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Boundary Effects and Large Time Behavior
for the System of Compressible Adiabatic Flow
through Porous Media

RoNGHUA PAN

1. Introduction

In 1-dimensional porous media, the motion of compressible adiabatic flow can be
modeled by the compressible Euler equations with frictional damping terms, say,
the following balance laws:
v, —u, =0,
u, + p,s)y, = —au, o >0, 1y
(e(v,s) + 3u?), + (pu), = —au?,
under Lagrangian coordinates. For smooth solutions, the sy&ténsequivalent

to
Uy — Uy = 07

u; + p(v,s)y = —au, o >0, (1.2)
St = 0.
Here,v denotes the specific volume,is the velocity,s stands for entropyy de-
notes the gas pressure with(v, s) < 0 forv > 0, ande is the specific internal
energy. For sake of simplicity, we assume that 1 andp(v, s) = (y — v~ Ye*
with y > 1
In the case of isentropic flow whese= const, (1.2) takes the form
{ v, —u, =0,
U+ pv)x = —u.
In [5], Hsiao and Liu proved that the large time behavior of the solutions of the
Cauchy problem to (1.3) were captured by those of Darcy’s law:
{ V; = —p(V)axs
u= _p(v)x'
The better convergence rates were obtained in [21], [22], and [23]. To under-
stand the boundary effects, the system (1.3Rdn= (0, oo) with different kinds

of boundary conditions were studied in [16] and [24], where the corresponding
asymptotic behavior of solutions and the relation to the nonlinear diffusion waves

(1.3)

(1.4)
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of (1.4) were obtained. For more references on this topic, we refer to [4] and [6]
for smooth solutions and to [1; 4; 8; 13; 14; 15; 17; 18; 20; 25] for weak solutions.
For the adiabatic flow where £ const, much less is known. The global ex-
istence of smooth solutions to the Cauchy problem has been proved in [11] and
[26] for small initial data. The problem of large time behavior of these solutions
is known only for some particular initial data; see [7], [12], and [19]. However, the
initial boundary value problem for (1.2) on bounded domain with fixed boundary
conditions has been understood very well in [9; 10] by the combination of charac-
teristic analysis and the energy method. As far as we know, there is not any work
on the initial boundary value problems &t for the full system (1.2).
In this paper, we consider the initial boundary value problems of (1.8 on
with the initial data

(v, u, s)(x,0) = (vo, ug, $0)(x) = (vy,uy,sy), vy >0, asx - oo, (1.5)
and boundary conditions
v(0,1) =v9(0) =v_ >0 (1.6)
or
u(0,1) =0. @7

From now on, we will denote by (P1) the problem (1.2), (1.5), and (1.6) and by (P2)

the problem (1.2), (1.5), and (1.7). We shall study the global existence and large
time behavior of the solutions for these two problems and their related diffusive

problems:

Uy = —p(0, )x,

i=—-p@,s)., xeRT,

s, =0, 1.8)
50, 1) = B6(0) = v_,

(v, )(x, 0) = (Vg, 50)(x) = (v4,54), v4 >0, asx — oo;

v = —P(f)’ $)xxs
u=-—p@,s),, xeRT,
s; =0, 1.9

p(0,5):(0,1) =0,

(0, 5)(x,0) = (vg, $0)(x) = (vy,s4), vy >0, asx — oo.

The nonlinear diffusive phenomena created by a damping mechanism with bound-
ary effects is expected. In fact, we will prove that the solutions of (P1) and (P2)
behave time-asymptotically as those of (1.8) and (1.9), respectively. Moreover, the
large time asymptotic states are given by stationary solutions or similarity func-
tions, depending on the boundary conditions.

Our results here can be viewed as the generalization of [24] for the adiabatic
case. However, the results of [24] are based strongly on the knowledge of the
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isentropic porous media equation (4.4¥hich is well known (see [2; 3]). Essen-

tial difficulties occur in our problems since the theory for adiabatic porous media
equations is unknown. The nonconstant entrofy) makes the diffusive prob-

lems (1.8) and (1.9) highly nontrivial. In Section 2, we treat the problem (1.8) by
the new approach introduced in [19] for the Cauchy problem with some modifi-
cations; see Lemmas 2.6-2.9. Our key elements are two. First, we introduce a
new dependent variabte (see (2.2)) and consider the problemsidorather than

the specific volume as in the isentropic case or the pressure as in [9; 10]; with the
help of our new dependent variahle we can control the total excessive mass of
the problem near the desired diffusive profile by fiietechnique. Then we can
combine thel.! technique with the weighted energy method to obtain the desired
results for the solutions of (1.8). In Section 3, the global existence and large time
behavior as well as the convergence rate for the solutions to (P1) are established
by our results in Section 2 and the approach of [24] with some modifications; see
Lemma 3.3. In Section 4, we apply the same approaches used in Sections 2 and 3
to the problem (1.9) and (P2).

In general, the initial boundary value problems are harder than Cauchy prob-
lems of hyperbolic systems. Our results are somewhat amazing in that the initial
boundary value problem of (1.2) &1 can be solved completely while the Cauchy
problem remains open.

NotaTion. We denote byC the generic constants independent.oFor func-
tion spacesL? = LY9(R*) (1 < g < o) is a usual Lebesgue integrable function
space with the norni - || <. The L2-norm onR™ is simply denoted by, - ||. By
H* we denote the standard Sobolev spac&on its norm is| - ||z« and H® =
L?. We will also use the norm

n
(g v gl = D lgill -
i=1

2. Diffusive Problem (1.8)

This section is devoted to study the diffusive problem (1.8). Clearly one has
s(x,t) = so(x) = s(x) fort > 0, so it is sufficient to solve the following
problem:

Et:_p(ﬁvs)xxs XER+,

v(0,1) =v_, (2.1)

v(x,0) = vo(x), vo(+o0) =vy > 0.

Problem (2.1) is equivalent to the following porous media—type system of equa-
tions:
w; +a(x)(w )y =0, xeRT,

w0, 1) = w_,
- (2.2)
w(x, 0) = wo(x) = a(x)vo(x),

w(400) = wy > 0,
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wherea(x) = (y — D) Ye W™y = a(x)v = p@,s) ™V, andw_ =
a(Oyv_.
Now leta; = (y — )7e~ Y5+ andw(n) (wheren = x/+/1+1) be the

unique similarity solution of
{ w; +ar(w™ ), =0, (23)
w(, 1) =w_, w(+oo,t)=w,.

Some properties ab(n) are listed in the following lemma (see [2; 3]).

LemMma 2.1. Fori+ j >1andi > 0, j > 0, we have
lw(n) — wy| + [0’ I+ 0" ()| < Clwy —w_|exp{—Can?},
Wy = 1+0Y20'(p), W =—3A+0D"0'(n),
IDIDIB(, DI < Clwy —w_ A+ 1)~ @042,
ID{DIw (-, )l < Clwy —w_ L4 1)~+i/2,

We now solve problem (2.2) by comparing x, t) with w(n).

Letp = w — w; then, from (2.2) and (2.3), we have the following systemgfor
b1+ a(X) (YD) P)rx + (@ — an) (W7 )xr 4 a(x)(g(}, W)p?)x =0,
¢(0,1) =0, (2.4)
¢ (x,0) = po(x) = wo(x) — w(x,0), xeR™,

where we have set
Y@ = -y~ and g(¢, )¢’ =@+ W) — 07 — Y(@)¢.
Let F = —y(w)¢; then the corresponding problem énis given by
Fi+a(x)y (W) Fry — Y(w)(a — a)) (W7 )y
— Y@ Fid, — ayp(0)(fF?) =0,
F(0,1) =0,
F(x,0) = Fo(x) = —¢(0(x, 0)¢o(x), xe€RY,

(2.5)

where
Y1) F = ¢'(0)¢ and fF? = g¢°.
Now we define the Banach spak¢0, r) for all T > 0 by
X(0,1) ={FeC%0,1; H?, 0 <1 < T},
equipped with the nor2(1) = supy, -, I F(t)1|%.
The main result of this section is the following theorem.

THEOREM 2.2. Assume thafp(x) ands(x) = so(x) are smooth functions such
that Fo € H2(R*) N LYR*) andx(s(x) — s;) € LY(R*). Then there existy >
Oandé > Osuch that, iflw, — w_| < § and || Follg2 < €o, then(2.5) has a
unique global smooth solutiof satisfying

2 . 3
S uwpa@liFe ol + [ Y woliFeolfd e @6

j=0 0 j=t
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where the weight functions are defined as
wi(t) = A+ 0)Y2A+logd+1)~* and w;(t) = A+ 1) wi(t)
for j, k> 1

The local existence and uniqueness of the solution to (2.8Y@ 7)) is standard.
From now on, we assume a priori the existenc& (), T') for someT > O.

The following L'-estimate follows from the standard contraction property of
the porous media—type equation and will play a fundamental role in the rest of this
section.

LEmMA 2.3. Under the conditions of Theorem 2.2, if the solution exists in
X (0, T) then, forO < ¢ < T, the following estimate holds

oGOl = CIFC D2 < Ca(ll@oll 2 + 6). 2.7)

Proof. We present here a formal argument that can easily be made rigorous by
using any sequence approximating the sign function and then passing to the limit
by means of the Lebesgue dominated convergence theorem. Obserke=that
sign(¢) = sign(F) andh (0, t) = 0. Let us multiply the equation (2)4by a~h;

then, by integrating over [0] x (0, +00), it follows that

+o0 t +00
f 071I¢|(x,t)dx+/ f sigri(F)F?dx dt
0 0 JoO

+00
< c/ a Ypol(x)dx + C
0

t +o00
/ / (a — ap)w, SIgN(F) dx dt
o Jo

+

t +o00
/ / (fF?),F, sigri(F) dx dt
0 0

< C(ll¢ollzz + 8). (2.8)
Here, we have used the following facts:

t +00
/ / (a — ap)w, SigN(F) dx dt
o Jo

t +o0
SC/ / |s — sy ||| dx dt
o Jo

t —+00
< c/ / A+ 1) 3]s — s0)||@(n)| dx d
0 0

< Cs; (2.9)

t +o00
/ / (fF?),F, sigri(F) dx dt
0 JoO

t +00
:f / FX(ZfFX+prFx+ﬁDFle)F8{F=0}dxdf
0 0

=0. (2.10)
Hence, (2.8) gives the proof of (2.7). O
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With the help of Lemma 2.3, we can make the energy estimatds on

LemMma 2.4. Under the conditions in Theorem 2.2, suppose tHéf) < ¢ for
some suitable small constant> 0. Then, forO < ¢ < T, we have that

||F<~,r)||2+/O | Fe(-, D)2 dt < C(|| Foll? + 8). (2.11)

Proof. Multiplying the equation (2.4 by a~'F and then integrating the result
over [0 ¢] x (0, +00) yields

+00 1 t +o00
/ ZaFp(x,t)dx + f / F2dxdt
o 2 o Jo

+00 1 t +00
< / Za YFopodx + f / aXa —a) (W) Fdx dr
0 2 0 0

t +ool t 400
+// —a_lwz(ﬁ))Fzﬁ),dxdr—l—// (fF?),F,dxdr
oJo 2 o Jo
+ool
= / Ea—1F0¢>odx+1r1+12+13, (2.12)
0

with Yo(0) F2 = ¢2y'(w).
We estimatd, I,, and /s step-by-step as follows:

I =

t +00
/ / aXa — ay)(w)VF dx dt
0 0

t —+00
/ / (s —§5)Fw, dx dt
o Jo

t
< C88/ A+ ) ¥ x(s = 5) | pdr
0

<C

< Cds; (2.13)

t +00 1
I, = / / Za W () F?w, dx dt
oJo 2

t
sc/ | Fll ]l | Fll 2 dx d
0
t
< 08/ IFIY2 F Y2+ 1) tde
0

t t
< ca(/ ||F||2||Fx||2dr+/ (1+‘L’)4/3d‘r>
0 0

t
< C8<1—|— 52/ ||Fx||2dr>; (2.14)
0
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t +00
/ f (fF?,F,dxdt
0 0

t “+00
gcf / (|IF| + |F?)F? 4 |F?w, F,| dx dt
0 JO

1 t t
< <—+C5)/ ||Fx||2dr+C82f | F||3 dz
2 0 0

1 ' '
5 <§+cg)/ ||Fx||2dr+C82/ |12 F )2 de
0 0

1 t
< <§ + Ce)/ | Frll? dr. (2.15)
0

Owing to the smallness éfande, we conclude from (2.12)—(2.15) that

I3 =

IFC DI+ /Otan(~, 02 de < C(IFol® +9), (2.16)
which completes the proof of Lemma 2.4. O
For higher-order estimates, we use the problem (2.5) to obtain the following results.
LEmMA 2.5. Under the same conditions as in Lemma 2.4, we have
I(Fes Fiy Fe) G 0112 + fotu(Fm, Fuxxs F) D)2 de
< C(lFolf +8).  (217)

Proof. Let us multiply the equation (2)pby F,,. Then

“+00 t —+00
/ F2(x,t)dx + / / F2(x,7t)dx dt
0 0 JO

t —+00
/f w, F. dxdt
0 0
t +00
/ f (FF?) s Fx dx dt > (2.18)
0 Jo

which implies, with the help of the Cauchy—Schwartz inequality and Lemma 2.1,
that

+00 t 400
/ F2(.t)dx + / f F2(t,x)dxdr
0 0 JO

t +oo
< C(|[ Fox|” + 8% + C/ f (fF?»? dxdr. (2.19)
0 JO

< c<||F0x||2+

+

We bound the last term in (2.19) as follows:
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26
t +00

f / (fF?? dxdr
0 0

t 400
< c/ / (|F| + |F| + lw,)?F? + F?F2 + F4W2 + ) dx dr
0 0

t ptoo
< Ce%5% + Ce / / szx(r, x)dxdr. (2.20)
o Jo

Then, (2.19)—(2.20) and the estimates in Lemma 2.4 give the first part of (2.17).
We now differentiate the equation (2;5n ¢ to obtain

Ftt + aw(w)Fxm + aw/(ﬁ))thxx - (I/f(ﬁf)(a - al)(ﬁ)_y)xx)t
+ (Y1(D) Fiby); — (apr(D)(fF?)5x); = 0. (2.21)
Multiplying (2.21) by F; and then integrating over [@] x (0, +00), we have
||F,<~,t>||2+fO I Fox (-, D2 dr < C(| Foll,2 + 8). (2.22)

The balance of the estimates in (2.17) can be easily proved by differentiating (2.5)
inx. O

By the standard continuity argument (see [19]), we now conclude from Lemmas
2.3-2.5 as follows.

THEOREM 2.6. Under the conditions of Theorem 2.2, there exist- 0 and§ >
0 such that, if | Foll g2 < €0 and lwy — w_| < 8, then there is a unique global
classical solutionF(x, r) of (2.5)such that

IF@I52 + /O t(||F,||§,1+ IF:1%2) (@) dt < ColllFollgz +8)  (2.23)
forall t > 0andCy > Oindependent of. Furthermore,
tlijgollF(-, Dl — 0.
By using the weighted energy method, we can prove the following decay rates.
LEmMMA 2.7. Let F be the solution t@2.5) obtained in Theorem 2.6. Then
wi() | FOII? + w2 ()| F(0) |12

+ fo (i@ | Fe (@)% + wa(0) | Fux(0)[2) dr < €. (2.24)

Proof. Let us multiply (2.4) bya w1 (¢) F to obtain
(3Fpa=wi(n)), + wi(t) F2 — Jwi(t)a (i) F2

= 3a wi() F2, — a wi(t)(a — an) F ™ )xx + wi(t) Fe(fF2) + {- -}
When integrated on [G] x (0, +00), this yields
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t
wOIFC O+ [ u0IF @] dr
0
t 400
scl(||Fo||2+’// wl(2)F2dx dv
o Jo
t +00
+// w1(t) F2, dx dt
o Jo

t oo
+ / / wi(t)w,; F(a — ay) dx dt
o Jo

t +00
+ / f wi(t)(fF?)? dx dt
0 JO

Here{- - -}, denotes the term that does not need to be computed explicitly, since it
will disappear by integrating im. Observe that the following inequality af,

IFll~ < C|IF 1?3, (2.26)

). (2.25)

holds, since
I|Fllp~ < CIIF|IY?| Fy || M2
1/4 1/4
< CIIFIIZIE Y21 F 7L

We now have the following estimates:
t +00
/ / (lw(T) F?| + [wi(D)W(a — a)) F| + |wa(t)®, F?|) dx dv
0 0
t
<c / A+ ) ws(0)[| Fll o d
0
t
<c / A+ ) wa(0)| F(0) |23 de
0

1 t
<t - / Wi | Fu(0)]P (2.27)
2C1 Jo

t +0o0o
/ / wi(t)(fF?)? dx dt
0 JO
< Cs/ wl(f)||Fx(T)||2dT+C8f A+ ) wi(0) | F L~ dT
0 0

<Ce+ Cé‘/ w1(7) || Fe ()] d. (2.28)
0

Here we have used

lw/()] < CA+ 1) wi(r) fori=12,....
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Hence, by the smallness of we conclude from (2.25)—(2.28) that
t
wi | F(, 1) +/ w1 Fe(D)[?dr < C. (2.29)

0
Multiplying (2.5) by w,(¢) F,, we obtain

(Fwa()F2), — ap(@)wo(t) FZ — Swh(t) F2 — Y1() FFy b wo(1)
= —wz(l)lﬁ(ﬁ))(ﬂl - al)(w_y)xx Fxx - aW(w)(sz)xxFXXWZ(I) + { . '}x~
Then one has

WD) | Fulo )2 + /0 WO Fux (-, D)2 d

t 400
/ / ﬁ)tzwg(t)(a —ay)?dxdr
o Jo

t +o00
/ / F2i?wy(t) dx dt
0 JO

t +00
+ / f wa(t)(fF?)? dx dr). (2.30)
0 JO

t +00
/ / F2i?wy(t) dx dt
0 Jo

t 1
< 052/ A+ 1) Pwa(r) dt + 052/ A+ ) twi(D)|| F| o dt
0 0

SC—i—C(

+

Since

t +o0
f / W2wy(t)(a — a1)? dx dr| +
0 JO

< 82 (2.31)
and

(sz)xx = (ZFFxf+fFF2Fx +fu~)lbxF2)x
= (2fF + frF?) Foy + 2f +4AfrF + frr F?)F?

+ AfaF + 2fra FHF W0, + (folxx + foaw?) F?,
it follows that

t +00
// wo(t)(fF?)? dxdt
0 0
+o0

t t
<C+ CS/ wo(7) || Fex (-, T 12 dt + C/ / Fx4w2(t)dx dt (2.32)
0 0o Jo

and
t +oo
/ / Flwy(t) dx dr
0 JO
t

<ce? /0 wa(®) | Furl2d + C fo WO F O 2 F(@) P dr.  (2.33)
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Owing to the smallness af we deduce from (2.30)—(2.33) that

waD) | Fe )] + /0 2D | Far(0) 2 d

§C<1+ / wz<r)||Fx<r>||2||Fx(r>||2dr). (2.34)
0

Therefore, Gronwall’'s inequality gives

t
wa ()| Fe()[1 + / wa(0) | Fur(0) |2 de < C. (2.35)
0
Hence, (2.29) and (2.35) complete the proof of this lemma. O

The following lemma contains the decay rates for the derivativés afhich will
be useful in the next section.

LEmMA 2.8. The solutionF to (2.5)in Theorem 2.6 satisfies
{ waIIFOI? + [y ws(@)||Fu(D)[2dr < C,
waO [ Full?> + [ wa()l| Fix(D) 2 dT < C;

I Fylle < Cwa(t) Y wa(t) ™4,

(2.36)

Proof. Itis sufficient to prove (2.36), since the estimate|féy|| .~ can be derived
from (2.36) by using the Sobolev inequality.
Let us differentiate (2.3)in ¢; then

Fy + ay () Fr + ay' ()i, Fr — [Y () (@ — a)) (077 )],
— WD) Fio,); — [ay (@) (fF?),.], = 0. (2.37)
Multiplying (2.37) bya*w3(¢) F,, we obtain
(30 ws()F?), — v()ws(t) F2 + 3FA () ws(t) — 3Ffa  w)(t)
+ (), Fows(t) Fy — a [y () (@ — a) @7 )] wa() F
— a  (Ya(@) Fb,)ws(t) Fy — [Y (D) (fF?)sx]iws(@) Fr +{-- -}, =0. (2.38)
From the proof of Lemma 2.7 and (25}t is clear that

/ WD ) 2dr < C. (2.39)
0

Moreover, we notice that
a Y1 () Fib,),wa(t) Fy = O)[b,wa(t) FZ + (w2 + W) wa(t) FF],
a [y @) (a — a))(@ )] ws() F, = OQ) (@ — ar) (WF + W) wa(t) F,
[w(ﬁ))(sz)xx]tU)S(t)Ft
= O W, (fF?)xwa(t) F; — Y () (fF?)cws(t) Fy.
Now we can use a similar argument as used in deriving the estimate (2.29) to obtain
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wa() || Fi(0)]1? +/O w3(1) || Fu ()P dr < C, (2.40)

which is the first part of (2.36).
Let us turn to the second part of (2.36). For this purpose, we multiply (2.37) by
wq(t) Fyy. After similar calculations as before, by virtue of (2.40) we have

wa®) | Fu (O + fo wa(O) || Fpr(0) 2 d

t +00
< C(1+ f / wa(r)(fFHZ, dxd‘l:). (2.41)
0 Jo

Now, a similar argument as used in deriving (2.35) yields
t
wa(®) || Fu () ? + / wa(0) || Fiex (D17 dT
0

t
<C+C [ w@IFIE R dr. (242
0
Then the Gronwall inequality implies

wa(0) || Fix ()% + /Ot wa(7T) | Frx(T) |2 dT < C. (2.43)
System (2.36) is then given by (2.40) and (2.43). O
CoroLLARY 2.9. The solutionF to (2.5) obtained in Theorem 2.6 satisfies
wa | Fex> < C, [ Faxllze < Clwa®wa()) ™4,
[FellZo < Cwa(t) ™ 2wa(r)™Y2.
Proof. We see from (2.5) that
Fix = OO)(F, + (a — a)W; + Fib, + F2 + FF, b, + (s, + W) F?).  (2.44)
Taking theL?-norm in (2.44), we have
w3 Focll? < Cws@) (112 + (@ — a)i,||? + || Fi, |2 + |1 F22
+ I FFb |12 + | (ex + 02 F?1?)

< CA+wsFZ)?)

< CA+ waOF P Fell? + 1 Fell?))

< C+ Cws®)|IF I Fecl?,

which implies that
wa(®) || Feel® < C.

Then, we have from the Sobolev inequality that
IFF % < CIF Fexl

< Cws(t) Y2wy(r) ™2
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Finally, we take thd.>°-norm in (2.44) to obtain
IFexllze < C(IIF Nl + ll(@ — aD)ib, = + [ Fellie
+ | FFaby || oo + | F? (e + 02| 1)
< C(ws(Hwa(r)) 74

Theorem 2.2 then follows from Theorem 2.6, Lemmas 2.7-2.8, and Corol-
lary 2.9. O

Itis now easy to obtain the solutignof (2.4) and then the unique smooth solution
w of (2.2). By definingt = a~*(x)w andii = —(w~"),, we obtain the solution
of (1.8). Hence, with the help of (2.26), we have the following theorem.

THEOREM 1. Assume thafig — v, € L% There existo > 0 and § such that,
if vy —v_| <8 and|a(x)vg(x) — w(0, x)||% < o, then problem(1.8) has a
unique global classical solutio(v, i, s) satisfying

5 — 0l < CA+1)"Y2(1+ logL+ )%,
i — il o < CL+ )21+ log(L+ 1)) P2,

whered = a~X(x)w andi = —(w~"), and whereg; > 1 and B, > 1 are
constants.

3. Convergence to Similarity Solutions

In this section we shall prove the global existence and large time behavior for so-
lutions of the problem (P1). Since the result§ox, ¢) is clear, we deal only with
(v, u)(x, t) in this section.

Let (v, i, s(x)) be the solution of (1.8) obtained in Theorem 1. As in [24], we
introduce the auxiliary functiotw, i2)(x, r) as follows:

{ O(x,1) = (uo(0_uy)mo(x)e™, 3.1)
i(x, 1) = [(uo(0) — uy) [ mo(&) d& +uy e, '
wherem is a smooth function satisfying
+00
/ mo(x)dx =1, suppmo(x) C RT.
0
It is easy to see thdb, i) satisfies
‘6[ - ﬁx = O,
ﬁr - —ﬁ,
(3.2)

(127 i}’ ’2){)(0’ t) = (uo(o)e_t’ 07 O)?

(D, i) (+00, 1) = (0, ure™).
Takev, = v — v — v andu, = u — it — u. It follows from (1.2) and (1.8) that
{ Vet — Uex = Os

o . . (3.3)
Uer + [P(U + v+ v, S) - p(va S)]x = —U,+ P(Ua S)xt-
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Define 00
y=-— f () dE. (3.4)

which satisfies the nonlinear wave equation
Yu +[p(yx + 0+ 0,5) = p(, )]s + ¥ = p@, 5)u, x€RT,
yx(0,7) =0,
y(x,0) = yo(x) = —fxoo(vo(é) —19(£,0) — 0(£, 0)) d&,
yi(x,0) = y1(x) = uo(x) — i(x,0) —i(x, 0),

sincey, = v, andy, = u,. The main result of this section is the following.

(3.5)

THEOREM 3.1. There exists somé&, > 0 such that, if0 < § < §p and
lvollgs + llyillgz + lve —v_] < 8, then(3.5) has a uniqgue smooth solution

y satisfying
t
Iy (O)1125 + 11y () 12,2 +/ I(yes YD)l g2 dr < C8%
0

Moreover,
A+ Dy GO+ A+ D2y nlI? < C (3.6)
and

1y Dllze < CA+ D™y Dlle < CA+ 1~ (3.7)
The combination of Theorem 3.1 and Theorem 2.2 gives the following theorem.

THEOREM 2. Lety be the solution of(3.5)in Theorem 3.1 and letv, &, s) be
the solution of(1.8) obtained in Theorem 1. Then, by definiagu, s)(x, ) =
(0 +v+y., a+u+y;,s), we obtain the unique global classical soluti@n u, s)
of (Pl)that satisfies

v —0llze < CA+0)"Y* and |lu — il < CA+1)">*

as well as
v — 0l < CA+1)"Y2(1+logL + )%,

lu — itll Lo < CA+ 1)L+ log(l+ 1)F2.
Herew, i, B1, B2 are the same as in Theorem 1.

We now prove Theorem 3.1. First of all, we have the following.

THEOREM 3.2. There exists a5g > O such that, if0 < § < &g and
lvollgs + lyillgz + lve — v—| < 8, then(3.5) has a unique global smooth solu-
tion satisfying

Iy + 13020 + /0 1O y) (@l 2 dr < €82 (3.8)

and
lli_[go(lly(n Dl + 1y, ) G, )l ga) = 0.
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Proof. It is sufficient to prove the uniform estimates (3.8) under the a priori
assumption
IyOIs + lyill%. <e

for & > 0 suitably small.
Multiplying (3.5); by y + 2y,, we have

7+ 392+ v +2q], + y2 = po@ + 0 (yx + 0). ) (v + Dyx)
= O (0:(yZ + D)% + 0:(|y:| + 10D) + p@, )ar (Y + 290) + {-+ )2, (3.9)

whered € [0,1] andg = — " [ p(5 + &, 5) — p(, )] dE.
We now observe the followmg estimates:
g =0+ 0% |0yl = Cla)d? + a1y?,
{ t 00O A o0 A (310)
Jo fo 0%+ [o° 0%dx < C8%

t o0
f / (3 + 92 + 8,y + [9])) dx dt
0 0

t
§C82+C8/
0

o0
/ yZdxdr, (3.11)
0

t [ee]
‘/ / p(ﬁrs)xt(y‘i_z)ﬁ)dxdl'
0 JO

= 061/ / (yZ2+ yP)dxdr + C(a1)8®.  (3.12)

By choosingxy, ¢, ands suitably small, we may integrate (3.9) over [Px [0, co)
and thus obtain

(s Yy @O + /0 (e, Y (D)2 dT < C82. (3.13)

Here, the boundary conditionsat= 0 are given as

0=y, =p@,8); =p@+0+y:,8) = p(0,5) = yix = Yix = --- . (3.14)
We now differentiate (3.5) in and arrive at
Yx + [P0+ 0+ yx, 5) — p(0, )] ax + Ve = PO, §)rax- (3.15)

Then, we multiply (3.15) by, + 2y,,; after a long but routine computation (see
[19] or our previous calculation), we have

t
(s Yews Yerd DI + /0 (e Yer) (@12 dr < €82, (3.16)
Repeating this procedure, we can easily obtain the third-order estimates and so
complete the proof of Theorem 3.2. O

We now investigate the problem of the decay rate. We will follow the approach
introduced in [21] for the isentropic case. However, since the entr@pyis not
constant here, some modifications are needed.
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LemmMma 3.3. Lety be the solution 0o{3.5)in Theorem 3.2 and lét = p, (7, 5)y,.
Then

1
D IA+ OV 0P+ @+ f Pty 017 < C.
k=0

Proof. We first multiply (3.5) by (1+ ¢)y,; after some calculations, this yields

[(1+ t)(%y,z +61>} + @+ 0y =g+ A+ DU[p@ + D+ i, 8) — p(B,9)]

Vx+0 _ ~ 1 )
[pv(v +&,5) — pu(v, S)] d§ — Eyt

= A+ 0y p@, s +{--}e. (3.17)
Integrating (3.17) over [@] x (O, +00), with the help of (3.8) we obtain

+ 1+ t)f)t/

0

<1+r>||<yx,yt><t>||2+f0<1+r)||y,(r)||2dr

5c¥+c/]magﬂma+ﬂdr
< Cs2. i (3.18)
Then we note that
p@ 44 y0) — p(@,9) = pu(@, ) (e + D) + Fi(yy. 0,5, 8) (e + 0% (3.19)
Differentiating (3.5) in ¢, we have
Vet + (o (@, )y 5t + e = P, 8) et = (FL(yx +0)2)0e = (pu (B, 5)0)ar. (3.20)
Let us multiply (3.20) by1+¢)y, and(1+1)y,,. Then we deduce (respectively)
[@A+ Dy + 332)], = Po(@, ) A+ 032
— @405 = 532 = yiyu — pui L+ D) yeyir

=1+ l‘)y,(p(ﬁ, $)xee — (Fa(yx + ﬁ2)xt = pu(0, S)IA))xt) +{-} (3.21)
and

[3A+ 002 = puy)], + A+ 0y2 — 22+ 1py2
+ 3@+ D putiyE + A+ Dy (e pouis
= @+ 0y (p@, )xrr — (Folyx + 0%)ur — po(@.9)0)w) +{--}. (3.22)
Using (3.8) and (3.18) and integratingxg(3.22)+ (3.21) one has

(1+t)||(yn,ytx)||2+/0(1+r>||(y,,,y,x>(r)||2dr

<C8%+C

r oo
/ f A+ 1)y + ynx)(Fl)’f)z dxdr|. (3.23)
0 JO
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We see that

t —+00
/ / L+ 1)y (F1y?), dx dt
0 0

t 400
< c/ / A+ D) (yxly2 + [5:y2yn]) dx dr
0 0

t +00
<C8?+Cs / / 1+ 1)y2 dx dt (3.24)
0 JO

and

t +o0o
/ / A4 Oy (F1y?), dx de
0 0

t
< C8% + CS((1+ Dllye®I? + / a+ f)llymllzdf) (3.25)
0
In view of the smallness df, from (3.23)—(3.25) we conclude that
t
L+ D100 3 3O + [ A+ DIy @I de <€ (3:26)
0

Now we multiply (3.20) by(1+ )2y, and(d + ¢)2y,, and then repeat the previous
calculations; this yields

A+ D2 ey Yers ye) DI + /0 A+ O, y)(@PdT < €. (3.27)

We turn now to estimating = p, (7, s)y, and the higher-order derivatives. It
is easy to see from the preceding estimates and equations 8cbJ3.19) that

A+ 0%V, vx>(r)||2+/ A+ D)V, V(D) )|?dr < C. (3.28)
0

Now differentiate (3.20) with respect toand repeat the previous arguments to
obtain

t
QA4 D2 Drtws Yerr) O + / A4+ O eres ) @ 2dr < €. (3.29)
0
Finally, multiply (3.20) by(1+ #)3y,,; this yields
t
(1+t>3||(yn,ytx)(r>||2+/ A+ 03y (o)l dr
0

t +o00
<C+C / f A+ )3y (F1y?), dx dz|. (3.30)
0 JO

The last term in (3.30) can be estimated as follows:
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t p4oo
/ / 1+ 77)3)’ttx(Flyxz)t dx dr
0 0

t —+00
< c’f / [OM A+ 1)%y2 ], dx d
0 0

t 400
+ C/ / (A4 D22 + A4 1)%yul?) dx de
0 0

t +o00
+C / / A+ )3y, (F30,V?), dx dt
0 0

t “+00
< Clan) + cf f A+ 1)3yulPdx dr
0 0

t
+ C8A+ )3y (O1? + a1 / A+ )3y lP dr, (3.31)
0

whereF3V? = Fy;y2. By choosingy; suitably small, we conclude from (3.30)—
(3.31) that

Lt 0% s y) O + fo A+ 03yulPdr < C. (3.32)

Here we have used the following estimates:
t +o00 t +o00
/ f A+ 13|y Pdx dr < / / A+ )% 4+ A+ 1)%y2)dxdr
0 JO 0 JO

<C+cC /0t<1+ OelPUyell + 1y I?) de
<C.
Lemma 3.3 follows from (3.18), (3.27), (3.28), and (3.29). O
Lemma 3.3 and the interpolation inequality together imply that
1y Dlle < CA+ Dy Dllee < CA+D™Y4 (3.33)

where
lyeCoOlle < CIVE D]l
<C@A+n~¥4

This completes the proof of Theorem 3.1. O

4. Convergence to Stationary Solutions

The aim of this section is to apply essentially the same technique used in Sections
2 and 3 to deal with the hyperbolic problem (P2) and the diffusive problem (1.9).
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Similarly to Section 2, the problem (1.9) is equivalent to
w; +a(x)(w¥),, =0, xeRT,
{ wy(0,7) =0, 4.1)
w(x, 0) = wo(x) > wy asx — oo.
The definition ofw anda(x) can be found in Section 2. Settigg= w — w,, we
have
¢ +a(X) by +a(x)(fi(p)¢D)x =0, xeRT,
¢.(0,1) =0, 4.2)
#(x,0) = ¢o(x) = wo(x) — wy,
whereb = yw "™ and f1¢?2 = (w, + ¢)™ = w,” — b¢. Observe that if
¢o(x) € L* then we can use the same argument as in Lemma 2.3 to prove
¢, Dlir < Cligollz- (4.3)
The same approach as used in Section 2 gives the following results.
THEOREM 4.1. Suppose thapo(x) andsq(x) are smooth functions such thag €

H? N LY. There exists som& such that, if0 < 8§ < 8o and [|¢ollz2 < 8, then
(4.2)has a unique global smooth solutigrx, #) satisfying

2 ;3
ij+1<t)||ag¢<-,r)||2+/ D w9, )| dr < C.
j=1

=0 0 =

By definingvi(x, 1) = aw(x, 1) = a Xw, + ¢ (x, 1)), us(x, 1) = —p(vs, $)s,
andv, = a 1w, , we obtain the unique global smooth solution of probl@rd),
(v1, ua, ), satisfying

v1 — Vil < CL+1)"Y2(1+ logL+ )%,
luallze < CA+1)"H L+ logd+ 1))P2.

Here the constantg; and 8, are the same as in Theorem 1.

Define the auxiliary functioriv,, i1;) by
(U1, ) (x, 1) = <M+ moe™" uje™ / mo(§) d§'>, (4.4)
0
wherem(x) is the same as in Section 3. Settifhg- —fxoo(v —v1—01)(&, 1) dE
then yields
ytt + [p(vl + f)l+ yX1 S) - p(”z: S)])C + S}f == p(vlv s)x[v X € RJF»
y(0,1) =0,
V(x,0) = yo(x) = —ffo(vo(é) —v1(§,0) — 11(¢, 0)) d§,

Yi(x, 0) = ya(x) = uo(x) — us(x, 0) — ii(x, 0).
Thus, similarly to Section 3, one can easily prove the following theorem.

(4.5)
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TueoreM 4.2.  There exists @ such that, if0 < § < 8o and [|Foll3 + [|71/13 <
82, then(4.5) has a unique smooth solutignsatisfying

1

D LA+ HIVAC, DI + A+ D205 DIl < €, (4.6)
k=0

with V1 = p,(vy, 5)y, and
15:C, Dl < CA+ D4 15 Dlle < CA+ 17 (4.7)
With the aid of Theorems 4.1and 4.2, it is now easy to obtain the following results.

THEOREM 4.3. Lety be the solution 0f4.7)in Theorem 4.2 and Iy, u1, s) be
the solution of(1.9) obtained in Theorem 4.1. Then, by definingu, s)(x, t) =
(v1 + U1 + ¥x, u1 + 41 + ¥, s), we obtain the unique global classical solution
(v, u, s) of (P2)that satisfies

lv—villze < CA+0)"¥* and fu — ugllp~ < CL+1)~*
as well as

v — bl < CA+1)Y2(L+logL+ 1)),
lullze < CA+ 1)L+ log(L+ 1))P2.

ReEmMaRK. We note thatw = w, is a stationary solution of the equation (4,1)

and thus(v, iZ, s) = (a w4, 0, s(x)) is the stationary solution of system (1.2).
Hence, by choosing suitable initial datay, 1o, so), one can derive the solution
of (P2), (v, u, s), converging to(v,, uz, s) with faster rates. More precisely, we
have the following theorem.

THEOREM 4.4. Assume thato—v, € L% Letz(x, 1) = —[“(v—0—101) (&, 1) d&,

z0 = (x,0), andz; = ug — u1(x, 0). There exists somk > 0 such that, if0 <

8 < 8pand|zollgs + llz1llz2 < 8, then(P2)has a unique global smooth solution
(v, u, s) such that

lv—dllze < CA+0)"¥4  ullze < CA+1)Y
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