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Lipschitz Estimates for th@-Equation
on the Minimal Ball

N. VIET ANH & E. H. YOUSSFI

1. Introduction and Statement of the Main Results

The general theory of th&equation on convex domains@@t is still incomplete.

It has been studied in several particular cases of smooth convex domains; see,
for example, the articles of Range [21], Diederich, Fornaess, and Wiegerinck [7],
Bruna and Castillo [3], Bonami and Charpentier [2], Cumenge [5], and Diederich,
Fischer, and Fornaess [6]. Inthese works, the regularity estimates foetieation
depend intimately on the geometry of the boundary of the domain. For example, if
the domain is smooth convex of finite typethen the sharp gain of smoothness is
1/m (see [5; 6]). In proving these results, the boundary smoothness is used heav-
ily. The particular case of smooth strictly pseudoconvex domains corresponds to
the%—regularity. This smoothness has been shown to hold even in the case of non-
smooth strictly pseudoconvex domains with, howevér-alefining function (see
Henkin and Leiterer [12]).

On other hand, Fornaess and Sibony [8] constructed a smoothly bounded pseu-
doconvex domain that is strictly pseudoconvex except at one boundary point for
which (L?, LP)-estimateg p > 2) for 9 fail.

In the present work we give an example of a convex circular and non—piecewise
smooth domain, with a defining function that is not differentiable, for which the
d-equation possesses the Lipsc@testimate. We also give an explicit construc-
tion of thed-solving operator. The domain in question is the minimal ball, which
is given by

B, :={zeC":0(z) == |z]>+ |z*z] <1},

wherez e w = 27:1 z;w; (see Hahn and Pflug [10]). Then the minimal B&|l
is just the open unit ball with respect to the noNp := /o, as featured in sev-
eral recent works [13; 15; 16; 17; 18; 19; 20; 24; 25]. In particular, it is a non—Lu
Qi-Keng domain fom > 4 and is neither homogeneous nor Reinhardt. In addi-
tion, B, has aB-regular boundary in the sense of Sibony [23] and Henkin and
lordan [11].

SetV :={z e C" \ {0} : z*z = 0}. The singular part of the boundary Bf is
obviously the seéB, N V. The regular pardB, \V consists of all strictly pseudo-
convex points.
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300 N. VIET ANH & E. H. YOUSSFI
In order to state our main results, we need some notation. DenotgrhyB.)

the space ob-closed(0, 1)-forms defined o, with L> coefficients, endowed
with the sup normj| - ||o. Next, consider the Lipschitz space

|f(z+h) — f(2)]

A3(B) =1 f I fllo+ SUP : = flla; <
2 sevien. [hlz|log| | :
<|hl<?

Our main result is as follows.

MAIN THEOREM. There exist a finite constat and an explicitly defined linear
integral operator
T : AT(B,) — A3(B.)

satisfyingdTf = f (in the sense of distributiohsand ||Tf||A1 <C|flls fo
everyf € A7, (B.).

We should point out that th&-solving operatof” has the form

ane@ = [ Ko S+ [ sine o

. IaXe 9B, IaXe
whereK[ f] and S[ f] are appropriate kernels associated withThe measures
appearing in this formula are singular near those points where the defining func-
tion g is not differentiable.

This paper is organized as follows. We begin Section 2 by introducing an aux-
iliary complex manifoldVI that is a ramified covering of degree 2Ibf\ {0}. The
corresponding covering mapwill allow us to relate thé)-equation of the mani-
fold M to that onB... The remainder of Section 2 is devoted to construction of the
kernels that are necessary for our study ofdkeguation on the manifoll. The
integral estimates related to the integral operators appearing in this section will be
proved in Section 3. The construction of thesolving kernel orM is given by
Theorem 4.2 in Section 4, where we also prove (in Theorem 4.7) a nonisotropic
Lipschitz estimate for th@-equation oriM. Finally, in Section 5 we apply the re-
sults of Section 4 to establish the main theorem.

In a forthcoming paper, we shall present further study ofateqjuation in a
more general class of convex domains.

Throughout this paper, the lett€rdenotes a finite constant, not necessarily the
same at each occurrence, that depends only on the dimension

2. Integral Formulas on the Complex Manifold M
Letn > 2 and set
H=H,:={zeC""\{0}:z+7=0}.
LetB = B, be the unit ball ofc”*1. The complex manifold is defined by
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M =M, :={zeC"™\{0}:zez=0and|z] <1} =HNB.

The manifoldM is not relatively compact ifil owing to the singularity point 0.
The compact group S@ + 1, R) acts transitively odM = {z e H : |z| = 1}.
The Haar measure of this group induces a uniquésSO1, R)-invariant proba-
bility measures on aM (see Mengotti and Youssfi [16]). Finally, denote &y
the surface measure éh

Recall from Lemma 2.2 in [17] that th@, 0)-form on(C \ {0})"+Y,

1 n+1 -1 j—1 —
n—l—lz( Z)' dzaN--- ANdzj A ANz,
=1

induces by restriction an S@ + 1, C)-invariant and holomorphi¢z, 0)-form o
onH.

ProrosiTION 2.1.  For all compactly supported continuous functioh®nH, we

have N
/ f(z)dV(z)=<l§) f @)z A ).
H H

Proof. Letw := (%) Y}Z1dzi A dZ;. Then the canonical volume form diis
()" |u. Using the open chatf; := {z € H : z; # 0}, a little computing shows

that if z € U4, then, on the:-fold tangent tdl atz, we have

172\ _ —~ = _
T\ 7)) @M lm=dundin s ndzpndz A Nz A dZe
+Zdzl/\d21/\---/\dzk/\d2kA---Adz,,Jrl/\dZ,,H

k j

2

|zl

- |Z,|2d11/\d51/\"'/\dZ.iAde A ANdzpa Az
J

= z1%a(2) A a(2).

This completes the proof. O

In what follows we shall establish some integral formulashdénTo do so, we

shall approximatél by appropriate regular varieties that are complete intersec-

tions. Then we apply to each of these varieties the results of Berndtsson [1].
For 0 < r < 1, let B, be the ball inC"*! centered at 0 with radiusand set

M, := HNB,. Let

§:=(51,...,541) . B\B, x B\ B, - C"1
be aC?! function that satisfies
Is(¢.2)| <Cl¢—z| and |se (@ —2)|=Clt—z (2.1)

uniformly for ¢ € B \ B, and forz in any compact subset & \ B,. We shall use

the same symbal and set := Y77 s,d¢;.
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Now we writez » z — £ * ¢ = Y. /21(; + z;)(z; — ¢;) and put

n+1

g 1= (5 +2)dg;.

k=1
Fore > 0, consider thén + 1, n)-form

s A (3)" 1A B0,
K: = , 2.2
R CEY T T (2:2)

where Q. is the(l, 0)-form given by

¢*¢
f=——— . 2.3
0 e red (2.3)
Consider the differential forms
or(@) = (“D* G A AAG A ANdTey fOr l<k <n+1
@(§) '=dba A NdEya
LEMMA 2.2. LetO<r <6 <1
(1) f u eCYB \ B,) andz € M \ M,, then
u(z) = Colim </ qu—/ E_iuAKf).
e>0\ Jo(B\B,) B\B,
(2) If ueC(Bs \ B,), then
im f )@ e = Cf u(©)a (@) A a(d).
e=0 Jpam, (IS¢ +¢) Mis\M,

(3) If ueC(dB,), then

. eu(t) = 213
IIm/ —— () Aw(&) =Cr" / u(re)rdo ().
20 g, Qg eg e &N et g 1SS
Proof. Part (1) of the lemma follows from formulas (23) and (26) in the proof of
Theorem 1in [1].
Recall from equality (25) in [1] that

elgl?

(g ¢12 + )2
in the sense of distributions. This, when combined with Proposition 2.1, gives
part (2) of the lemma.

To prove part (3), we may assume without loss of generalityteafl. Applying
equality (3) in Proposition 16.4.4 of Rudin [22] yields that, for eack 0, we
have

faB u;“-gg—gs)zwk@ no@) = C/m qgwg(l—i)ikg)z @@ A o).

— CdV ase >0
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Note that the(2n + 1)-forms (Mfg“;z‘;)z[@(w(f) A w(¢))] are SAQn + 1, R)-
invariant. Using local coordinates and Lelong theory [9], we see that these forms
converge as — 0toa(2n—1)-form onaM thatis clearly SOz +1, R)-invariant.

Hence it induces a measure that is a constant times the measurbae proof of

part (3) is thus complete. O
Now let —
S.:s/\(as) AgNIL*L) 2.4)
[se(—2)]"
In view of (2.2) and (2.3), we see th&t satisfies
&
Ki=Ki———. 25
* T(lge g2 +e)? @5)
We write K in the form
K, = (-)"7" Z hi (¢, D wr(@) A o(2), (2.6)

k=1
where théy;, are the component functions &f with respectto thén+1, n)-forms

01O A©(©), ..., 011(0) A0 (0). .
If f:= Z”* frdZ; is a (0, 1)-form that is defined in a neighborhood bf

(= M U dM) in B, then let f|y; denote the pull-back of under the canonical
injection of Ml in this neighborhood. Set

n+1

£ lb,00 = suprk(cn

reM
Let 3y, be thed-operator orM.

ProrosiTiON 2.3. Given a sectiory satisfying(2.1): Consider a function: e
CYM \ M,) and a continuoug0, 1)-form f := Z”*lfkdgk defined in a neigh-

borhood of M \ M, that saUstMu__ flyonM \ M, . Leth, be the functions
defined in(2.6). Then, forz e M \ M,,,

n+1

u(z) = C1 / u(;)( DG, z)) do(£)
oM k=1

n+1

— Cyr? 3 f u(rg)( Y ahir, z)) do (&)
oM k=1

n+1

+C h
) /M\M,(Zf"@ (@ z))a(ma(;)

k=1

Proof. Consider act extension of« (which is also denoted by) onB \ B, that
satisfiesdu = f onM \ M,. Suppose without loss of generality théat= du on
B\ B,. By Lemma 2.2(1), (2.5), and (2.6), we have that
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n+1

su({) _
Cu(z) = | — (Y ma,
u(z) s@o{fm\m (|¢-;|2+a)2<; (¢ z)wk@)m(;))

n+1

& _
— _ E hi(C,
/];B\IB, (¢ e §|2+8)2<k_1 Je (@) hi (g Z))a)(é') ACl)(f)}

for z e M\ M, . Proposition 2.3 now follows from parts (2) and (3) of Lemma 2.2.
O
The following result gives the Martinelli-Bochner formula bh

THEOREM 2.4. Letu be a bounded function i@Y(M) and f := Z”*lfkdgk a
continuous(0, 1)-form defined in a neighborhood &fl in B that satisfydyu =
Sl and || fllm o < 00. Then, forz e M,

1 ,'_—_o _ ._2 o 2
u(z)=C1/ +ze¢—2°¢ Iz2 ZI+ 1z ¢l w0 do©)
oM |Z—§| n
LG =TG4 1)
+C / — Gt Q)T I P
M= |z = ¢I

Proof. Consider the Martinelli-Bochner sectiopz, ¢) .= 7 — 7. By (2.4) we
then have that

1 n+1 n+1 -1

K},:m[Z(—z]'FE])dé’]} |:Zd§j/\d§]i|
=1

n+1

A [ Z(Zk +C¢ds A df,/}

jrk=1
so that, by (2.6) and the facts that; ., Ejz = —Z,f andz ¢ z = 0, we obtain

G =)@ T+ 1¢1?) — (e + Lz (€ —2)

h s = 2.7
(&, 2) ]2 (2.7)
Therefore, a simple computation gives that
n+1 2 =2 2
)3 —lze¢lP+ 1z +zef—
Cehi(t,7) = lze P+ 12272 — [¢]2(CP+ 22 — 2 E) 2.8)

|Z— |2n

Combining (2.7) and (2.8) with the hypothesis thas bounded and f ||y, o0 <
00, it is not hard to prove that

lim 273 /
r—0 oM

n+1

u(rr:)(Z G (e, z))
k=1

do() =0 (2.9)

and
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n+1
> AOh(g.2)

Iim[
r—0 M, )

where the latter equality holds by an application of [16, Lemma 2.1]. The theorem
now follows by combining Proposition 2.3 and (2.7)—(2.10). O

a(voTz;)syLnO/M w(O)Aa@ =0, (2.10)

REMARK 2.5. Ifu € CY(M) is bounded, then Theorem 2.4 holds for the dilated
functionsu, (z) ;= u(rz), 0 < r < 1. This shows that Theorem 2.4 remains true
if we assume only that € C*(M) is bounded and

linl1 / [u(¢) —u(r¢)|do(g) = 0.
r=>i= JaMm

We recall from Youssfi's work [25] that the Szegt projecti®p of M is given by
1+ze2
S ulz) = f P ——
mlu](2) My
Following Charpentier [4], let

s0(¢,2) =01 —¢+2) =21 —[¢[*) and D(,2) ‘= s0(, 2) * (£ —2).

u(f)do(¢) for zeM. (2.11)

THEOREM 2.6. There are polynomial® (¢, z) and 0x(¢,2), 1 <k <n+1,
such that
Pi(z.2) = Ox(z,2) =0 VzeC"?

with the following property. Given a bounded functioa C*(M) and a continu-
ous(0, 1)-form f := %71 f,dZ; defined in a neighborhood dfl in B that satisfy
dyu = flyand|| fllm.o < 0o, for z € M we have

n+1l

(1_{.2)11—2 _
= _—_— 1— L4 P ,
u(z) /M;_l DE. o (A=) Pu(C2)
+ A= 120k (&, D] fr(@)a (@) Aa(C) + Swlu].

Proof. Consider &* extension of: in B \ {0}. By (2.4), the kerneK associated
with the sectiorg is

n+1
— . _ e7) — 7. _ 2 .
Koi= 5o ;[g(l r+7) — 21— [¢)]dg;
n+1 n—1
A {(1— ¢ -z>"‘1[2d5,- A dc,}
j=1
n+1 n—2 _ n+1
+(n—-Dl—-¢ -z)"‘z[ZdEj Ad{j] ADIZIP A (Zz,dr;,-)}
j=1 j=1
n+1
A |: Z(Zk + fk)fjdé'k A dé_'j:|. (2.12)

k=1
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In view of (2.5), if we integrate:K§ over 3B then all terms containing|¢|? van-
ish; moreover, we have thatd|z|?> = 0 andD(¢, z) = |1 — z * Z|? so that

LYRE
eu(f)
ag (12 ¢12 + )2
Z;Hi gide; A [ Xt dT A de] [Z’}Ilzl(zk + 8o A dE ]
' { A—z+0) }
Rewriting the differential form in braces as

i th(c @) Ao(Q)

k=1
and then applying Lemma 2.2(3) to this, we obtain
) 14+z+C
Co lim Ki=C _— d =C38 ,
olim amau 0 3/31\/11 (1—Z'§)"u(§) o (&) 3Smlu]

where the latter equality holds by (2.11).
If we setu = 1in Lemma 2.2(1), then the last equation implies thagt= 1.
Thus

C0|Im/ uK§ = Smlu]. (2.13)
B

e—0

We now write the kernekKy in the form of (2.6):

Ko=(-D"7" th(c @) A o).

k=1

We may assume (as in the proof of Proposition 2.3) hat du onB \ {0}. Then

we set
n+1

I'=0unKo=)_ fild)h(Z Do@) Ao (2.14)

k=1
Arguing as in the proof of (2.9)—(2.10), we see that

n+1
lim 23 / u(rg)<2gkhk(rg, z)> do(¢) =0 (2.15)
r—0 aM =1
and
n+1 _
im [ |3 A0, a0) A a(@) =0, (216)
r— M, —1

To finish the proof of the theorem, it suffices to prove the following lemma.

LEmMA 2.7. The functiong; in formula(2.14)can be written in the form

i _ (L—¢ez)"? - 2
(&, 2) = W[(l_ Lo D)P (G )+ A= [219)0k(2,2],  (2.17)
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where P, (¢, z) and Q. (¢, z) are polynomials such that

Pi(z,2) = Qi(z,2) =0 VzeC"™L

The proof of this lemma will be given shortly.

Proof of Theorem 2.6 (cont.Suppose that Lemma 2.7 has been proved. Com-
bining (2.13)—(2.16), we may then deduce from Proposition 2.3 that

n+1

u(2) = Sulul + /M 3 KO h(@ D) A ).
k=1

Applying Lemma 2.7 to the last equation, the theorem follows. O

Proof of Lemma 2.7In view of (2.12) and (2.14), we can wrife= I; + I, where

n+1

= c(Zﬁ(cwa)
=1

1—¢C¢e7 n—1 1+l -
{&Z[;},(l_goz)—@(l—|§|2)]d§j
j=1

D(¢, )"
n+1 n+1 n—1
A [ Z(Zk‘f‘gk)Zpde/\dEpiI A [ZquAdgq} }
p k=1 g=1
and
n+1
Ip = c(Z ﬁ(;)da)
=1

A=) 2% o 2
A S g 02) - 5 (2]
{ D(.2) ; J / /

n+1 n+1
A dICIE A [erdo} A [ > @+ t0Tpdii A dfp]

r=1 p,k=1
n+1 n—2
A[ngq/\d;q] }
g=1

A simple computation shows that

. (]'_g—.i)n_l nZH FeO-8@A =) +2A—12D] L +1¢1P
D@ " =

— A= 121 + Lz (€ — D} (@) Aw(Q).

Therefore, the functionk; associated td; (in the same way as the ones associ-
ated to/ in (2.14)) are in the form (2.17).

We now consider,. Since the differential form in braces 6fis SQ(n +1, R)-
invariant with respect t¢z, ¢), we may suppose without loss of generality that

1=



308 N. VIET ANH & E. H. YOUSSFI

¢ = (é ZTIZ,O, 0) eM, where O<r <1
We divide I, into two pieced,; andl,;,. Here
n+1 _
Iy = C(Z fl(()dQ)
=1
(1_ é_ .Z)n_z n+1 B . . )
A {W ;[(;(1—4 z) —z;(A—=1¢9))de;
n+1 n+1
A £2dZa A [Z zrdcr] A [Z(zp + £p)5adE, A dzl}
r=1 p=1
n+1 n—2
A [deq/\d;“q] }
g=1

To obtainlyy, it suffices to interchangg and¢; in 1.
Observe thal» is theC"+1-canonical volume form multiplied by a function of

the form

(1_ ¢ .Z)n,z n+1
= N R D/ (©),
D, 2) ;

where theRr, (¢, z) are polynomials that we shall examine next. In what follows,
O(|z — ¢|) denotes any polynomiat (¢, z) such thatR(z, z) = 0.

If k € {1, 2}, then it is easy to see th& (¢, z) = 0.

If k ¢ {1, 2}, theng, = 0. In addition, R, (¢, z) has three components corre-
sponding to the casgs=k, r = k, andp = k.

Casej = k. In this case we already haye = 0. The component correspond-
ing to this case equals

OlL;A—¢+2) — 71— gDl = A= 12» 0z = .

Caser = k. ThenZ, = 0. The presence d, implies that the component cor-
responding to this case equals

Oz — )& A—¢2) —7;(1— 1E1)]
=(1-¢*)0(z— ¢+ A—1EP0(z — ¢]).

Casep = k. Then¢, = 0. Because of the factay, + ¢,, it follows (as in the
previous case) that the corresponding component is of the form

L-¢+2)0(z—¢))+ Q- ¢c1H0(z - ¢D.
We conclude that
R 2)=0A=¢*20(z—¢D)+ A— 120z = ¢D.

Therefore, the functionk; associated t@,; (in the same way as the ones associ-
ated to/ in (2.14)) are in the form (2.17).
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Analogous argument shows that the same conclusion holds algg,fdBince
I = I1 + I71+ I3, the proof of the lemma is complete. O

3. Integral Estimates

In this section we prove some estimates for integrals that are needed in the next
section.

Lemma 3.1. There exists a constagt such that, forallkw e M and0 < r < 1,

1

/ =l oy < ca-nt.
Bl

M ¢ — rw]

Proof. Since the group S@ + 1, R) acts transitively oroM, we may suppose
without loss of generality that

1 i
w=wp.=(—,0,...,0, — ).
’ (ﬁ ﬁ)
Let 9B, be the unit sphere @t”. Consider the map': H — C” defined by
Py < Wl wn)
[(wa, ..., wy)|

Observe thaf is locally diffeomorphic atwg and thatF(dM) c 9B,,. In addi-
tion, F(rw) = rF(w) for r € R*. Using the mapF, the desired estimate is an
easy consequence of the following one (see [22, pp. 360—-361]):

1
/ K=wl ) <ca—r}t for wesB,. O
0B, 1§ — rw|?
Let
Az, w, §) == (L1(z, §) — Li(w, §), ..., Ln+1(2, §) — Lyja(w, ),

where
@ =)L +15D) — @+ )z € —2)

|z —¢|?n '
ThenA has the following invariant property:

A(Az, Aw, A7) = AA(z, w, 7)) VA eSOn + 1 R);
A(tz, tw, 10) =t~ %" IA(z, w,7) VieR*.

Li(z,0) =

LeEmMMA 3.2. Givent e R, A € SO(n + 1, R), and a domairf2 C H, forz, w €
H we then have

/ | A(tAz, tAw, O) |l ($) A a(?) < Ct f Az, w, O)lle (@) A a(?).
tA() Q

Proof. The change of variable = tA¢ and the invariant properties stated previ-
ously give that
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1A(tAz, tAw, O)lla(2) A @(@) = t]| A(Az, Aw, AD) (D) A (D)

<Al - 1Az, w, Dlla @) A a(d).
SinceA — ||A] is bounded, the lemma follows. O

Lemma 3.3. Fix a pointw € dM. Then there exists a constafitsuch that, for
allt € (0,1 and allz e HU {0},

/ IAGz, w, Ol (@) Aa(?) < Clz—wl|(Intlz — w|| + ).
ceH:|¢|<1t

Proof. We distinguish three cases.
Case 1:z = 0. Applying [16, Lemma 2.1], we see that

/ 1AQ, w, Hlla@) Aa(g) < C. (3.1
lt1<+/2/2
It can be checked that

/ 1A, w, )la(@) A a@) < C. (3.2)
lt—w|=~v2/2

If ¢ € H satisfiegz| > +/2/2 and|iz —w| > +/2/2, thenwe havéz| ~ |sw—¢| for
0 < s < 1 Therefore, applying the mean value theorem to the functigsis ¢)
yields

C
1AQ, w, O < W
Hence, by [16, Lemma 2.1],

a @) Aad)
RER

IAQ, w, Dlle@) Aa@) S /
V2/2< |51Vt

< C(lloglt]] +1). (3.3)
The lemma now follows from (3.1), (3.2), and (3.3).

Lets > 0 be sufficiently small so that anye H : |z — w| < § can be connected
to w by a smooth curve, : [0, 1] — Hwith y,(0) = z, y.() = w, and|y/(1)| <
3z — wl.

Case 2:|z — w| > §. Choose somél € SO(n + 1, R) such that; = |z|Aw.
Then, applying Lemma 3.2 together with the result of case 1, we see that

/|t|>ﬁ/2,c—w|>ﬂ/2,|c|<1/z

/ (IAQ, z, Ol + 1A, w, DD (@) A Q)
ceH:|¢|<Yr

< lzl(llogt|z|| + 1) + [logt] + 1

< Clz —wl|(Int|z — w|| + D).
Since
Az, w, Ol < 1A, z, Ol + 1AQ, w, O,

the lemma follows in this case, too.
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Case 3:|z — w| < 8. It can be checked that
/ IAG, w, Olle(?) A (2)
[¢—w|<2|z—w]

</ a(§) A e(?)
i

—i<8—w |z — Pt

+/ COne@
9

—w|<2|z—w| |§ - w|2n71 -

311

(3.4)

If ¢ € H satisfied¢ — w| > 2|z — w|, then|y,(s) —¢| =~ |¢ —w|forO0<s <1

This, combined with the mean value theorem, implies that

1+ ¢)?

Az, w, O < Clz — w|——F5-.
& — w?

Now consider the following subsets &i

E1:={28 > |t —w| > 2]z — wl|};

Ey :={l¢ —w|> 24, [¢] <2}

Ez:={l{ —w|>2z—w[,2<|¢| <1/t}.
Then

/ IAGz, w, O)lle (@) A a(g)
[t—w|>2|lz—w|, [¢]|<1/t

3
<> [ laGw, Dlla@) Aa@).
k=1 " Ex

The integral ovelt; is clearly majorized by |z — w|.
The estimate (3.5), combined with Lemma 2.1 in [16], shows that

a) Aad)
Eq |§_w|2n

< Clz —wl(lloglz — wl| + 1),

IAG, w, Dlle(@) Aa(?) S Iz — wl
Eq

and

a(@) Aa(g)

E3||A<z, w, Hlle@) A a) S lz—wl T

E3
< Clz —w|([loglz[] + ).

(3.5)

(3.6)

Using the hypothesis that & ¢ < 1 and putting the estimates just displayed

together with (3.4) and (3.6), the lemma follows also in this last case.

The next lemma gives a final integral estimate|fan(z, w, ¢)|.

O
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LEMMA 3.4. There exists a constagt such that, for all;, w € M,
f IAGz, w, O)lle(@) Aa(?) < Clz — w|(|loglz — w|| + 1).
M

Proof. Fix wg € 0M. Choose somd € SO(n +1, R) such thatw = |w|Awg. We
first apply Lemma 3.2 and then Lemma 3.3 to obtain

f IAGz, w, Olle()) A af)
M

A_lz
A —0, Wy, {
¢, ¢ <Y/|w] lw]

<Clz —w|(log|z — w|| + D). O

< lw a) Aad)

Lemma 3.5. Let f satisfy the hypothesis of Theorem 2.6. FarM, define
n+1

1— n—2
up(2) —/ Z( T A o) PuE 2)

D(, )" o
+ A= 12190k, D] fi(@a (@) Aa(?).
Then the dilated functions (rz) converge uniformly tas(z) onaM asr — 1~.

Proof. If I'(¢, z) denotes either of the kernels

Q=22 P(L, 2) or L—¢*2)" 21— ¢ Q0k(E, z)
D(, )" D(, )"

then it is enough to prove that

/ I'(¢, rz) =T, Z)Ia(;)/\oz(é) —1> 0 VzeoM. 3.7)

Forw € H, let T,, be the complex tangent spaceHoat w and letr,, be the or-
thogonal projection of"** onto7,,.

From the equalityD (¢, w) = (1 — |w|®)|¢ — w|? + |w * (¢ — w)|?, it follows
that there is a neighborhoddof w in H such thatr,, |, is biholomorphic and

D(¢, w) ~ D(my(£), mw(w)) VCEU. (3.8)
Moreover, it is easy to see that
1o =1-m, () 7y (w),
~wH2|t — w| < VDE w),
¢ —wl S VIL—¢ewl,
D¢, w) =[1=¢*w* = @—[ZHA—[w]?). (3.9)

The following estimate can be proved by the same method as in [2, Lemma |.5]:

/ L—¢ew|" 2[D(, w)] "2 dc AdE < C8%, weB,. (3.10)
(e€By, D, w)<8
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Heres = C(1— |w|)? andd¢ A dZ denotes the Lebesgue measure on the unit ball
B, of C".

SinceD(¢, w) is a quasi-metric oM (see [2]), we can choose a constarthat
satisfiesD (¢, w) = D(¢, z) if D(¢,z) = CD(z, w).

Now fix z € dM. ForO< r < 1, putd := C(1—r)? andw :=rz. If D(¢,2) >
CD(z, w) = § thenD(¢, w) =~ D(¢, z), which in turn gives that

l—¢ew|~[1-¢ez| (3.12)
Thus, by (3.9),
DG, w) = D&, ) = |z —w|O(1—=§*2)). (312)

Estimate (3.7) will follow by combining the following estimates:

| :=/ T, w)|a@) A a@) < 54,
ceM, D(¢,w)<C8

I :=/ I Dla@) A a@) < 53,
teM,D(¢,z)<é

|||2=/ N, 2) = T w)la (@) A a () < 55
£eM,D(5,2)28

We now prove these estimates.
By Theorem 2.6 we have that

PG, w) = 0(¢ —wl) and Q¢ w) = O(¢ — w)).

Observe thatif e MandD(¢, w) < §, then the estimates given in [2, p. 68] show
that|1— ¢ » w| ~ 1 — |w|2. This, combined with estimates (3.8)—(3.10), yields

I 5/ 11— ¢ o w|" 2[D(, w)] " 20(0) A a(Z)
ceM,D(¢,w)<Cé

— n-3
5/ |1_7Tw(§).7[w(w)|n 2
semy(M), D(y (8), mw (w)) < CS

D (7 (©), 700 (W)] T2 AV, (2)
< 81

SinceD(¢, z) = |1— ¢ » z|?, it follows that

A

/ 1= o2 20(0) A (D)

1-¢+7)<8Y2

< 5%/ 1= o2 3a(0) Aald) < 88,
M

where the latter inequality holds by an application of [16, Lemma 5.1].
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It now remains to majorizél. Using (3.11) and (3.12), we see that

1— §.2|n+% _)
" < |z — IL—gez"te
= w|<v/ll—c-2|>,sl/2 D(¢, z)"*1 a(Q) A a(f)

3

55%/ 1oz a0 AaD) S 85
M

The proof of the lemma is complete. O

4. Lipschitz Estimates on the Complex ManifoldM
The following Hardy—Littlewood-type lemma is needed.

LemMma 4.1. Forevery0 < o <1, there exists a constanit = C(«) with the fol-
lowing property. Supposeis a differentiable function defined in a neighborhood
of M in B, and letK be some finite constant such that

|(gradu)(z)] < K1 — |z])*™* for ze M.
Then|u(z) — u(w)| < CK|z — w|* for z, w € ML

Proof. Leta, b € M with 0 < |a| < |b|] < 1, and set ;= |a — b| andc¢ =
(lal/|1b])b € dM,. Clearly|b — c| < § and|a — ¢| < §. We now distinguish the
cases <1—|pblands > 1—|b|.

In the first case, using that the group @&Gr 1, R) acts transitively oM, we
see that there is a smooth cunvé) on aM,,, that satisfies/ (0) = a, ¥y (D) = c,
andly’'(®)| < Cla —c|.

The hypothesis implies thatgradu)(z)| < K5*~* on the line fromb to ¢ and
on the curvey (r). Hence

lu(b) —u(O)| + u(a) —u(o) = CK3*,

showing that
lu(a) —u(b)] < CKla — b|*.

The cas& > 1 — |b| can be checked using the same argument as in [22, Lemma

6.4.8]. O
Consider the Lipschitz space
00 (Z + h) - (Z)
A%(M) = {fGL (M) 2 | fllot+ sUP L/ T UGl =|[flla, < 00}.
z,z+heM |h|2 2

THEOREM4.2. Suppose that € CY(M) isbounded and that := """1 f, diy is
a continuoug0, 1)-form defined in a neighborhood &f in B such that] f [|u, .o <
oo and dygu = f|y. DefineTf ondM by

(T ()

_ / %{(1— w ) Pew, ) + L= [wPQk(w, §)
' A-werA—wel)?

]fk(wm(w) Aa(w).

M j=1

Then the definition of f can be extended il by setting
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(TF)(2) = J1(2) + J2(2), (4.1)
where
1 oF —sepr — o 7|2 o2
h@w=caf T2 m 2l m RUPH R gy 0y o),
aM lz —¢l*"
n+l ¢ - _ _ 2 -
_ [Gr — w)(zew + [w]F) — (zx + wp)z * (w — 2)]
- frw)a(w) A a(w).
Moreover, the operator’f satisfies
(i) IuTf = flu

(i) Tf € A%(M) and ”Tf”A% < CIl f lIm, 00-
Proof. Define

n+1 — 2
- A-—we2)P(w,2) + A —[w|*)Ow(w, 2)
8@ '_/ Z|: AL—we)"(1—weZ)?

}ﬂwmmmaﬁ

M -1

for z in a neighborhood oM in B.
Let us be the function defined in Lemma 3.5. Then, applying Theorem 2.6 to
the functionu gives that

Uy () = u(z) — Sylul(z) ¥zeM. 4.2)

Note thatus () = (Tf)(¢) = g(¢) for ¢ € OIM.

By Lemma 3.5, we have that lim - f8M|uf(§) —uys(rg)|do(¢) = 0. There-
fore, in view of Remark 2.5, we can apply Theorem 2.4 to the funatjon

Observe that (4.1) is just the Martinelli-Bochner formula. Hence, by virtue of
(4.2) and the hypothesis, we obtain

Tf =u; and dyTf = dyu = flu. (4.3)
In the proof of the theorem, the following lemmas will be needed.
LEMMA 4.3.
glloo < CIIf lIn, 003 (4.4)
12(2) — g)| < Cll fllw colz —wl?  for z,weM. (4.5)
Proof. We remark thatz — w|? < 2|1— z » w| and that, by Theorem 2.6, we have
Pi(w,z) = O(lw—2z) and Qi(w,z) = O(lw —z|) for z, weB.
Therefore,

Oo(lw — 1— w®)o(|lw — -
|ﬂMsan¢&[ (w=z) A= [wh W)MWMWAMM

|1—LU’Z|"+1 |1_w.2|n+2
1 1—|w®) —
§||f||M,oo/|: — + —— | (w) A a(w)
M |1—w0z|n+2 |1—w.z|”+2

for z e M.
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An application of [16, Lemma 5.1] shows that the latter integral is bounded. This
proves (4.4).
Next, we see that

n+1

0radg ()] < 1/l Y [ aw) A aw)
k=1YM

_ [Il— w * Z|[Pe(w, 2)| + (A = [w]?)| Qx(w, 2)]

|1_ we Z|"+3

+ - [w?|grad. Qx(w, 2)|
- wez|n+2

Bearing in mind the preceding remark, an application of [16, Lemma 5.1] shows
that

+

|Pe(w, 2)| + 11— w e zl|grad; Pr(w, 2)] :|

(gradg) ()| < Cll ol — [2])"2 for zeM.

This fact, combined with Lemma 4.1, proves (4.5) and thereby completes the proof
of the lemma. 0

LEMMA 4.4.
1J1(2) — Ju(w)| < Cll fllugolz — w]z for z,w e M.
Proof. Observe that fot € 9M we have

1+zef—zec—|z2CP+]z2¢? < Clz—¢l.
Thus

<Clz—¢I™" (4.6)

14+zef—Z9¢ —|z°L2+|z2¢)?
gm@( iz )

In addition, if we sex = 1 in Theorem 2.4 then
1+zel—Ze¢— Izl +lz¢P
C1 >
aM lz — &[]
Settingz := rw for w € M, this implies that
1 oF —_Fepr — o 7|2 .72
(grad (o) 5 [ ma¢< SRR R L ¢|>‘
aM |z — ¢
T = (THHw)|do(?).
SinceTf = g ondM, it follows from Lemma 4.3 that
((TA)EQ) — (TH )| < Cllf I oelt — wl2
By (4.6), we now have

do(¢) =1

1
1 —w|2

(grads) @) = Il [ o),
a [§ —rw|”
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so that Lemma 3.1 yields

(gradJy) (2)] < Cl fllg e — 12)72. (4.7)

This inequality, combined with Lemma 4.1, completes the proof of the lemma.

A combination of Lemma 3.4 and Lemma 4.4 with formula (4.1) gives that

|J2(z) — J2(w)| < C|l fllm,c0lz — wl(lIn|z — w|| 4+ 1) (4.8)
and .
(T)(z) = (THw)| < Cll fllmoolz —wlz  for z, weM. (4.9)

It now remains to prove the following.

LEMMA 4.5.
ITfllo < CIl flIng, o0

Proof. On the one hand, by virtue of the formula fér and in view of (4.4), we
have that

A0)] < C1 /BMI(Tf)(C)Ido(é) < Cll vt oo

On the other hand, by virtue of the formula &y we have

a(w) A a(w)

[/2(0)| = (n +DC> f — 3 JIIf Mo = Cllf M o0
Mo wl
where the latter inequality holds by an application of [16, Lemma 2.1]. Therefore,

[(THO)] < [/1(0)] + [J200] = Cl f I, 00-
This, combined with (4.9), implies that

I(TH RN = THO+ T @) = (THO) = Cll f I, 00

The proof of Lemma 4.5 is therefore finished. O
Finally, the proof of Theorem 4.2 follows from (4.3), (4.9) and Lemma 4.5

REMARK 4.6. The solutiorTf is the one characterized Bf'f = f with Tf
orthogonal to holomorphic functions, where the orthogonality is in terms of inte-
gration taken 0@M. In other words7’f is the solution obu = f that has smallest
L?(o)-norm.

Using the notation of Krantz [14], we denote®§(B) the family ofC?-admissible
curves inB (with respect to the radial projection fran {0} ontodB). LetC2(M)
be those curves @f2(B) that lie inM. Let F1 1 be the following nonisotropic Lip-
schitz space of functions dvi:

Iy
2’

1= {71 a0+ sup If o vliagom = 1flry, < o0
yeC (M)
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THEOREM 4.7. There exists a finite constaatsuch that, for all(0, 1)-forms f
satisfying the hypothesis of Theorem 4.2,

1T llry 5 = ClLF vt co-

Proof. Forw € aM and 0 < rg < 1, let B(w, ro) denote the ball centered at
(1 — ro)w with radiusrg. Note thatB(w, rp) is contained ifB and is internally
tangent (to first order) téM at w.

We shall use the notation in the proof of Lemma 3.5. Because the group
SO(n + 1, R) acts transitively oM, there is a small enough such that, for all
w € oM, =, is biholomorphic from a neighborhood &f(w, ro) N M in H onto
its image inT,,. PutD,, := m,,(B(w, ro) N M).

Lety € C2(M) be close t&M; say, disty, dM) < ro/2. We shall see that, for
the proof of the main theorem, it is sufficient to check such

Letw := y(0)/|y(0)] € M. Note thatr, (y(0)) = v(0). Then there is a
curvey € C3(D,,) with y(0) = 7(0) and|y () — y()| < Ct? (0 <t < 1).
This assertion follows from the fact that the complex tangent spacés jand
0B(w, ro) NH atw are the same.

We estimate

I(TF)(y () — (TF) (¥ )] < (TF)(y (b)) — (Tf o 7, (7 (h))]
+ (Tf o m (7 (h) — (Tf 0w, ) (7 (0)]

=T+ To. (4.10)

Since
ly (h) — () (7 (h)| < Cly(h) — 7 (h)| < Ch?,

applying Theorem 4.2 yields
T1 = Cll f v, 00 h- (4.11)

On the one hand, since, is an orthogonal projection, it is not hard to show
that

I (rw)«(f v I,y = Cllfllm,00 < 00. (4.12)
On the other hand, by Theorem 4.2 we have
ATf o7, = ()« (flw) ON Dy, (4.13)
and
17f o7, My 00 < CUTF a0 < CILF oo (414)

Observe thaD,, is a smooth, strictly pseudoconvex Euclidian domain and that
D4, = A(D,) forall A € SO(n + 1, R); we may thus apply Theorem 8.2 of [14].
It then follows from (4.13) that there exists a const@nindependant ofv such
that

ITf o 7 Iry sow < CUTS o7, as ) + 1T ) l0,)-
This, combined with (4.12) and (4.14), implies that
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T < |Tf O771;1||I‘%’1(Dw)|h|||Og|h|| = ClIf w0l h1llOg| ]|

Combining estimates (4.10) and (4.11) with the one just displayed, the proof of
Theorem 4.7 is complete. O

5. Proof of the Main Theorem
Consider the proper map: M — B, \ {0} defined by

T[(Zla cees Zns Zn+1) = (Z].? sy Zl‘l)-

Let 6 be the Lebesgue surface measureddy \ V and denote byiz A dz the
canonical volume form of”.
We recall from [24] and [17] that

do
do (¢, {nq1) = Cﬂ*(%) for (¢, £ny1) € OM (5.1)
and
[(2) A a@)](z 2at1) = Cn*(dfzsz) for (z, z,4+1) € ML (5.2)

ProPOSITION 5.1.  Suppose thaf is ad-closed(0, 1)-form of clas<C* defined in
a neighborhood of8,.. Then the solutioT(z*f) given by Theorem 4.2 satisfies

(TN znrD) = (T(@f)) (@, —2a41)  Y(2, 2n42) €M

Proof. Suppose thaf e Cal(rIB%*)_for somer > 1. SincerB, is pseudoconvex,
there exists a e C1(B,) such thabu = f in B,. Then it follows from (4.3) that

T(*f)(2) = uney = (7*u)(2) — Sml7*u](z) VzeM. (5.3)
In view of formulas (2.11) and (5.1), it can be checked that
Smlm*ul(z, zu+1) = Sul7*ul(z, —zp11) VzeM.

This, combined with equality (5.3), completes the proof. O

We are now in position to prove the main theorem.

First we assume that is ad-closed(0, 1)-form of classC* defined in a neigh-
borhood ofB,. The general case will be treated later.

In view of Proposition 5.1, we can define

(T)(2) :==T(" )z, 2n41) V(2 Zng1) € ML (5.4)

Combining Theorem 4.2 and Proposition 5.1, we see that the solution opEfator
satisfies

ITf oo < Cll f e
(THE) = TN = Clfllos (12— wl + min 1VZo7 + ev/ww])’

Vz, w € B,.
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Letz, w € B,. Then there exist, 1 € C andw,1 € C such thatz, z,,11) € M,
(w» wn+l) S Ma and|2n+1 - wn+l| < |Zn+l + wn+1|~
Using the latter estimate, we obtain
2 2 2 1 1
|Zn+1 — Wasal < zpp —winl2 =lzez—wewlz < Clz —w|2.
Hence .
|Z - wl + |Zn+l - wn+l| =< C|Z - w|§- (55)
On the other hand, we have

|wn+1 — In+1 + Wp41 + Zn+l|
2

w11l = < |zps1 + Wpyal.

This implies that
2 2
[Wpal|Zn1 — Wogt| < |Zn+1 - wn+1| <Clz—wl|.
Therefore,

|[wi(z1 — w1) + -+ - + Wyg1(Zpg1 — wug )| < Clz — wl, 5.6)
[wi(zy — w1) + - + Wpg1(Zpt1 — Watd)| < |z — w). .
We consider two cases.

Case 1:N,(z) <1—ro/4, N.(w) < 1—ro/4. Herergis the number appearing
in the proof of Theorem 4.7.
In view of estimate (4.7) and Lemma 4.1, it is clear that

[J1(a) — i) < Cll fllcla — bl Va,b €My a.
Combining the latter estimate with (4.8) and formula (4.1), we see that
[(Tf)(2) = (Tf)(w)]
< Cllflloolz = wl + |zn+1 — wpraD 109z — w4 Zp41 — wara)]-

Hence, by virtue of (5.5),

(T)@) — (THHW)] < Cllf loolz — w2 |loglz — wl|.
This completes case 1.

Case 2: N.(w) > 1— ro/4. We may assume without loss of generality that
|z — w| < ro/8. ThUSN,(z) > 1—rg/2.
Let T/ denote the complex tangent spacedi®), ,,, at (w, wu41).

(W, wy+1)

Then, by virtue of (5.6), we obtain

. |[w1(z1 — w1) + -+ + Wpg1(Zp41 — Wag)]
4 —
dISt((Z7 Zn-‘,—l), T(‘LU,U),,+1)) - |(w’ wn+1)|

IA

Clz —wl,
(5.7)
[wi(ze — w1) + -+ - + Wpg1(Tpt1 — Wyy1)|

|(w, wy41)]

diSt((Z, Zl‘l+1)7 T(w,wn+1)) =

<Clz —w]|.
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Since (w, wy+1) is normal t0 Ty, w,.y), (W, wat1) is normal o7, . and
(w, wyy1) is orthogonal tqw, w,11), @ geometric argument shows that
[dist((z, 2n 12 T wn) N T )] = [AISE(E. 2040 Tow, )]
+ [dist((z. 2ur2)s Ty 1)1
This, combined with (5.7), yields that

diSt((Z, Zn+l)9 T(w,w,,+1) N T(iuver»l)) S C|Z - LU| (58)
Letv € Tiw, w40 N Ty 4,,,) SUCH that
|(Z, Zn+l) - U| = diSt((Z, ZnJrl)v T(w,w,Hl) N T(:Mw,lJrl))- (59)

Then there exists a curyee Clz(M) such that

7(0) = (w, wy12),
, (5.10)
ly 2lv — (w, wpi)]) — v < Clv — (W, wa42)|°.

We estimate
(T (@) = (THW)| < T ()2, znt1) — T(T"f) (V)]
+IT (")) = T(x"fHy v — (w, war) D
+HIT (@ )y 2lv — (w, weD) — T (@) (¥ (0))]
=141 +1I.

Using the estimates (5.5) and (5.8)—(5.10) and then applying Theorem 4.2, we im-
1

mediately majorize | and |1 b || f ||colz — w]2.
Applying Theorem 4.7 yields that

< Cll flloolv = (w, wpsl0glv — (w, w2

< Cll fllool(zs 2n42) — (w, wasD[109](2, 2nt1) — (W, Wit

< C||flloolz — w|Z|log|z — w].
Hence, )
((TF) (@) — (TF) )| < Cllflnclz — wi2[loglz — wll.

This completes case 2.

It remains now to treat the general case. If merglg AF;(B.) then we can
regularizef by convolution with &§° function of sufficiently small support. Then
the same limiting argument as in [22, pp. 361-362] shows that the conclusion of
the theorem also holds for sugh The proof of the theorem is complete. O

We conclude this article with some remarks.

REMARK 5.2. Making use of formulas (5.1), (5.2), (5.4), and (4.1), we can write
down explicitly the solution operatdff. In this caseIf has the form stated in
Section 1. We can also obtain another expressiofifdsy applying (5.2) tar .
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REMARK 5.3.  Inview of Remark 4.6 and formulas (5.1) and (5.4), we have the fol-
lowing characterization?’f is the solution obu = f that has smallesﬂz(ff%)-
norm.

REMARK 5.4. We do not know whether the Lipschgzestimate can be improved
to Lipschitz3.
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