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1. Introduction

In 1-dimensional porous media, the motion of compressible adiabatic flow can be
modeled by the compressible Euler equations with frictional damping terms, say,
the following balance laws:

vt − ux = 0,

ut + p(v, s)x = −αu, α > 0,(
e(v, s)+ 1

2u
2
)
t
+ (pu)x = −αu2,

(1.1)

under Lagrangian coordinates. For smooth solutions, the system(1.1) isequivalent
to 

vt − ux = 0,

ut + p(v, s)x = −αu, α > 0,

st = 0.

(1.2)

Here,v denotes the specific volume,u is the velocity,s stands for entropy,p de-
notes the gas pressure withpv(v, s) < 0 for v > 0, ande is the specific internal
energy. For sake of simplicity, we assume thatα = 1 andp(v, s) = (γ −1)v−γes
with γ > 1.

In the case of isentropic flow wheres = const., (1.2) takes the form{
vt − ux = 0,

ut + p(v)x = −u.
(1.3)

In [5], Hsiao and Liu proved that the large time behavior of the solutions of the
Cauchy problem to (1.3) were captured by those of Darcy’s law:{

vt = −p(v)xx,
u = −p(v)x.

(1.4)

The better convergence rates were obtained in [21], [22], and [23]. To under-
stand the boundary effects, the system (1.3) onR+ = (0,∞) with different kinds
of boundary conditions were studied in [16] and [24], where the corresponding
asymptotic behavior of solutions and the relation to the nonlinear diffusion waves
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of (1.4) were obtained. For more references on this topic, we refer to [4] and [6]
for smooth solutions and to [1; 4; 8; 13; 14; 15; 17; 18; 20; 25] for weak solutions.

For the adiabatic flow wheres 6= const., much less is known. The global ex-
istence of smooth solutions to the Cauchy problem has been proved in [11] and
[26] for small initial data. The problem of large time behavior of these solutions
is known only for some particular initial data; see [7], [12], and [19]. However, the
initial boundary value problem for (1.2) on bounded domain with fixed boundary
conditions has been understood very well in [9; 10] by the combination of charac-
teristic analysis and the energy method. As far as we know, there is not any work
on the initial boundary value problems onR+ for the full system (1.2).

In this paper, we consider the initial boundary value problems of (1.2) onR+
with the initial data

(v, u, s)(x,0) = (v0, u0, s0)(x)→ (v+, u+, s+), v+ > 0, asx →∞, (1.5)

and boundary conditions

v(0, t) = v0(0) = v− > 0 (1.6)

or
u(0, t) = 0. (1.7)

From now on, we will denote by (P1) the problem (1.2), (1.5), and (1.6) and by (P2)
the problem (1.2), (1.5), and (1.7). We shall study the global existence and large
time behavior of the solutions for these two problems and their related diffusive
problems:

ṽt = −p(ṽ, s)xx,
ũ = −p(ṽ, s)x, x ∈R+,
st = 0,

ṽ(0, t) = ṽ0(0) = v−,
(ṽ, s)(x,0) = (ṽ0, s0)(x)→ (v+, s+), v+ > 0, asx →∞;

(1.8)



ṽt = −p(ṽ, s)xx,
u = −p(ṽ, s)x, x ∈R+,
st = 0,

p(ṽ, s)x(0, t) = 0,

(ṽ, s)(x,0) = (ṽ0, s0)(x)→ (v+, s+), v+ > 0, asx →∞.

(1.9)

The nonlinear diffusive phenomena created by a damping mechanism with bound-
ary effects is expected. In fact, we will prove that the solutions of (P1) and (P2)
behave time-asymptotically as those of (1.8) and (1.9), respectively. Moreover, the
large time asymptotic states are given by stationary solutions or similarity func-
tions, depending on the boundary conditions.

Our results here can be viewed as the generalization of [24] for the adiabatic
case. However, the results of [24] are based strongly on the knowledge of the
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isentropic porous media equation (1.4)1, which is well known (see [2; 3]). Essen-
tial difficulties occur in our problems since the theory for adiabatic porous media
equations is unknown. The nonconstant entropys(x) makes the diffusive prob-
lems (1.8) and (1.9) highly nontrivial. In Section 2, we treat the problem (1.8) by
the new approach introduced in [19] for the Cauchy problem with some modifi-
cations; see Lemmas 2.6–2.9. Our key elements are two. First, we introduce a
new dependent variablew (see (2.2)) and consider the problems forw rather than
the specific volume as in the isentropic case or the pressure as in [9; 10]; with the
help of our new dependent variablew, we can control the total excessive mass of
the problem near the desired diffusive profile by theL1 technique. Then we can
combine theL1 technique with the weighted energy method to obtain the desired
results for the solutions of (1.8). In Section 3, the global existence and large time
behavior as well as the convergence rate for the solutions to (P1) are established
by our results in Section 2 and the approach of [24] with some modifications; see
Lemma 3.3. In Section 4, we apply the same approaches used in Sections 2 and 3
to the problem (1.9) and (P2).

In general, the initial boundary value problems are harder than Cauchy prob-
lems of hyperbolic systems. Our results are somewhat amazing in that the initial
boundary value problem of (1.2) onR+ can be solved completely while the Cauchy
problem remains open.

Notation. We denote byC the generic constants independent oft. For func-
tion spaces,Lq = Lq(R+) (1≤ q ≤ ∞) is a usual Lebesgue integrable function
space with the norm‖ · ‖Lq . TheL2-norm onR+ is simply denoted by‖ · ‖. By
H k we denote the standard Sobolev space onR+; its norm is‖ · ‖H k andH 0 =
L2. We will also use the norm

‖(g1, . . . , gn)‖H k =
n∑
i=1

‖gi‖H k .

2. Diffusive Problem (1.8)

This section is devoted to study the diffusive problem (1.8). Clearly one has
s(x, t) = s0(x) ≡ s(x) for t > 0, so it is sufficient to solve the following
problem: 

ṽt = −p(ṽ, s)xx, x ∈R+,

ṽ(0, t) = v−,
ṽ(x,0) = ṽ0(x), ṽ0(+∞) = v+ > 0.

(2.1)

Problem (2.1) is equivalent to the following porous media–type system of equa-
tions: 

wt + a(x)(w−γ )xx = 0, x ∈R+,

w(0, t) = w−,
w(x,0) = w0(x) = a(x)ṽ0(x),

w(+∞) = w+ > 0,

(2.2)
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wherea(x) = (γ − 1)−1/γe−(1/γ )s(x), w ≡ a(x)ṽ = p(ṽ, s)−1/γ , andw− =
a(0)v−.

Now let a1 = (γ − 1)−1/γe−(1/γ )s+ and w̃(η)
(
whereη = x/

√
1+ t ) be the

unique similarity solution of{
wt + a1(w

−γ )xx = 0,

w(0, t) = w−, w(+∞, t) = w+. (2.3)

Some properties of̃w(η) are listed in the following lemma (see [2; 3]).

Lemma 2.1. For i + j ≥ 1 andi ≥ 0, j ≥ 0, we have
|w̃(η)− w+| + |w̃ ′(η)| + |w̃ ′′(η)| ≤ C|w+ − w−|exp{−C2η

2},
w̃x = (1+ t)−1/2w̃ ′(η), w̃t = − 1

2(1+ t)−1ηw̃ ′(η),

‖Di
tD

j
x w̃(·, t)‖2 ≤ C|w+ − w−|2(1+ t)−(2i+j)+1/2,

‖Di
tD

j
x w̃(·, t)‖L∞ ≤ C|w+ − w−|2(1+ t)−(i+j/2).

We now solve problem (2.2) by comparingw(x, t) with w̃(η).
Letφ = w− w̃; then, from (2.2) and (2.3), we have the following system forφ:
φt + a(x)(ψ(w̃)φ)xx + (a − a1)(w̃

−γ )xx + a(x)(g(φ, w̃)φ2)xx = 0,

φ(0, t) = 0,

φ(x,0) = φ0(x) = w0(x)− w̃(x,0), x ∈R+,

(2.4)

where we have set

ψ(w̃) = −γw̃−(γ+1) and g(φ, w̃)φ2 = (φ + w̃)−γ − w̃−γ − ψ(w̃)φ.
Let F = −ψ(w̃)φ; then the corresponding problem onF is given by

Ft + a(x)ψ(w̃)Fxx − ψ(w̃)(a − a1)(w̃
−γ )xx

− ψ1(w̃)Fw̃t − aψ(w̃)(fF 2)xx = 0,

F(0, t) = 0,

F(x,0) = F0(x) = −ψ(w̃(x,0))φ0(x), x ∈R+,

(2.5)

where
−ψ1(w̃)F = ψ ′(w̃)φ and fF 2 = gφ2.

Now we define the Banach spaceX(0, t) for all T > 0 by

X(0, t) = {F ∈C 0(0, t;H 2), 0 ≤ t ≤ T },
equipped with the normN 2(t) = sup0≤τ≤t‖F(τ)‖2H 2.

The main result of this section is the following theorem.

Theorem 2.2. Assume thatF0(x) ands(x) = s0(x) are smooth functions such
thatF0 ∈H 2(R+) ∩ L1(R+) andx(s(x)− s+)∈L1(R+). Then there existε0 >

0 and δ > 0 such that, if |w+ − w−| ≤ δ and ‖F0‖H 2 ≤ ε0, then (2.5) has a
unique global smooth solutionF satisfying

2∑
j=0

wj+1(t)‖∂ jxF(·, t)‖2 +
∫ t

0

3∑
j=1

wj(τ)‖∂ jxF(·, τ )‖2 dτ ≤ C, (2.6)
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where the weight functions are defined as

w1(t) = (1+ t)1/2(1+ log(1+ t))−k and wj(t) = (1+ t)j−1w1(t)

for j, k > 1.

The local existence and uniqueness of the solution to (2.5) inX(0, T ) is standard.
From now on, we assume a priori the existence inX(0, T ) for someT > 0.

The followingL1-estimate follows from the standard contraction property of
the porous media–type equation and will play a fundamental role in the rest of this
section.

Lemma 2.3. Under the conditions of Theorem 2.2, if the solution exists in
X(0, T ) then, for0 ≤ t ≤ T, the following estimate holds:

‖φ(·, t)‖L1 ≤ C1‖F(·, t)‖L1 ≤ C2(‖φ0‖L1 + δ). (2.7)

Proof. We present here a formal argument that can easily be made rigorous by
using any sequence approximating the sign function and then passing to the limit
by means of the Lebesgue dominated convergence theorem. Observe thath =
sign(φ) = sign(F ) andh(0, t) = 0. Let us multiply the equation (2.4)1 by a−1h;
then, by integrating over [0, t ] × (0,+∞), it follows that∫ +∞

0
a−1|φ|(x, t) dx +

∫ t

0

∫ +∞
0

sign′(F )F 2
x dx dτ

≤ C
∫ +∞

0
a−1|φ0|(x) dx + C

∣∣∣∣∫ t

0

∫ +∞
0

(a − a1)w̃t sign(F ) dx dτ

∣∣∣∣
+
∣∣∣∣∫ t

0

∫ +∞
0

(fF 2)xFx sign′(F ) dx dτ
∣∣∣∣

≤ C(‖φ0‖L1 + δ). (2.8)

Here, we have used the following facts:∣∣∣∣∫ t

0

∫ +∞
0

(a − a1)w̃t sign(F ) dx dτ

∣∣∣∣
≤ C

∫ t

0

∫ +∞
0
|s − s+||w̃t | dx dτ

≤ C
∫ t

0

∫ +∞
0

(1+ t)−3/2|x(s − s+)||w̃ ′(η)| dx dτ
≤ Cδ; (2.9)∫ t

0

∫ +∞
0

(fF 2)xFx sign′(F ) dx dτ

=
∫ t

0

∫ +∞
0

Fx(2fFx + fFFFx + fw̃Fw̃x)Fδ{F=0} dx dτ

= 0. (2.10)

Hence, (2.8) gives the proof of (2.7).
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With the help of Lemma 2.3, we can make the energy estimates onF.

Lemma 2.4. Under the conditions in Theorem 2.2, suppose thatN(T ) ≤ ε for
some suitable small constantε > 0. Then, for0 ≤ t ≤ T, we have that

‖F(·, t)‖2 +
∫ t

0
‖Fx(·, τ )‖2 dτ ≤ C(‖F0‖2 + δ). (2.11)

Proof. Multiplying the equation (2.4)1 by a−1F and then integrating the result
over [0, t ] × (0,+∞) yields∫ +∞

0

1

2
a−1Fφ(x, t) dx +

∫ t

0

∫ +∞
0

F 2
x dx dτ

≤
∫ +∞

0

1

2
a−1F0φ0 dx +

∣∣∣∣∫ t

0

∫ +∞
0

a−1(a − a1)(w̃
−γ )xxF dx dτ

∣∣∣∣
+
∣∣∣∣∫ t

0

∫ +∞
0

1

2
a−1ψ2(w̃)F

2w̃t dx dτ

∣∣∣∣+ ∣∣∣∣∫ t

0

∫ +∞
0

(fF 2)xFx dx dτ

∣∣∣∣
≡
∫ +∞

0

1

2
a−1F0φ0 dx + I1+ I2 + I3, (2.12)

with ψ2(w̃)F
2 = φ2ψ ′(w̃).

We estimateI1, I2, andI3 step-by-step as follows:

I1=
∣∣∣∣∫ t

0

∫ +∞
0

a−1(a − a1)(w̃)
−γ
xx F dx dτ

∣∣∣∣
≤ C

∣∣∣∣∫ t

0

∫ +∞
0

(s − s̄ )Fw̃t dx dτ
∣∣∣∣

≤ Cδε
∫ t

0
(1+ τ)−3/2‖x(s − s̄ )‖L1 dτ

≤ Cδε; (2.13)

I2 =
∣∣∣∣∫ t

0

∫ +∞
0

1

2
a−1ψ2(w̃)F

2w̃t dx dτ

∣∣∣∣
≤ C

∫ t

0
‖F‖L∞‖w̃t‖L∞‖F‖L1 dx dτ

≤ Cδ
∫ t

0
‖F‖1/2‖Fx‖1/2(1+ τ)−1dτ

≤ Cδ
(∫ t

0
‖F‖2‖Fx‖2 dτ +

∫ t

0
(1+ τ)−4/3 dτ

)
≤ Cδ

(
1+ ε2

∫ t

0
‖Fx‖2 dτ

)
; (2.14)



Compressible Adiabatic Flow through Porous Media 525

I3 =
∣∣∣∣∫ t

0

∫ +∞
0

(fF 2)xFx dx dτ

∣∣∣∣
≤ C

∫ t

0

∫ +∞
0

(|F | + |F 2|)F 2
x + |F 2w̃xFx | dx dτ

≤
(

1

2
+ Cε

)∫ t

0
‖Fx‖2 dτ + Cδ2

∫ t

0
‖F‖4L∞ dτ

≤
(

1

2
+ Cε

)∫ t

0
‖Fx‖2 dτ + Cδ2

∫ t

0
‖F‖2‖Fx‖2 dτ

≤
(

1

2
+ Cε

)∫ t

0
‖Fx‖2 dτ. (2.15)

Owing to the smallness ofδ andε, we conclude from (2.12)–(2.15) that

‖F(·, t)‖2 +
∫ t

0
‖Fx(·, τ )‖2 dτ ≤ C(‖F0‖2 + δ), (2.16)

which completes the proof of Lemma 2.4.

For higher-order estimates, we use the problem (2.5) to obtain the following results.

Lemma 2.5. Under the same conditions as in Lemma 2.4, we have

‖(Fx, Ft , Fxx)(·, t)‖2 +
∫ t

0
‖(Fxx, Fxxx, Ftx)(·, τ )‖2 dτ

≤ C(‖F0‖2H 2 + δ). (2.17)

Proof. Let us multiply the equation (2.5)1 by Fxx. Then∫ +∞
0

F 2
x (x, t) dx +

∫ t

0

∫ +∞
0

F 2
xx(x, τ ) dx dτ

≤ C
(
‖F0x‖2 +

∣∣∣∣∫ t

0

∫ +∞
0

w̃tFxx dx dτ

∣∣∣∣
+
∣∣∣∣∫ t

0

∫ +∞
0

(fF 2)xxFxx dx dτ

∣∣∣∣), (2.18)

which implies, with the help of the Cauchy–Schwartz inequality and Lemma 2.1,
that∫ +∞

0
F 2
x (·, t) dx +

∫ t

0

∫ +∞
0

F 2
xx(τ, x) dx dτ

≤ C(‖F0x‖2 + δ2)+ C
∫ t

0

∫ +∞
0

(fF 2)2xx dx dτ. (2.19)

We bound the last term in (2.19) as follows:
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0

∫ +∞
0

(fF 2)2xx dx dτ

≤ C
∫ t

0

∫ +∞
0

(|F | + |Fx | + |wx |)2F 2
x + F 2F 2

xx + F 4(w̃2
xx + w̃4

x ) dx dτ

≤ Cε2δ2 + Cε
∫ t

0

∫ +∞
0

F 2
xx(τ, x) dx dτ. (2.20)

Then, (2.19)–(2.20) and the estimates in Lemma 2.4 give the first part of (2.17).
We now differentiate the equation (2.5)1 in t to obtain

Ftt + aψ(w̃)Fxxt + aψ ′(w̃)w̃tFxx − (ψ(w̃)(a − a1)(w̃
−γ )xx)t

+ (ψ1(w̃)Fw̃t )t − (aψ(w̃)(fF 2)xx)t = 0. (2.21)

Multiplying (2.21) byFt and then integrating over [0, t ] × (0,+∞), we have

‖Ft(·, t)‖2 +
∫ t

0
‖Ftx(·, τ )‖2 dτ ≤ C(‖F0‖2H 2 + δ). (2.22)

The balance of the estimates in (2.17) can be easily proved by differentiating (2.5)
in x.

By the standard continuity argument (see [19]), we now conclude from Lemmas
2.3–2.5 as follows.

Theorem 2.6. Under the conditions of Theorem 2.2, there existε0 > 0 andδ >
0 such that, if‖F0‖H 2 < ε0 and |w+ − w−| ≤ δ, then there is a unique global
classical solutionF(x, t) of (2.5)such that

‖F(t)‖2
H 2 +

∫ t

0
(‖Ft‖2H1 + ‖Fx‖2H 2)(τ ) dτ ≤ C0(‖F0‖2H 2 + δ) (2.23)

for all t > 0 andC0 > 0 independent oft. Furthermore,

lim
t→∞‖F(·, t)‖H1→ 0.

By using the weighted energy method, we can prove the following decay rates.

Lemma 2.7. LetF be the solution to(2.5)obtained in Theorem 2.6. Then

w1(t)‖F(t)‖2 + w2(t)‖Fx(t)‖2

+
∫ t

0

(
w1(τ )‖Fx(τ)‖2 + w2(τ )‖Fxx(τ )‖2

)
dτ ≤ C. (2.24)

Proof. Let us multiply (2.4) bya−1w1(t)F to obtain(
1
2Fφa

−1w1(t)
)
t
+ w1(t)F

2
x − 1

2w
′
1(t)a

−1ψ1(w̃)F
2

= 1
2a
−1w1(t)F

2w̃t − a−1w1(t)(a − a1)F(w̃
−γ )xx + w1(t)Fx(fF

2)x + {· · ·}x.
When integrated on [0, t ] × (0,+∞), this yields
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w1(t)‖F(·, t)‖2 +
∫ t

0
w1(t)‖Fx(τ)‖2 dτ

≤ C1

(
‖F0‖2 +

∣∣∣∣∫ t

0

∫ +∞
0

w ′1(τ )F
2 dx dτ

∣∣∣∣
+
∣∣∣∣∫ t

0

∫ +∞
0

w1(τ )F
2w̃t dx dτ

∣∣∣∣
+
∣∣∣∣∫ t

0

∫ +∞
0

w1(τ )w̃tF(a − a1) dx dτ

∣∣∣∣
+
∣∣∣∣∫ t

0

∫ +∞
0

w1(τ )(fF
2)2x dx dτ

∣∣∣∣). (2.25)

Here{· · ·}x denotes the term that does not need to be computed explicitly, since it
will disappear by integrating inx. Observe that the following inequality onF,

‖F‖L∞ ≤ C‖Fx‖2/3, (2.26)

holds, since

‖F‖L∞ ≤ C‖F‖1/2‖Fx‖1/2

≤ C‖F‖1/4L∞‖Fx‖1/2‖F‖1/4
L1 .

We now have the following estimates:∫ t

0

∫ +∞
0

(|w ′1(τ )F 2| + |w1(τ )w̃t(a − a1)F | + |w1(τ )w̃tF
2|) dx dτ

≤ C
∫ t

0
(1+ τ)−1w1(τ )‖F‖L∞ dτ

≤ C
∫ t

0
(1+ τ)−1w1(τ )‖Fx(τ)‖2/3 dτ

≤ C + 1

2C1

∫ t

0
w1(τ )‖Fx(τ)‖2 dτ ; (2.27)

∫ t

0

∫ +∞
0

w1(τ )(fF
2)2x dx dτ

≤ Cε
∫ t

0
w1(τ )‖Fx(τ)‖2 dτ + Cε

∫ t

0
(1+ τ)−1w1(τ )‖F‖L∞ dτ

≤ Cε + Cε
∫ t

0
w1(τ )‖Fx(τ)‖2 dτ. (2.28)

Here we have used

|w ′i(t)| ≤ C(1+ t)−1wi(t) for i = 1,2, . . . .
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Hence, by the smallness ofε, we conclude from (2.25)–(2.28) that

w1(t)‖F(·, t)‖2 +
∫ t

0
w1(t)‖Fx(τ)‖2 dτ ≤ C. (2.29)

Multiplying (2.5) byw2(t)Fxx, we obtain(
1
2w2(t)F

2
x

)
t
− aψ(w̃)w2(t)F

2
xx − 1

2w
′
2(t)F

2
x − ψ1(w̃)FFxxw̃tw2(t)

= −w2(t)ψ(w̃)(a − a1)(w̃
−γ )xxFxx − aψ(w̃)(fF 2)xxFxxw2(t)+ {· · ·}x.

Then one has

w2(t)‖Fx(·, t)‖2 +
∫ t

0
w2(τ )‖Fxx(·, τ )‖2 dτ

≤ C + C
(∣∣∣∣∫ t

0

∫ +∞
0

w̃2
t w2(τ )(a − a1)

2 dx dτ

∣∣∣∣
+
∣∣∣∣∫ t

0

∫ +∞
0

F 2w̃2
t w2(τ ) dx dτ

∣∣∣∣
+
∫ t

0

∫ +∞
0

w2(τ )(fF
2)2xx dx dτ

)
. (2.30)

Since∣∣∣∣∫ t

0

∫ +∞
0

w̃2
t w2(τ )(a − a1)

2 dx dτ

∣∣∣∣+ ∣∣∣∣∫ t

0

∫ +∞
0

F 2w̃2
t w2(τ ) dx dτ

∣∣∣∣
≤ Cδ2

∫ t

0
(1+ τ)−3w2(τ ) dτ + Cδ2

∫ t

0
(1+ τ)−1w1(τ )‖F‖L∞ dτ

≤ Cδ2 (2.31)

and

(fF 2)xx = (2FFxf + fFF 2Fx + fw̃w̃xF 2)x

= (2fF + fFF 2)Fxx + (2f + 4fFF + fFFF 2)F 2
x

+ (4fw̃F + 2fFw̃F
2)Fxw̃x + (fw̃w̃xx + fw̃w̃w̃2

x )F
2,

it follows that∣∣∣∣∫ t

0

∫ +∞
0

w2(τ )(fF
2)2xx dx dτ

∣∣∣∣
≤ C + Cε

∫ t

0
w2(τ )‖Fxx(·, τ )‖2 dτ + C

∫ t

0

∫ +∞
0

F 4
x w2(τ ) dx dτ (2.32)

and∫ t

0

∫ +∞
0

F 4
x w2(τ ) dx dτ

≤ Cε2
∫ t

0
w2(τ )‖Fxx‖2 dτ + C

∫ t

0
w2(τ )‖Fx(τ)‖2‖Fx(τ)‖2 dτ. (2.33)
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Owing to the smallness ofε, we deduce from (2.30)–(2.33) that

w2(t)‖Fx(t)‖2 +
∫ t

0
w2(τ )‖Fxx(τ )‖2 dτ

≤ C
(

1+
∫ t

0
w2(τ )‖Fx(τ)‖2‖Fx(τ)‖2 dτ

)
. (2.34)

Therefore, Gronwall’s inequality gives

w2(t)‖Fx(t)‖2 +
∫ t

0
w2(τ )‖Fxx(τ )‖2 dτ ≤ C. (2.35)

Hence, (2.29) and (2.35) complete the proof of this lemma.

The following lemma contains the decay rates for the derivatives ofF, which will
be useful in the next section.

Lemma 2.8. The solutionF to (2.5) in Theorem 2.6 satisfies{
w3(t)‖Ft(t)‖2 +

∫ t
0 w3(τ )‖Ftx(τ )‖2 dτ ≤ C,

w4(t)‖Ftx‖2 +
∫ t

0 w4(τ )‖Ftxx(τ )‖2 dτ ≤ C;
(2.36)

‖Ft‖L∞ ≤ Cw3(t)
−1/4w4(t)

−1/4.

Proof. It is sufficient to prove (2.36), since the estimate for‖Ft‖L∞ can be derived
from (2.36) by using the Sobolev inequality.

Let us differentiate (2.5)1 in t; then

Ftt + aψ(w̃)Ftxx + aψ ′(w̃)w̃tFxx − [ψ(w̃)(a − a1)(w̃
−γ )xx ] t

− (ψ1(w̃)Fw̃t )t − [aψ(w̃)(fF 2)xx ] t = 0. (2.37)

Multiplying (2.37) bya−1w3(t)Ft , we obtain(
1
2a
−1w3(t)F

2
t

)
t
− ψ(w̃)w3(t)F

2
tx + 1

2F
2
t ψ(w̃)xxw3(t)− 1

2F
2
t a
−1w ′3(t)

+ ψ ′(w̃)w̃tFxxw3(t)Ft − a−1[ψ(w̃)(a − a1)(w̃
−γ )xx ] tw3(t)Ft

− a−1(ψ1(w̃)Fw̃t )tw3(t)Ft − [ψ(w̃)(fF 2)xx ] tw3(t)Ft + {· · ·}x = 0. (2.38)

From the proof of Lemma 2.7 and (2.5)1, it is clear that∫ t

0
w2(τ )‖Ft(·, τ )‖2 dτ ≤ C. (2.39)

Moreover, we notice that
a−1(ψ1(w̃)Fw̃t )tw3(t)Ft = O(1)[w̃tw3(t)F

2
t + (w̃2

t + w̃tt )w3(t)FFt ],

a−1[ψ(w̃)(a − a1)(w̃
−γ )xx ] tw3(t)Ft = O(1)(a − a1)(w̃

2
t + w̃tt )w3(t)Ft ,

[ψ(w̃)(fF 2)xx ] tw3(t)Ft

= O(1)w̃t(fF 2)xxw3(t)Ft − ψ(w̃)(fF 2)xxtw3(t)Ft .

Now we can use a similar argument as used in deriving the estimate (2.29) to obtain
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w3(t)‖Ft(t)‖2 +
∫ t

0
w3(τ )‖Ftx(τ )‖2 dτ ≤ C, (2.40)

which is the first part of (2.36).
Let us turn to the second part of (2.36). For this purpose, we multiply (2.37) by

w4(t)Ftxx. After similar calculations as before, by virtue of (2.40) we have

w4(t)‖Ftx(t)‖2 +
∫ t

0
w4(τ )‖Ftxx(τ )‖2 dτ

≤ C
(

1+
∫ t

0

∫ +∞
0

w4(τ )(fF
2)2txx dx dτ

)
. (2.41)

Now, a similar argument as used in deriving (2.35) yields

w4(t)‖Ftx(t)‖2 +
∫ t

0
w4(τ )‖Ftxx(τ )‖2 dτ

≤ C + C
∫ t

0
w4(τ )‖Ftx‖2‖Fx‖2 dτ. (2.42)

Then the Gronwall inequality implies

w4(t)‖Ftx(t)‖2 +
∫ t

0
w4(τ )‖Ftxx(τ )‖2 dτ ≤ C. (2.43)

System (2.36) is then given by (2.40) and (2.43).

Corollary 2.9. The solutionF to (2.5)obtained in Theorem 2.6 satisfies

w3(t)‖Fxx‖2 ≤ C, ‖Fxx‖L∞ ≤ C(w3(t)w4(t))
−1/4,

‖Fx‖2L∞ ≤ Cw3(t)
−1/2w2(t)

−1/2.

Proof. We see from (2.5) that

Fxx = O(1)
(
Ft + (a − a1)w̃t + Fw̃t + F 2

x + FFxw̃x + (w̃xx + w̃2
x )F

2
)
. (2.44)

Taking theL2-norm in (2.44), we have

w3(t)‖Fxx‖2 ≤ Cw3(t)
(‖Ft‖2 + ‖(a − a1)w̃t‖2 + ‖Fw̃t‖2 + ‖F 2

x ‖2
+ ‖FFxw̃x‖2 + ‖(w̃xx + w̃2

x )F
2‖2)

≤ C(1+ w3(t)‖F 2
x ‖2)

≤ C(1+ w3(t)‖Fx‖2(‖Fx‖2 + ‖Fxx‖2))
≤ C + Cw3(t)‖Fx‖2‖Fxx‖2,

which implies that
w3(t)‖Fxx‖2 ≤ C.

Then, we have from the Sobolev inequality that

‖Fx‖2L∞ ≤ C‖Fx‖‖Fxx‖
≤ Cw3(t)

−1/2w2(t)
−1/2.
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Finally, we take theL∞-norm in (2.44) to obtain

‖Fxx‖L∞ ≤ C
(‖Ft‖L∞ + ‖(a − a1)w̃t‖L∞ + ‖Fx‖2L∞
+ ‖FFxw̃x‖L∞ + ‖F 2(w̃xx + w̃2

x )‖L∞
)

≤ C(w3(t)w4(t))
−1/4.

Theorem 2.2 then follows from Theorem 2.6, Lemmas 2.7–2.8, and Corol-
lary 2.9.

It is now easy to obtain the solutionφ of (2.4) and then the unique smooth solution
w of (2.2). By definingṽ = a−1(x)w andũ = −(w−γ )x, we obtain the solution
of (1.8). Hence, with the help of (2.26), we have the following theorem.

Theorem 1. Assume that̃v0 − v+ ∈ L1. There existε0 > 0 and δ such that,
if |v+ − v−| ≤ δ and ‖a(x)ṽ0(x) − w̃(0, x)‖2H ≤ ε0, then problem(1.8) has a
unique global classical solution(ṽ, ũ, s) satisfying

‖ṽ − v̄‖L∞ ≤ C(1+ t)−1/2(1+ log(1+ t))β1,

‖ũ− ū‖L∞ ≤ C(1+ t)−1(1+ log(1+ t))β2,

where v̄ = a−1(x)w̃ and ū = −(w̃−γ )x and whereβ1 >
1
3 and β2 >

1
2 are

constants.

3. Convergence to Similarity Solutions

In this section we shall prove the global existence and large time behavior for so-
lutions of the problem (P1). Since the result fors(x, t) is clear, we deal only with
(v, u)(x, t) in this section.

Let (ṽ, ũ, s(x)) be the solution of (1.8) obtained in Theorem 1. As in [24], we
introduce the auxiliary function(v̂, û)(x, t) as follows:{

v̂(x, t) = (u0(0−u+)m0(x)e
−t ,

û(x, t) = [(u0(0)− u+)
∫ +∞
x

m0(ξ) dξ + u+
]
e−t ,

(3.1)

wherem0 is a smooth function satisfying∫ +∞
0

m0(x) dx = 1, suppm0(x) ⊂ R+.

It is easy to see that(v̂, û) satisfies
v̂t − ûx = 0,

ût = −û,
(û, v̂, ûx)(0, t) = (u0(0)e−t ,0,0),
(v̂, û)(+∞, t) = (0, u+e−t ).

(3.2)

Takeve = v − ṽ − v̂ andue = u− ũ− û. It follows from (1.2) and (1.8) that{
vet − uex = 0,

uet + [p(ṽ + v̂ + ve, s)− p(ṽ, s)] x = −ue + p(ṽ, s)xt . (3.3)
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Define

y = −
∫ ∞
x

ve(ξ) dξ, (3.4)

which satisfies the nonlinear wave equation
ytt + [p(yx + ṽ + v̂, s)− p(ṽ, s)] x + yt = p(ṽ, s)xt , x ∈R+,
yx(0, t) = 0,

y(x,0) = y0(x) = −
∫ ∞
x
(v0(ξ)− ṽ0(ξ, 0)− v̂(ξ, 0)) dξ,

yt(x,0) = y1(x) = u0(x)− ũ(x,0)− û(x,0),

(3.5)

sinceyx = ve andyt = ue. The main result of this section is the following.

Theorem 3.1. There exists someδ0 > 0 such that, if 0 < δ < δ0 and
‖y0‖H3 + ‖y1‖H 2 + |v+ − v−| ≤ δ, then (3.5) has a unique smooth solution
y satisfying

‖y(t)‖2
H3 + ‖yt(t)‖2H 2 +

∫ t

0
‖(yx, yt )(τ )‖H 2 dτ ≤ Cδ2.

Moreover,
(1+ t)‖yx(·, t)‖2 + (1+ t)2‖yt(·, t)‖2 ≤ C (3.6)

and

‖yx(·, t)‖L∞ ≤ C(1+ t)−3/4, ‖yt(·, t)‖L∞ ≤ C(1+ t)−5/4. (3.7)

The combination of Theorem 3.1 and Theorem 2.2 gives the following theorem.

Theorem 2. Let y be the solution of(3.5) in Theorem 3.1 and let(ṽ, ũ, s) be
the solution of(1.8) obtained in Theorem 1. Then, by defining(v, u, s)(x, t) =
(ṽ+ v̂+yx, ũ+ û+yt , s),we obtain the unique global classical solution(v, u, s)
of (P1)that satisfies

‖v − ṽ‖L∞ ≤ C(1+ t)−3/4 and ‖u− ũ‖L∞ ≤ C(1+ t)−5/4

as well as

‖v − v̄‖L∞ ≤ C(1+ t)−1/2(1+ log(1+ t))β1,

‖u− ū‖L∞ ≤ C(1+ t)−1(1+ log(1+ t))β2.

Here v̄, ū, β1, β2 are the same as in Theorem 1.

We now prove Theorem 3.1. First of all, we have the following.

Theorem 3.2. There exists aδ0 > 0 such that, if 0 < δ < δ0 and
‖y0‖H3 + ‖y1‖H 2 + |v+ − v−| ≤ δ, then(3.5)has a unique global smooth solu-
tion satisfying

‖y(t)‖2
H3 + ‖yt(t)‖2H 2 +

∫ t

0
‖(yx, yt )(τ )‖H 2 dτ ≤ Cδ2 (3.8)

and
lim
t→∞(‖y(·, t)‖L∞ + ‖(yt , yx)(·, t)‖H1) = 0.
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Proof. It is sufficient to prove the uniform estimates (3.8) under the a priori
assumption

‖y(t)‖2
H3 + ‖yt‖2H 2 ≤ ε

for ε > 0 suitably small.
Multiplying (3.5)1 by y + 2yt , we have[
y2
t + 1

2y
2 + yyt + 2q

]
t
+ y2

t − pv(ṽ + θ(yx + v̂), s)(y2
x + v̂yx)

= O(1)(ṽt(y2
x + v̂)2 + v̂t(|yx | + |v̂|)

)+ p(ṽ, s)xt(y + 2yt )+ {· · ·}x, (3.9)

whereθ ∈ [0,1] andq = −∫ yx+v̂0 [p(ṽ + ξ, s)− p(ṽ, s)] dξ.
We now observe the following estimates:{

q = O(1)(yx + v̂)2, |v̂yx | ≤ C(α1)v̂
2 + α1y

2
x ,∫ t

0

∫ ∞
0 v̂2 + ∫ ∞0 v̂2 dx ≤ Cδ2; (3.10)

∫ t

0

∫ ∞
0

(
ṽt(yx + v̂)2 + v̂t(|yx | + |v̂|)

)
dx dτ

≤ Cδ2 + Cδ
∫ t

0

∫ ∞
0
y2
x dx dτ, (3.11)

∣∣∣∣∫ t

0

∫ ∞
0
p(ṽ, s)xt(y + 2yt ) dx dτ

∣∣∣∣
≤ α1

∫ t

0

∫ ∞
0
(y2
x + y2

t ) dx dτ + C(α1)δ
2. (3.12)

By choosingα1, ε, andδ suitably small, we may integrate (3.9) over [0, t ]×[0,∞)
and thus obtain

‖(y, yt , yx)(t)‖2 +
∫ t

0
‖(yx, yt )(τ )‖2 dτ ≤ Cδ2. (3.13)

Here, the boundary conditions atx = 0 are given as

0= yx = p(ṽ, s)t = p(ṽ + v̂ + yx, s)− p(ṽ, s) = ytx = yttx = · · · . (3.14)

We now differentiate (3.5) inx and arrive at

yttx + [p(ṽ + v̂ + yx, s)− p(ṽ, s)] xx + ytx = p(ṽ, s)txx . (3.15)

Then, we multiply (3.15) byyx + 2ytx; after a long but routine computation (see
[19] or our previous calculation), we have

‖(yx, ytx, yxx)(t)‖2 +
∫ t

0
‖(ytx, yxx)(τ )‖2 dτ ≤ Cδ2. (3.16)

Repeating this procedure, we can easily obtain the third-order estimates and so
complete the proof of Theorem 3.2.

We now investigate the problem of the decay rate. We will follow the approach
introduced in [21] for the isentropic case. However, since the entropys(x) is not
constant here, some modifications are needed.
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Lemma 3.3. Lety be the solution of(3.5)in Theorem 3.2 and letV = pv(ṽ, s)yx.
Then

1∑
k=0

[(1+ t)k+1‖∂kxV(·, t)‖2 + (1+ t)k+2‖∂kxyt(·, t)‖2] ≤ C.

Proof. We first multiply (3.5)1 by (1+ t)yt ; after some calculations, this yields[
(1+ t)

(
1

2
y2
t + q

)]
t

+ (1+ t)y2
t − q + (1+ t)v̂t [p(ṽ + v̂ + yx, s)− p(ṽ, s)]

+ (1+ t)ṽt
∫ yx+v̂

0
[pv(ṽ + ξ, s)− pv(ṽ, s)] dξ − 1

2
y2
t

= (1+ t)ytp(ṽ, s)xt + {· · ·}x. (3.17)

Integrating (3.17) over [0, t ] × (0,+∞), with the help of (3.8) we obtain

(1+ t)‖(yx, yt )(t)‖2 +
∫ t

0
(1+ τ)‖yt(τ )‖2 dτ

≤ Cδ2 + C
∫ t

0
‖p(ṽ, s)xt‖2(1+ τ) dτ

≤ Cδ2. (3.18)

Then we note that

p(ṽ + v̂ + yx)− p(ṽ, s) = pv(ṽ, s)(yx + v̂)+ F1(yx, v̂, ṽ, s)(yx + v̂)2. (3.19)

Differentiating (3.5)1 in t, we have

yttt+ (pv(ṽ, s)yx)xt+ytt = p(ṽ, s)xtt− (F1(yx+ v̂)2)xt− (pv(ṽ, s)v̂)xt . (3.20)

Let us multiply (3.20) by(1+ t)yt and(1+ t)ytt . Then we deduce (respectively)[
(1+ t)(ytytt + 1

2y
2
t

)]
t
− pv(ṽ, s)(1+ t)y2

tx

− (1+ t)y2
t t − 1

2y
2
t − ytytt − pvvṽt(1+ t)yxytx

= (1+ t)yt
(
p(ṽ, s)xtt − (F1(yx + v̂2)xt − pv(ṽ, s)v̂)xt

)+ {· · ·} (3.21)

and[
1
2(1+ t)(y2

t t − pvy2
tx)
]
t
+ (1+ t)y2

t t − 1
2y

2
t t + 1

2pvy
2
tx

+ 1
2(1+ t)pvvṽt y2

tx + (1+ t)ytt(yxpvvṽt )x
= (1+ t)ytt

(
p(ṽ, s)xtt − (F1(yx + v̂2)xt − pv(ṽ, s)v̂)xt

)+ {· · ·}. (3.22)

Using (3.8) and (3.18) and integrating 8× (3.22)+ (3.21), one has

(1+ t)‖(ytt , ytx)‖2 +
∫ t

0
(1+ τ)‖(ytt , ytx)(τ )‖2 dτ

≤ Cδ2 + C
∣∣∣∣∫ t

0

∫ +∞
0

(1+ τ)(ytx + yttx)(F1y
2
x )t dx dτ

∣∣∣∣. (3.23)
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We see that ∣∣∣∣∫ t

0

∫ +∞
0

(1+ τ)ytx(F1y
2
x )t dx dτ

∣∣∣∣
≤ C

∫ t

0

∫ +∞
0

(1+ τ)(|yx |y2
tx + |ṽt y2

x ytx |) dx dτ

≤ Cδ2 + Cδ
∫ t

0

∫ +∞
0

(1+ τ)y2
tx dx dτ (3.24)

and∣∣∣∣∫ t

0

∫ +∞
0

(1+ τ)yttx(F1y
2
x )t dx dτ

∣∣∣∣
≤ Cδ2 + Cδ

(
(1+ t)‖ytx(t)‖2 +

∫ t

0
(1+ τ)‖ytx‖2 dτ

)
. (3.25)

In view of the smallness ofδ, from (3.23)–(3.25) we conclude that

(1+ t)‖(yt , ytt , ytx)(t)‖2 +
∫ t

0
(1+ τ)‖(ytt , ytx)(τ )‖2 dτ ≤ C. (3.26)

Now we multiply (3.20) by(1+ t)2yt and(1+ t)2ytt and then repeat the previous
calculations; this yields

(1+ t)2‖(yt , ytt , ytx)(t)‖2 +
∫ t

0
(1+ τ)2‖(ytt , ytx)(τ )‖2 dτ ≤ C. (3.27)

We turn now to estimatingV = pv(ṽ, s)yx and the higher-order derivatives. It
is easy to see from the preceding estimates and equations (3.5)1 and (3.19) that

(1+ t)2‖(Vt , Vx)(t)‖2 +
∫ t

0
(1+ τ)‖(Vt , Vx)(τ )‖2 dτ ≤ C. (3.28)

Now differentiate (3.20) with respect tox and repeat the previous arguments to
obtain

(1+ t)2‖(yttx, ytxx)(t)‖2 +
∫ t

0
(1+ τ)2‖(yttx, ytxx)(τ )‖2 dτ ≤ C. (3.29)

Finally, multiply (3.20) by(1+ t)3ytt ; this yields

(1+ t)3‖(ytt , ytx)(t)‖2 +
∫ t

0
(1+ τ)3‖ytt(τ )‖2 dτ

≤ C + C
∣∣∣∣∫ t

0

∫ +∞
0

(1+ τ)3yttx(F1y
2
x )t dx dτ

∣∣∣∣. (3.30)

The last term in (3.30) can be estimated as follows:
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0

∫ +∞
0

(1+ τ)3yttx(F1y
2
x )t dx dτ

∣∣∣∣
≤ C

∣∣∣∣∫ t

0

∫ +∞
0

[O(1)(1+ τ)3y2
txyx ] t dx dτ

∣∣∣∣
+ C

∫ t

0

∫ +∞
0

((1+ t)2y2
tx + (1+ τ)3|ytx |3) dx dτ

+ C
∣∣∣∣∫ t

0

∫ +∞
0

(1+ τ)3ytt(F3ṽtV
2)x dx dτ

∣∣∣∣
≤ C(α1)+ C

∫ t

0

∫ +∞
0

(1+ τ)3|ytx |3 dx dτ

+ Cδ(1+ t)3‖ytx(t)‖2 + α1

∫ t

0
(1+ τ)3‖ytt‖2 dτ, (3.31)

whereF3V
2 = F1ṽy

2
x . By choosingα1 suitably small, we conclude from (3.30)–

(3.31) that

(1+ t)3‖(ytt , ytx)(t)‖2 +
∫ t

0
(1+ τ)3‖ytt‖2 dτ ≤ C. (3.32)

Here we have used the following estimates:∫ t

0

∫ +∞
0

(1+ τ)3|ytx |3 dx dτ ≤
∫ t

0

∫ +∞
0

(1+ τ)4y 4
tx + (1+ τ)2y2

tx) dx dτ

≤ C + C
∫ t

0
(1+ τ)4‖ytx‖2(‖ytx‖2 + ‖ytxx‖2) dτ

≤ C.
Lemma 3.3 follows from (3.18), (3.27), (3.28), and (3.29).

Lemma 3.3 and the interpolation inequality together imply that

‖yx(·, t)‖L∞ ≤ C(1+ t)−3/4, ‖yt(·, t)‖L∞ ≤ C(1+ t)−5/4, (3.33)

where
‖yx(·, t)‖L∞ ≤ C‖V(·, t)‖L∞

≤ C(1+ t)−3/4.

This completes the proof of Theorem 3.1.

4. Convergence to Stationary Solutions

The aim of this section is to apply essentially the same technique used in Sections
2 and 3 to deal with the hyperbolic problem (P2) and the diffusive problem (1.9).
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Similarly to Section 2, the problem (1.9) is equivalent to
wt + a(x)(w−γ )xx = 0, x ∈R+,
wx(0, t) = 0,

w(x,0) = w0(x)→ w+ asx →∞.
(4.1)

The definition ofw anda(x) can be found in Section 2. Settingφ = w−w+, we
have 

φt + a(x)φxx + a(x)(f1(φ)φ
2)xx = 0, x ∈R+,

φx(0, t) = 0,

φ(x,0) = φ0(x) = w0(x)− w+,
(4.2)

whereb = γw
−(γ+1)
+ andf1φ

2 = (w+ + φ)−γ = w
−γ
+ − bφ. Observe that if

φ0(x)∈L1 then we can use the same argument as in Lemma 2.3 to prove

‖φ(·, t)‖L1 ≤ C‖φ0‖L1. (4.3)

The same approach as used in Section 2 gives the following results.

Theorem 4.1. Suppose thatφ0(x) ands0(x) are smooth functions such thatφ0 ∈
H 2 ∩ L1. There exists someδ0 such that, if0 < δ ≤ δ0 and ‖φ0‖H 2 ≤ δ, then
(4.2)has a unique global smooth solutionφ(x, t) satisfying

2∑
j=0

wj+1(t)‖∂ jx φ(·, t)‖2 +
∫ t

0

3∑
j=1

wj(τ)‖∂ jx φ(·, τ )‖2 dτ ≤ C.

By definingv1(x, t) = a−1w(x, t) = a−1(w+ + φ(x, t)), u1(x, t) = −p(v1, s)x,

andv∗ = a−1w+, we obtain the unique global smooth solution of problem(1.9),
(v1, u1, s), satisfying

‖v1− v∗‖L∞ ≤ C(1+ t)−1/2(1+ log(1+ t))β1,

‖u1‖L∞ ≤ C(1+ t)−1(1+ log(1+ t))β2.

Here the constantsβ1 andβ2 are the same as in Theorem 1.

Define the auxiliary function(v̂1, û1) by

(v̂1, û1)(x, t) =
(
u+m0e

−t , u+e−t
∫ x

0
m0(ξ) dξ

)
, (4.4)

wherem0(x) is the same as in Section 3. Settingỹ = −∫ ∞
x
(v− v1− v̂1)(ξ, t) dξ

then yields
ỹt t + [p(v1+ v̂1+ ỹx, s)− p(v2, s)] x + ỹt = p(v1, s)xt , x ∈R+,
ỹ(0, t) = 0,

ỹ(x,0) = ỹ0(x) = −
∫ ∞
x
(v0(ξ)− v1(ξ, 0)− v̂1(ξ, 0)) dξ,

ỹt(x,0) = ỹ1(x) = u0(x)− u1(x,0)− û(x,0).

(4.5)

Thus, similarly to Section 3, one can easily prove the following theorem.
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Theorem 4.2. There exists aδ0 such that, if0 < δ ≤ δ0 and ‖ỹ0‖23 + ‖ỹ1‖22 ≤
δ2, then(4.5)has a unique smooth solutioñy satisfying

1∑
k=0

[(1+ t)k+1‖∂kxV1(·, t)‖2 + (1+ t)k+2‖∂kx ỹt(·, t)‖2] ≤ C, (4.6)

with V1= pv(v1, s)ỹx and

‖ỹx(·, t)‖L∞ ≤ C(1+ t)−3/4, ‖ỹt(·, t)‖L∞ ≤ C(1+ t)−5/4. (4.7)

With the aid of Theorems 4.1 and 4.2, it is now easy to obtain the following results.

Theorem 4.3. Let ỹ be the solution of(4.7) in Theorem 4.2 and let(v1, u1, s) be
the solution of(1.9)obtained in Theorem 4.1. Then, by defining(v, u, s)(x, t) =
(v1 + v̂1 + ỹx, u1 + û1 + ỹt , s), we obtain the unique global classical solution
(v, u, s) of (P2)that satisfies

‖v − v1‖L∞ ≤ C(1+ t)−3/4 and ‖u− u1‖L∞ ≤ C(1+ t)−5/4

as well as

‖v − v̄‖L∞ ≤ C(1+ t)−1/2(1+ log(1+ t))β1,

‖u‖L∞ ≤ C(1+ t)−1(1+ log(1+ t))β2.

Remark. We note thatw = w+ is a stationary solution of the equation (4.1)1,

and thus(v̄, ū, s) = (a−1w+,0, s(x)) is the stationary solution of system (1.2).
Hence, by choosing suitable initial data(v0, u0, s0), one can derive the solution
of (P2),(v, u, s), converging to(v2, u2, s) with faster rates. More precisely, we
have the following theorem.

Theorem 4.4. Assume thatv0−v+∈L1. Letz(x, t)=−∫ ∞
x
(v− v̄− v̂1)(ξ, t) dξ,

z0 = (x,0), andz1 = u0 − û1(x,0). There exists someδ0 > 0 such that, if0 <
δ ≤ δ0 and‖z0‖H3 +‖z1‖H 2 ≤ δ, then(P2)has a unique global smooth solution
(v, u, s) such that

‖v − v̄‖L∞ ≤ C(1+ t)−3/4, ‖u‖L∞ ≤ C(1+ t)−5/4.
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