; H nHF)\U)
= dimM = dim Ext'(Iyr(H — 7*(0 — p)), Ox (w*(n — p')))

— hPE(—n*(n — p)) + 2dim Pi®(C) + dim L,
where/ is the family of codimension-2 closed subscheriesf X and complete
intersections of typ€H, F,»), with p” a point ofC. Applying Lemma 2.4, we ob-
tain dimM = h%€ + h°0¢(p”) + 2g — 2. By hypothesish®E + h°0q(p”) <
hE(=n — ') and so

h°E + h0c(p”) +2g — 2 =dimM < dimM;(2; H, nHF)
=hEn—-n)+2g—-1

Hencel{ is a nonempty, open dense subseiff(2; H, nHF) and so we have
dim(M;(2; H,nHF )\ U) = h°E + h°0¢(p") + 2g — 2, which proves Claim 1.

O
CLamm 2. For E € M;(2; H,nHF), E is L'-stable if and only if£ e .

Proof. Arguing as in Proposition 3.2(b), we can see that &nyl{ is L'-stable.
Assume thats € M;(2; H,nHF) \ U. Let us show thak is notL’-stable. Since
E e M;(2; H nHF)\ U, we haveOx(7*(n — p’)) — E withn — p’ € Pic(C)
of degreen — 1. If E is L’-stable then

c(E)L'Y  d?(2n —3)
2 2 ’

which is a contradiction. Thereforg,is notL’-stable and we have proved Claim 2.
O

(n—DFLY=d%n-1 <

Cramm 3. AnyE € M;,(2; H,nHF) sits in a nontrivial exact sequence
0— Ox(H —n*n’) - E - Ox(7*n) — 0.
In particular, M;,(2; H,nHF) C M;(2; H,nHF).
Proof. Sincec,(E(—H +n*n')) = 0, it follows that E(—IH — 7x*m), [ > 0, has
a nonzero section whose scheme of zeros has codimensioifo end the proof
of Claim 3 we need only show that= 1 andm = —n.
Since E is L’-stable and sinc®x (IH + n*m) — E, it follows thatm <

—QI—Dn+3(21 —1)/2. Onthe other hand, sind&—IH — = *m) has a nonzero
section whose scheme of zeros has codimensi@ we get

0<cy(E(—IH —m*m)H = ((n+ 2lm —m)HF +1(1 —1)H*H?
=n+ Q@ -Ym+I11-1H
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Therefore,m > (—I(l — 1)H** — n)/(2] — 1). Using the hypothesis2 >
HY1 4 dy + 6, we obtainm = —n +10rm = —n.

In the first case, let; € Pic(C) be a divisor onC of degreen — 1. Since
c2(E(—H 4+ m*ny)) = Z = HF and sinceE(—H + m*n;) has a nonzero section
whose scheme of zeros has codimensio?, we have the exact sequence

0— Ox(H —n*ng) > E — Iz(n*n}) — 0,

whereny, nj € Pic(C) are two divisors orC of degreen — 1. Hence,c3(E) =
ca(Iz(m*ny)) +ca(Iz(w*ny))c1(Ox (H — *ny)) = 2H?F, which contradicts the
fact thatc3(E) = O for any rank-2 vector bundl&. Thereforeyn = —n and E
sits in the exact sequence

0— Ox(H —n*n’) - E — Ox(7*n) = 0,

wheren andn’ are divisors orC of degreen. )
Sincen > (HY*' + dy)/2 + 1, by Proposition 3.2F is L-stable; this proves
Claim 3. 0

Proof of Proposition 4.7 (cont.)From Claims 2 and 3, we deduce that
M; (2; H.nHF) =U C M;(2; H,nHF)
is a nonempty open dense subset. Indeed,
dim(M;(2; H,nHF)\U) = h°E 4+ h%0¢(p) +2g — 2
< dim(M;(H, nHF))
=hE(—m*n—a*n) +2g -1,
and this proves what we want. O

FinaL REMARK. Let X be a 3-dimensional rational normal scroll and let=

H + 2F be an ample divisor oX. It follows from [BM, Thm. 0.1] that the
number of irreducible components of the moduli spatg, - (2; H, coHF) =
My, 2r(2; H+ 2F, (c2 + D) HF) grows to infinity wherc, goes to infinity. This
shows again that the moduli spae (2; H, ¢, HF ) strongly depends on the fixed
polarizationL. The authors hope to describe (in a forthcoming paper) different
irreducible components of the moduli spade (2; H, c,HF'), whereL is a po-
larization lying on a chamber far from the chamBedescribed in Example 4.3.
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