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An Analog of the Classical Invariant Theory
for Lie Superalgebras

ALEXANDER SERGEEV

Thisis adetailed version of my 1992 shortannouncement [S3]. For prerequisites on
Lie superalgebras see Appendix 0 and Appendix 1, which are mainly borrowed from
Leites’s book [L3]. A draft of this paper was put on the net (math. BI0913)
“earlier and independently”, as Cheng and Wang referred to it in their papers
[CW1; CW2], where they elucidate some of the results given here and also give an
interpretation of a formula for projective symmetric functions. Still, a further elu-
cidation will not hurt, and | intend to return to it elsewhere. Meanwhile, recall that
Howe suggested a unified approach to the first and second theorems of the classi-
cal invariant theory: compare [Wy] with [H]. This approach becomes even more
unified in [LSh], where Lie superalgebras that more or less implicitly linger in the
background of [H] become the main characters. In this and a subsequent paper |
consider analogs of these theorems for “classical” Lie superalgebras.

Related are problems on description of the cente@ @) (cf. [LS; S1; S5]).

The pioneer here was Berezin [B1; B2; B3], who somewhat differently consid-
ered, to an extenty = gl, sl, andosp. Scheunert [Schl; Sch2; Sch3; Sch4] has
reproduced some of my results.

The reader should be aware of a totally different approach to invariant theory
due to Shander [Sd1; Sd2], who justly observes that for Lie superalgebras it is pos-
sible not to restrict oneself to the study of polynomial functions and makes a step
in this purely super direction.

1. Setting of the Problem. Formulation of the Results

1.0. LetV be a finite-dimensional superspace o{eand letg be an arbitrary
matrix Lie superalgebra, that is, a Lie subsuperalgebig(# ). Under theclas-
sical invariant theoryfor g we mean the description gfinvariant elements of the
algebra

Al =S(VPe (V) @ V& II(V)*),

whereV? denotes the direct sum pfcopies ofV. Clearly,
A/ =S URVPHV W),

where dimU = (p, q) and dimW = (k, 1). Therefore, Lie superalgebra§U)
andgl(W) also act orizlf:l"; hence, the enveloping algebta gl(U ® W)) also
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acts on(;’/. The elements ot/ (gl(U ® W)) will be calledpolarization opera-
tors. These operators commute with the natylad )-action.

A set91 of g-invariants will be calledbasicif the algebra of invariants coincides
with the least subalgebra containifij and invariant with respect to polarization
operators.

Hereafterg is one of the “classical” Lie superalgebras (i.e., simple ones, their
central extensions, and the Lie superalgebras of derivations of the simple ones);
for suchg, | describe a basic set of invariarig.

Let us introduceZ,-graded sets, the disjoint unions of the “even” and “odd”
elements (the odd elements are barred):

T=n|[n=.. k1.0
S=S][si={L....p.1....3)

I=L][h=(....n1. . ;).

In the space#/, W, V we select bases such that the parity of the basis vector coin-
cides with the parity of its index:

{uyier, (wslses, {eidier.
In V*, select the basif}};c; that is left dual tde; };¢,. Let
xi=u; Q¢ and xj, =e @ w;.

Let v, be the column vector with coordinateg, ..., x , and letv; be the row

s Mmmso

vector with coordinates,y, ..., x,5. Define the scalar product by setting

v}, v5) = Zx,ix;; forany v, e V, vy e V*.
iel
Set
A =det(x;)icry, A" = det(x;);sery;
o =det(x,);icr;, @ = detx}); ser;-

1.1. THEOREM. As a basic set of invariants afi(V) in 2}/, one can take the
collection of scalar products

(v}, vs), WheretreT, seSs.

(This statement clearly holds for nonemftynd S; if at least one ofT" and S is
empty then there are no invariants.

1.1.1. CoroLLARY. The scalar productsv?, v,), wheretr € T ands € S, consti-
tute a system of generators gf(V )-invariants.

1.2. THEOREM. As a basic set of invariants afl(V) in 2}/, one can take the
set consisting of



An Analog of the Classical Invariant Theory for Lie Superalgebras 115

(a) basic invariants ofgl(V) and
(b) the collection of the following polynomials., for k € N:

fe= @' T @hv) and fpo=a%N" [T @fw.

teli,xelo tel@,seli

Let us usersp(V) to denote therthosymplectid.ie superalgebra preserving the
tensor

r

* * * * * * _
Zei ®e, i1+ Z(em@)ej—. —e; ®em) for m = 2r.

iely j=1

Then the inner products

— ()
(0o v0) = D i+ (DY (6 6~ Xx)
iely j=1
are clearlyosp(V )-invariant. In what follows we will show that there also exists
an invariant polynomiaf2 (Pfaffian) such that

Q% = (det(vy, v)srer)” ™

The existence of an evatsp(V )-invariant form determines an isomorphism of
algebras as well as otp(V)-moduIeSZ[i:,q ~ r+ka+l Therefore, we may (and
will) confine ourselves to the cage=[ = 0.

1.3. THEOREM. As a basic set of invariants afsp(V) in 20724, one can take the
set consisting of

(a) the scalar productsuvy, v,) for s, t € S (for nonemptys); and
(b) the polynomialk2.

1.4. LetdimV = (n,n); let us usepe(V) to denote theeriplecticLie super-
algebra preserving the tensor

(€ @ef +ei@e).
iely
The inner products

(5, v) = Y (=D xt + % x7)
iely
are clearlype(V)-invariants.
The existence of an odgk(V )-invariant form determines an isomorphism of
algebras as well as pk(V)-modules}’/ ~ 2»+"4+* Therefore, we may (and
will) assume that =7 = 0.

1.4.1. THEOREM. As a basic set of invariants gfe(V) in 2077, one can take the
set of the inner product&, v,) for s, € S (for nonemptys).

1.4.1.1.CoroLLARY. The inner products form a system of generators of the al-
gebra of pe(V)-invariants.
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1.4.2. THEOREM. As a basic set of invariants afpe(V) in 217:9, one can take
the set formed by

(a) the basic invariants fope(V') and
(b) the collection of the following polynomiajs;, for k € N:

pe=a&% J] @ov) and pu=o™ [] 0.

s<t, s,t€lg s<t,s,tely

15. LetdimV = (n,n), and letq(V) denote the Lie superalgebra preserving
the tensor

Z(ei ®eit+e;®e).

iely
The expression

[v), vs] = Z(xi,xj—fs +x;,x5) foranyreTs, seS;

is clearly aq(V)-invariant. Since there is an isomorphism of algebl(ﬁ# ~
ALT7 as well as ofy(V)-modules, we may (and will) assume tigat= [ = O.

1.5.1. THEoREM. As a basic set of invariants af(V) in 27, one can take the
collection of inner products

(v, vs), [v],vs] foranyteTs, seSs.

(This statement clearly holds for nonemfiyand Sg; if at least one of them is
empty then there are no invariants.

CoroLLARY. The inner products form a system of generators of the algebra of
q(V)-invariants.

Let Z be a matrix of the form

Zo 21 . .
Z = <Zl Zo)’ where Zo = {(v], v)}1 serg> Z1 = {[v], vsl} i ser

and letY be a matrix of the form

Yo 1
Y = (Yl YO), where Yy = {x;ks}i’sglb, Y= {xi*t}ieloyfeli' (150)

In what follows we will prove that, for any partitioh = (A4, ..., A,), where
AM>Ar> o> A, >0, (1.5.1)
the expression composed of queer traces and the queer determinant
¢, = qtrZ* ... qtrZ* - gety
is a polynomial.

1.5.2. THEOREM. As a basic set of invariants afq(V ), one can take

(a) the basic invariants fory (V') and
(b) the polynomialsy,, where runs over all partitions of the forr(l.5.1).
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2. Preparatory Theorems

2.1. THEOREM. LetdimV = (n,m) anddimU = (k,!) withk > n and/ >
m. Then the algebr&* (U ® V) considered as gl(U) & gl(V)-module can be
represented in the form

SUeV)=Qutev
A

where runs over the set of Young tableaux such that; < m andU* and vV*
are irreduciblegl(U)- and gl(V )-modules corresponding to the tableau

Proof. By [S2] we have the following decompositions:
vek=Pvresh, U= u"esh.
A n

HereS* andS* are irreducibleS,-modules corresponding to the tableauand
wu, respectively.
We then have the following isomorphisms:

SHU®V) = SHU ® (V*)*) = S (Hom(V*, U))

= Homg (V*®% U®¥) = Homek(@(v** ® S, @(U“ ® S“))
A

n

= @ Hom(v**, U") ® Home, (5%, $*) = P U* & (V*)*
A

A
=Pwrevh.
A

All these isomorphisms agg(U)- andgl(V )-isomorphisms. O
The following theorem is similar to Theorem I1.5.A from [Wy].

2.2. THEOREM. Let g be a Lie subsuperalgebra igi(V). If 91 is a basic sys-
tem of g-invariants in2”"  then9 is also a basic system of invariants in the

n,m?

algebra?l}’/ for anyk, p > nandq,! > m.
Proof. Let Uy C U, W1 C W, and dimU; = dim Wy = (n, m). By Theorem 2.1
we have
SU1@Ve VW) =SU1eV)® S (V' ® W)
=Pwrev evew,
Al
wherei, u are Young tableaux such thgt,; < m andu, 1 < m.
Similarly,
SURVeVRW)=PU Vv v ewh),
A1
wherei andu are the same here as in the previous expansion.
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The embeddingé/; — U andW; — W induce an embedding: A —
A,/ thatis a(gl(U1) & gl(W1))-homomorphism. Set

AP D =U" @V @V @ W

Henceg (A7), 1) C (A} /). 4. and sincep is also agl(V )-homomorphism it
follows thate((A7)9) C (A])®. The elements of the spacdl}’/); , will be
calledg-invariants of typg, w).

Let f be ag-invariant highest vector of typ@., n) with respect to a Borel sub-
algebraingl(Uy) & gl(Wy). If we select a Borel subalgebragi(U) & gl(W) that
preserved/; and Wy, then f is still a highest vector for such a subalgebra. This
proves that, as l(U) @ gl(W))-module 5! )}  is generated by the subspace
p(@ym)7 ) and the theorem is proved. O

sm

2.2.1. REMARK. One can similarly show that:

(a) if M is a basic system of invariants fa-™ then it is also a basic system of
invariants fork(”4, wherep > n andq > m;

(b) if 9t is a basic system of invariants fr; then it is also a basic system for
any algebr&l?, wherep, k > n.

Let A be a supercommutative superalgebra dveand letL be ag-module; set
Ls=(L®A)jandgs = (g®A)z. Thenthe elements 6f(L*) can be considered
as functions orL, with values inA. Let/ e Ly = (L ® A)g = (HOm(L*, A))3.
Hence,l determines a homomorphism: S*(L*) — A. For f € S°'(L*), set
f() = ¢;(f). Notice thatg, naturally acts ori., and on the algebra of functions
onLlLy,.

2.3. How TO DESCRIBE g-INVARIANTS IN TERMS OF THE POINT FuNcTOR. The
following result from [S1; S3] essentially means thatAifs a Grassmann super-
algebra with “sufficiently large” number of generators, then for the description of
invariants ofg or the corresponding Lie supergroapit suffices to confine our-
selves toA-points. We recall the language of points (see Appendix 1). Observe
that, instead of a functor iA or a tower of sets ofA-points, Berezin [Bel; Be2;

Be3] considered just one Grassmann superalgabnath an infinite (countably
many) number of generators; however, such an approach may lead to complica-
tions occasioned by the infinite number of generators.

STATEMENT [S3]. LetA be a Grassmann superalgebra with the number of gen-
erators greater thamim L. An element o8°(L*) is a g-invariant if and only if,
considered as a function ahy, it is invariant with respect t@,.

CoroLLARY. LetG, be the connected Lie group corresponding to the Lie alge-
brag.. Then an element &f*(L*) is a g-invariant if and only if, as a function on
L4, this element i$54-invariant.

Let
L=VPOII(V) @ V*a (V).
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Thens*(L*) = 2}/ and the spacé, can be considered as the set of collections
£=(1,...,Vp, Vi, ..., V5, V], ..., U}, v’{, L, UY); (2.3)

herev, € V ® A andv} e Homy(V ® A, A), and their parities coincide with par-
ities of their indices. The vectors will be expressed by means of right coordinates
and covectors by means of left coordinates:

Vg = Ze,’a;‘s, v = Zatie;‘.
If we consider the elements of the algeBrg/ as functions ort, then
xi(£) =al, and x,(£)=ay.
In gl(V), introduce &-grading by setting
al(V), ={Aegl(V): AVy =0, AV; C V),
gl(V)o = gl(V)g,
gl(V)_ ={Aegl(V): AV; =0, AVy C Vi}.
Denote byb (V) the Borel subalgebra that consists of even upper triangular matri-

ces inthe basi&; };c;, and letb_ (V) be the set of even lower triangular matrices.
We will apply similar notations tgl(U) andgl(W).

3. Invariants for the Lie Superalgebra gl(V)

Proor oF THEOREM 1.1. ByTheorem 2.2, it suffices to consider the case of the
algebrall;-7". By the corollary to Theorem 2.3, we must consider functions on
collections

L£=(V1 .00, Vpy VY, «vy Uity U], «ovsy Ul v’{,... vE (3.2

contained in the algebra generated by coordinate functions and invariant with re-
spect to the Lie group GV ® A). Denote byM the set of collections such that
the vectors
V1, -y Uy Vs oo ey Usit)

form a basis inV ® A. If we considerM as an algebraic variety, then in Zariski
topology it is dense in the space of all collectionsflis a GL(V ® A)-invariant
and £ € M, then there existg € GL(V ® A) such thatgv; = ¢, for s € I;
therefore,

f(©) = f(g0) = fles, ..., en, gVT, .., V)

and f(£) is a polynomial in coordinates of the vectgrs'. But
(v, e;) = (vf, 8 Yey) = (v}, ;) = (vs = ea. v = Zarie?‘)-

Hence, the theorem is proved. Its corollary is true because the polarization oper-
ators turn inner products into inner products. O
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4. Invariants of the Lie Superalgebrasl(V)

By the same reasons as given §ofV ), it suffices to confine ourselves to the case
of the algebra;-7". First, let us find out for which., x there exist invariants in
A5, 5 then we construct an invariant of tyge, 1). The tableaux and u

are callecequivalentif the modulesV* and V# have the same highest weight as
s[(V)-modules.

4.1. LEmmaA. The tableawd and i are equivalent if and only if one of the fol-

lowing two cases holds

(@) A =p; or

(b) A # u and bothA and n contain a rectangle of size x m such that there
exists ak € Z , that yieldsu when we deleté cells from the firsin columns
of A and add thesé cells to each of the first rows of A. If k < 0, then we
delete the cells from the rows and add them to the columns.

Proof. The case (a) is obvious.
For case (b), let # 1 and lety;, x, be highest weights of modulés*, V*
with respect td (V). We take the coordinates of the highest weight with respect
to the Cartan subalgebra consisting of diagonal matrix units.
Ify=@....1L-1..., - theny, — x, = ky, wherek € Z. Letk > 0O; then
(xu)m > 0andu, > m. Itfollows thatx, = k + u, > m, thatis, both tableaux
contain am x m rectangle. The case< 0 is treated similarly. The statement of
the lemma is now completely proved. O

4.2. LEMMA.

. 1 if A andu are equivalent,
dim(v* @ v*#)s'tV) = { H a

0 otherwise.

In the proof of this lemma we need basics of the notion of a typical representation
(typical module and highest weight). In this paper it suffices to know that, roughly
speaking, the highest weight of the irreduciglenodule istypical if is induced

from a representation gfs.

For the reader interested in further representation theory, recall that Kac [K1;
K2] termed the generic highest weights of irreducible finite-dimensional modules
over simple Lie superalgebras with Cartan matyigical weights and described
conditions for the coordinates of the highest weight to be typical in certain “sim-
plest” system of simple roots. Using “odd reflections”, Penkov [P 2] and Serganova
[Se] were able to extend Kac’s conditions to any system of simple roots. The term
“typical” became popular, and the description of typical highest weights was gen-
eralized on Lie superalgebras without Cartan matrix. For the periplectic and queer
series, the conditions for typicality were established by Leites [L2] and Penkov
[P1], respectively.

Proof of Lemma 4.2Since(V* ® V*#)*'V) = Homg ) (V#, V*), itis clear that
the sl(V)-invariants of type(i, u) that are distinct frongl(V)-invariants exist
only if » andu correspond to typical modules and are equivalent. O
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4.3. Lemma. Let M and N be finite-dimensionadl(V )g-modules. Set

gl(V),M =0 and gl(V)_N =0.
Then

o al(V) L al(V) e gl(V)
indy 1 v)omarv). (M) ® INdgy ) garv) (V) =indg ) (M @ N).  (¥)

Proof. Since the dimensions of both modules(i#) are the same, it suffices to
show that the submodule generatedbyw N in the LHS coincides with the whole
module.

Select basefX, }o-0in gl(V)+ and{¥z} g0 in gl(V)_, and letL be thegl(V)-
submodule generated By ® N. Consider an element

u="Ys .. Ym®Xqy... Xeyn, wheremeM, neN.

We shall prove by induction oh+ [ thatu € L. Fork 4+ [ = 0, the statement is
obvious. Letk +/ > 0 and

U= Yﬁz Yﬂ,m ®Xa1~~~ Xak}’l.
By inductive hypothesisj € L; henceY,ii € L. Furthermore,

U= Yﬁlﬁ + Y};Z Yﬂ,m ® YﬂlXal oo X
and

Yo Xoy oo Xoyn = [Vpy, X1 Xy - Xoyt — Xy [Yay, Xop] Xz oo Xy
+oE Xoy oo X [V, XogIn
By induction we havey, ... Ygm @ Y3, X, ... X n € L. O

4.4. Lemma. Letg = gl(V) or sl(V) and letL be ag-module. Ifu € L is a

go-invariant, then
[1x]] Yﬂu<]_[ B[] Xau>
o B B o

is a g-invariant (perhaps equal to zejo

Proof. Straightforward verification with the help of the multiplication table or

O
Leta = (m"*%) andu = ((m + k)"); then, inAgo = S*(V*" & TII(V)™), by
Lemma 4.2 there exists an invariant of ty@e w). It is not difficult to see that
this invariant is unique up to a constant factor. The submodule generated by this
invariant is isomorphic t¢Vol IT(V))®*. Recall that Vo{V ) is theg[(V )-module
determined by the supertrace (or, on the supergroup level, by the Berezinian or the
superdeterminant).

Similarly, inthe algebralg’,g’ = S'(V*"@II(V)*™) there exists a unique(V )-
invariant of type(u, 1), and the module generated by this invariant is isomorphic
to (Vol V)®k,

An explicit description of these invariants (as polynomigls) was given in
Theorem 1.2.
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4.5. LEmMA. For k e N, the polynomials
fe= @' T @hvo and fo=a%"" [T @hw
tely, sely tely, selj
aresl(V)-invariant.
Proof. Considerf; for k > 0 (the casé& < 0 is similar). Select basd¥,},-0in

gl(V);+ and{Y}s-0 in gl(V)_, and setX =[], X, andY = ]'[ﬁ Y. We intro-
duce the polynomials

M= [] & and M= [] x (4.5.0)
iely, sely tely,iely
This yields

X(A Ry = ¢ AMFTT, (4.5.1)

YX(A™"To) = o [[ f ). (4.5.2)

tely, sely
YX(A "0k TTg) = csfot [T @f vy, (4.5.3)
tely, sely

wherecy, ¢, c3 are nonzero constants.
Indeed, consides*(V*"),, with u = ((m + k)"). The elements\*”*+* and
A*FTT3, belong toS*(V*"),,, and

gl(V) (A7) = gl(V) 4 (A TT}p) = O.

Since the module correspondingyids a typical one, the equality (4.5.1) holds.
Now considerS*(V*" & T1(V)™),.; with A = (m"). We have dinU* =
dim W* = 1 for thisA and hence there exists only one invariant of tyjpgx):

[T @ vo.
l‘GIj_, SEI(J

On the other hand)*"'I1o belongs toV* @ V** and is agl(V )e-invariant. Lem-
mas 4.3 and 4.4 then imply (4.5.2).
Finally,

YX (A" T0) = Y (cr AT  Tg)
= a0ty (M) = cico& 0t T ] vy
tely, sely
by Lemma 4.4, this expression is giiiV )-invariant. The proof is complete. [
4.6. Proor oF THEOREM 1.2. It suffices to construct an invariant polynomial in
A4, for A andu as described in Lemma 4.1 that depends only on the poly-

nomials f; and the inner products. Lét> 0 and letx andu be chosen as in
Figure 4.6.
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« | o |
n
w=

A= }k 8
_I_I_

Figure 4.6

Let ¢, be a(b(U) & b, (W))-highest invariant of typé€a, «) in the algebra
S'(V" @ V*"), and letys be a similar invariant of typég, g) in the algebra
S'(II(V)" @ II(V)*™). Then one can verify thafy¢, ¥4 is a highest-weight vec-
tor with respect ta b (U) & gl(U)+) & (b.(W) & gl(W)_). Clearly, it is an
s[(V)-invariant and its weight corresponds to the pair of table@ux).

The casé& < 0 is treated similarly. O

5. Invariants of the Lie Superalgebraosp (V)

5.0. LetdimV = (n, 2r) andosp(V) be the Lie superalgebra described in Sec-
tion 1. By Remark 2.2.1, it suffices to confine ourselves to the alg¥brfa. From
the point of view of Theorem 2.3 we must describe the polynomials that depend

on the set
£= ...,V 01,...,05) (5.1

and that are invariant with respect to the simply connected Lie géguwhose
Lie algebraigosp(V) ® A)g, whereA is the Grassmann superalgebra with a suf-
ficiently large number of generators. Denote by O8@® A) the subgroup of
GL(V ® A) whose elements preserve the inner product

n 2r
_ ® % _1\P) Z * Fo_oxF oxr
(Usa U;) = insxn—i+].,t + ( 1) (xmfijlejJ xja3'xm*j+11’)
i=1 j=1

and by SOSpV ® A) the subgroup of OSfy¥ ® A) consisting of transformations
with Berezinian= 1. Itis not difficult to verify that SOSEV ® A) is precisely the
groupG, discussed previously.

Denote by @Vj) the orthogonal group that preserves the form

n
§ : *_ %

XiXp—it1:
i=1

Itis not difficult to verify that the invariance of an elemen&6f™ with respect to
OSpV ® A) is equivalent to the simultaneous invariance with respect to @ $p
and Q' Vp).
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First, let us prove several lemmas.

5.1. LemmA. Let M be agl(V)g-module, and segl(V), (M) = 0. Then we
have an isomorphism afsp (V') and O(Vg)-bimodules

ing?!") ~ ind®sP(V)
Indgf(V>o@9[(V)+(M) - Indosp(V)O(M)-

Proof. We describe a basis isp(V);. A nondegenerate form determines a map
A Aingl(V) such thatd = (-1)?“Y A. If, in a basis,S is the matrix of the
form preserved bysp(V) and P is the matrix ofA in the same basis, then

P =S7'psly,
where }_’St is the supertransposed matrix. {IX,} is a basis ingl(V)_, then
{X, — X} is a basis irsp(V); such thatX, e gl(V). Let
i ) o qsl(V)

¢ Indggp) (M) = IndGy) g, = L
be a homomorphism induced by the natural embeddihg—> L. On L, there
exists a filtrationLo € L1 C --- C Ly, WhereL, is the linear hull off(X,)m,
m € M, and degf < k.

Let us prove by induction that, C Img. The caseék = O is obvious. Let
Ly C Img; then(X, — Xo)Ly C Ime but X,L, C Ly_1. Therefore X, L, C
Img or Lyy1 C Ime.

The statement on @;)-modules is obvious, so the lemma is proved. [

5.2. LEmmA. Let g be a finite-dimensional Lie superalgebra and let the repre-
sentation ofgg in A%™91(g;) be trivial. Then, for a finite-dimensiongk-module
M, there exists an isomorphism of vector spaces

(indg_(M))® ~ M.

Proof. We will show that(indj (M ))* ~ indj (M*) asg-modules. Letg; =
Spanéy, .... §,). ThenL = ind§ (M) has a natural filtration withys-modules
and,asinLemma54,CL;C---CL,=0L.
The map
M— L,/L,_1, mw— &...Em (modL,_y)

induces an isomorphism gg-modules:M* ~ (L,/L,_1)*. Therefore, we have
an embedding ofz-modules

M*— (L,/L,_)* — L™
This map induces a homomorphism gng*) — L*. Consider thgg-invariant
bilinear form corresponding to this homomorphism:
indgo(M*) x inng(M) — C,
(m*, &...&,m) =m*(m) for m*e M*, me M.

Let u be a nonzero element from the left kernel of the form. Then there exists a
filtration on the module” = indgb(M*), and the same is true dn. Letu € T;
butu & Ti_1. Then
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U= Zgil"'éikmfl...ik + Up_1.
Set
v = %_jl’ ...,Sjlm, where {]1][} = [1, ...,p] \{i]_, ...,ik}.
Then
(u,v) = &y ... &m;, . v) =xmy (m)=0.

Becausen is arbitrary,m} , = 0 and thus: = u;_1 € T;—1, a contradiction.

Henceu = 0. Furthermore,
(inng(M))g = (indgé(M*))*gl = (M*)*% = M9%, O

REMARK. (1) If g5 D o(n) andM is such that thgz are Qrn)-modules and the
O(n)-action inA?(gj) is trivial, then the statement of the lemma remains valid for
the mutualg- and Q(n)-invariants and the mutugh- and Q(n)-invariants.

(2) The following refinement of Lemma 5.2 can be obtainéad: € M is agg-
invariant, then the correspondinginvariant vectoru is of the form

u==%... fpm +up-1, where Up_1€ Lp,]_.

Description ofOSp(V ® A)-Invariants

5.3. THEOREM. AnyOSpV ® A)-invariant element fron?-¢ is a polynomial
in inner producty(v,, v,), wheres, t € S.

Proof. The proof proceeds by induction on difg. If dim V5 = 0 then the theo-
remis proved in [Wy], so let din¥g = n > O. It suffices to show that any invariant
of type A with 1,1 < 2r can be expressed in terms of inner products.

Let A satisfy the condition.,, < 2r. Consider the algebra

Q(nler — @ V*A ® W)L.
In=<2r

If {v1,...,v,-1,v1,...,v5]} is a collection of vectors in general position from
V ® A, then after an orthogonalization we may assume that there exjsts a
OSpV ® A) such that

gSpanvy, ..., v,_1, vy, ..., v5) = H = Spaney, ..., e,_1, €1, ..., 5,).

Let f € 2A"~*2" be an invariant with respect to O8p ® A), and let f denote
the restriction off onto H. By the inductive hypothesig; is a function in inner
products(vs, v,) with o, v, € H. Hence,

fuy, oo vp1, 08,00, v5) = f(gvl, ey 8V3)
= F((gvs, gvy)) = F((vs,v,)) for s,tel\{n}.

Now, letx, > 2r butx,,1 < 2r. Then thegl(V)-moduleV** is a typical one;
that is,

*A i gl(V)
vV =indg ) eeir), (M)
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2r

doe e
v ]

Figure 5.3

whereM is an irreduciblgl(V )o-module. IfA is of the form shown in Figure 5.3,
thenM = Vi* @ Vih+o',

It is not difficult to verify, for the orthogonal case and (similarly) for the sym-
plectic case, that

1 if aiseven
dim(vze)°Vo) — ven,
Yoo 0 otherwise;
dim(VA+3 s { 1 if (B+4') iseven,
' 0 otherwise.

These conditions are equivalent to the fact théd even (all rows are of an even
length). Lemmas 5.1 and 5.2 imply thatifs typical, then

dim(V*+)OSRV@h) 1 ifxis (?ven,
0 otherwise.

Further, fors, t € I the inner productsv,, v,) are algebraically independent. If
we consider the algebf@[ (vs, v,);, ;] as agl(W)-module, then

C[(U;ra Ut)s,tel]z @ w*.
)Ln+1§2r

This is a corollary of a general identity farrings (see [M, Sec. 5]). This shows
that if 1 is typical and even then there exists an invariant of tykepending on
inner products. The induction is completed and thus Theorem 5.3 is proved.

5.4. LEmMaA. There exists ansp(V)-invariant  such that

Qz = [det(vm vt).v,te]o]2r+1-

Proof. We have
S-(V*n) — @ V*)\. ® W)n‘
)HH»l:o

Let A = ((2r +1™); then dimW* = 1, the moduleV** is typical, andV** =

indﬁi%io@gm,(M), where dimM = 1andM = SpanA*Il;,). By Lemmas 5.1

and 5.2 there exists ap(V)-invariant

Q=]][Xa - X)A i+ Q= [ [ Xa A5+ Q= AF T4+ Q.
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Therefore,Q? # 0 but Q2 is an OSpV ® A)-invariant and its type is equal
to ((4r + 2)"). However, as is easy to see, the algeBt&/*") has only one

0SpV ® A)-invariant of such type—namely, [det, v, .c1,]> T~ The lemma

is proved. O

5.5. ProoF ofF THEOREM 1.3. Let f be anosp(V )-invariant but not an OVp)-
invariant. Letf depend om — 1 even and 2 odd vectors, and let these vectors
be in general position. Then, as in Theorem 5.3, there exigts ®@SpV ® A)
such that

g Spar(vl, ceey vz—r) = Spar(el, ceey ez—r).

Let he, = —e, andhe; = ¢; (i # n). Then befh) = —1 (see Appendix 0) and
f(hgl) = — f(gL) for £ as defined in (5.1). On the other harfdhgl) = f(gL)
and thusf = 0. This means thaisp(V )-invariants distinct from inner products
can only be of type., corresponding to a typical module.
We can thus apply Lemmas 5.1 and 5.2. The same arguments as in Theorem 5.3
yieldthatdim(V**)°sp(V) = 1if (a) A istypical, (b) its firsk: rows are of odd length,
and (c) the remaining rows are of even length; otherwise( ith)°s*") = 0,
(We do not take OSfy ® A)-invariants into account.) Lét be as in Figure 5.5.

2r+l

Figure 5.5

Let us construct an invariant of type Denote byp, the invariant of typer that
is highest with respect t, (W) in S*(V*"), and letys be the invariant of typg
that is highest with respectta (W) in S*(TT(V )*?"). If {D;}isabasis of((W)_,
then itis not difficult to verify thatys [ D;(Q¢,) is (b1(W) & gl(W)_)-highest
and is of type,. The theorem is proved. O

6. Invariants of the Lie Superalgebrape(V)
LetdimV = (n, n). ByRemark 2.2.1, it suffices to consider algetdd'. Denote

by PV ® A) the Lie subgroup in GV ® A) whose elements preserve the inner
products
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n
(0 v) = D (=DPOxfxt +x3xp) for s.telo.

sVt
i=1

This is the connected Lie group corresponding to the Lie algebrarpdints of
the Lie superalgebrge(V).

6.1. LEmmA. For any irreducible typical((V)-module

_indgl(V) ~ ind8l(v)
L =indg ) aeiv), (M) = ndg ) aqiv) (V)

there is an isomorphism of vector spadeg¢(") = psreV)o = Nys#e(V)p,

Proof. The decomposition (and also tiegrading)
gl(V) = gl(V)- @ gl(V)g @ gl(V)+
induces the decomposition (and also #hgrading)
spe(V) = spe(V)_ @ spe(V)g @ spe(V),.

Select a basifls}1<g<,2 in gl(V)_ so that{Yﬁ}lgﬁS%nm_D is a basis ispe(V)_.
Similarly, select a basiX, }1<4<,2 in gl(V)4 so that{Xd}lgag%n(n+l) is a basis
in spe(V),. Consider two gradings of the module

Ly = Spar{f(X,)n :neN, degf = k for all a);
L, = Span(f(Ys)m :me M, degf =k for all ).

It is not difficult to verify thatL] = L, - Letl be anspe(V)-invariant; then
Xyl =0forl<a < Jn(n+1. LetX" =[] X, fora < in(n+1); hence/ =
X*f(Xy)n forn e N and thereforé = ) Y, wherelF e L.

rz%n(n-&—l) r
We can similarly verify that = > 1, 4 /5 for {7 € L7. This implies that
>1 : : :

s

+ - G - — 7+ - + -
Z,,E%H(HD Ir= ZQ%”(,H) 7. SinceLy = L7, , we obtainl € L%n(wl) =

Ly and/ = X*n = X~m, wherem ¢ M andX~ = [[¥s for 8 < in(n—1).
2" n—

Itis clear thatn andn arespe(V)g = sl(Vg)-invariants. Conversely, if: and
n aresl(Vg)-invariants then a straightforward verification shows tat: and
X~ m arespe(V )-invariants. The statement on bijection is obvious, so the lemma
is proved. O

6.2. ProoF oF THEOREM 1.4.1. The proof is via induction on difif.

The case: = 1 s straightforward, so suppose the theorem holds foridjre
n — 1 Let us considerf € S (V*"1@ II(V)*"~HP&V) where dimV = (n, n).
For the generic vectors

(vl, ceey Up—1, V3, o v ey vm),
there exists somg e Pg(V ® A) such that

gvi [S Spar(e:b <oy €1, ei’ Tt er:l.) = H
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Let f be the restriction of to H; by the inductive hypothesigf is a polynomial
in inner products yet

flva .o v;) = fgva ... gu=1) = F((8vs, 8V s ieto) = F (Vg Vo), rero)-

Since
S'(V*n_l@ H(V)*n—l) — @ V*A ® W)\’
An<n—1
it remains to demonstrate that the invariants in typical modules can be expressed

in terms of inner products. Lét be a tableau of the form shown in Figure 6.2a.
Applying Lemma 6.1, we see that an invariant of typexists if and only if there

exists ansl(Vp)-invariant inM = V:* ® Vi*ﬁ”/. We have an isomorphism of
spe(V)g-modules

M= Ve @ VI = Homvg, vi+)

and thusM contains asl(Vy)-invariantif 8+38’—« isamultipleofy = (1, ..., 1).

n n+1

nl & ¢ nl 8 | %]

a) b)

Figure 6.2

Again by Lemma 6.1, the invariant is of the forkt m and—since we wish it
to bepe(V )-invariant—we need it to be gl (Vg)-invariant. Its weight is equal to

B+8 —a—-m—-Dy=B+ny—a—-n—-DDy=B8—a+y=0;

that is,« = B + y and the tablea should be of the form shown in Figure 6.2b.
Let us explicitly indicate an invariant of such typeThe Lie algebra((Wg) &
gl(W3) acts on the algebra

A = C[(vi, Vit jer].

and with respect to this actio?l = @, Wg ® Wi'. Let ¢, be a vector from
2 of type « that is highest with respect tb, (W). Then we can verify that
Hliisjs,l(v[, V)@ 1S a (b (W) @ gl(W)_)-highest vector of type., proving
the theorem. O
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7. Invariants of the Lie Superalgebraspe(V)
First, let us construct certaitpe(V )-invariant elements in the algebg:".

7.1. LEmma. The polynomialsat* ]'[XE,,S’,HD(US, v,) are spe(V)-invariant for
k=123,....

Proof. Consider’l = S*(V*") and letA = ((n + 1"). Then, in%l, there exists
only one invariant of type..

= [[ v
s<t,s,tely
On the other hand, by Lemma 6.1 we have
X (AT =07
(see (4.5.0) for the definition ofTi,). Furthermore, the vectoA***IT, is a
spe(V)g-invariant andyl(V )+ (A***1IT5,) = O; hence by Lemma 6.1 we obtain an
invariantX ~ (A**111%,). Itis not difficult to verify thatX ~(A*) = O; therefore,
X*(A*k+ll—[>(£0) — A*kxf(A*l—[ﬂio) — A*kn+
and the lemma is proved. O

7.2. LeMMA. The polynomialgo** [Ts<i,s,re1,(vs: v7) are spe(V)-invariant for
k=123 ...

Proof. As in Lemma7.1, letA = ((n +1)"). In ™", consider the vector
n=n ] X;=aT5,
i€l sely
It is not difficult to verify thatgl(W)_(A*IT;,) = 0 and A*ITj, is aspe(V)g-
invariant that is highest with respect ta. (W) @ gl(W)_ and of typei. By

Lemma 6.1X *n is aspe(V)-invariant (and evepe(V )-invariant), and clearly it
is highest with respect th, (W) @ gl(W)_. But such is also the invariant

det(v;, vy)i, jer, 1_[ (vs, v7).
s<t,s,tely
Using the notation/ = det(v;, v))i, jer, andIl™ = [, ; ,c;,(vs. v7), We have
X*n = cdIl~ for ¢ # 0. Now consider the vectap**n. By similar arguments,

the expression
XHw*n) = "X n = 0 dl "¢

is anspe(V )-invariant. Dividing byd yields the statement of the lemma. O

Lemma 7.1 implies that, on the group®e® A), there exists a multiplicative
function
B : B%(g) =berng) for gePgV ® A).
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Let us denote this function by’ber(g); denote by SP& ® A) the subgroup
of PeV ® A) consisting of matriceg such that berg) = 1 and denote by
SSP¢V ® A) the subgroup consisting of such thatv/ber(g) = 1. We ob-
serve that SSR& ® A) is the connected Lie group corresponding to Axpoints
of the Lie superalgebrape(V).

7.3. Proor oF THEOREM 1.4.2. Let us find. for which there exists agpe(V)-
invariant of typex that is distinct from inner products. Létbe atypical. Then
an invariant of type., if any, belongs to the algeb&(V**~1 @ I1(V)*"~1) and
there exists & € Z such that
f(g8) = (Vber(g))‘f(g) for £ asin (2.3).
For generic vectors there exists sogme P&V ® A) such that
gv; € Spar(el, .oy en_1, e, ...,em).

Then Spatg e, g es) and Spafey, ..., e,-1, €1, ..., e, ) are orthogonal. By
applying an appropriate transformation from(Be

(gilena gileﬁ> g <ena eﬁ)a
we may assume thgte SSP¢V ® A).
Let ke, = ae, andhe; = a~Le; with the other vectors fixed: then
hePgV ® A) and +ber(h) =a.

Besides,f(hgl) = a*f(gL) = f(g£) and thusf = 0if k # 0. Therefore
should be typical. By applying Lemma 6.1 we deduce that there exists &
and thatx is of the form shown in Figure 4.6, whepeshould be read ag’ and
m=n.

Finally, we construct invariants of type Let ¢, be as in Theorem 6.1. Then
w** T~ ¢, and A**TT* ¢, are the invariants desired. The theorem is proved.]

8. Invariants of the Lie Superalgebraq(V)

Denote by GQV ® A) the subgroup in GLV ® A) that preserves the inner product
[v], vs] = Z(x,ix:fs +x;x5) for s, relj.
i=1

As mentioned in Remark 2.2.1, it suffices to confine ourselves to the algébsa
So(vn @ V*n)
8.1. Proor oF THEOREM 1.5.1. Let us consider a generic collection

L= (vy,..., 0, vi{, ce D)

There existg € GQ(V ® A) such thatgy; =1; (i € I). If fisaGQV ® A)-
invariant, then
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F(&) = f(gl) = fler, ..., en, gV}, ..., gUL)

is a polynomial in coordinates @fv}, but (gv}, e;) = (v}, vs) and [gv}, e;] =
[v}, vs]. Hence,f is a polynomial in inner products. O

9. Invariants of the Lie Superalgebrasq(V)

First, let us prove a theorem which for the Lie superalgelok&) plays the same
role as Theorem 2.1 plays fgt(V).

9.1. THEOREM. LetdimV = (n,n) anddimU = (I,1). Then we have an iso-
morphism of(q(U) & q(V))-modules

S RWeV)~ @ 279yt @ v,
)\n+1=o

Here U* and V* are irreducibleq(U)- and q(V)-modules corresponding to,
where is a strict partition such that
S = { 0 if |A is- even,
1 otherwise.
(For the definition of the module 2U ® V, see Appendix 1.)

Proof. According to [S1] we have
V*®k — @ V*A ® T . 2—6(\M)’ U®k — @ 2—6\#\U;L ® T".

Aidp1=0 it 1=0
Hence,

YU e V) =S U ® (V*)*) = S¥(Homg,(V*, U))
= Homg,(V*®*, U®*)

= @ 278040 2-501) Hom(V**, U*) ® Homg, (T, T™)
A

_ @ 23D yr @ y*,
An+1=0

whereG; = &; o C; (see [S1]). The theorem is proved. O
CoroLLARY. We have an isomorphism @fV )-q(W)-q(U) trimodules

SQIURV+2IVIRW) ~ GB 23 @ v g 2 S IKD YK @ Wk~ 9y
Ay
Set
(an))h = 275(|M)UA ® VA ® 2*5(|/~‘|)V*/~L ® W
n )

and call the elements of this module #lements of typé, ). The invariants of
type (A, ) will be calledtypical ones ifA,, > 0.
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The validity of the following lemma is not difficult to establish.

9.2. LEmMA. Letg = q(V) or sq(V) and leth be the Cartan subalgebra ign
Let g, be the linear span of positive roots aidhe finite-dimensionagj-module
generated by 9+,

ThenL is an irreducibleg-module if and only ifL%+ is irreducible as an-
module.

9.3. LEmMmaA. LetA and u be strict partitions and.,, .1 = u,+1 = 0. Then

(@) dim(V* @ V*)sa) = 0if A # u;
(b) dim@23y* g y*+ysalV) = 1if A, = 0; and
(€) dim@-30hyr @ y*4ysatV) = 2if a, > 0.

Proof. Obviously, (V* ® V*#)*4(V) ~ Hom,,(V#, V*). Since the even parts
of Cartan subalgebras qf V) andsq(V) are identical, the moduleg* and V*
are nonisomorphic asj(V)-modules for # u; this proves (a).

Letd = p andx, = 0. Then(V*)%+(") is an irreducible module by Lemma 9.1
and by [S6] it is of the form

(vH* V) = ind} (C),

where P, is the polarization subordinate to the functiohal
Forh = Spaney,...,e,, €1, ..., ¢€;), Setsh = Sparey, ..., e,, e1 — €, -,
e—; — e;). Sincei, = 0, it follows thate; belongs to the kernel of the form

bi(f1. f2) = AM[f1, f2]), Wwhere fi, f2 € b3.

The restriction of the fornd, to (sh); is thus of the same rank &g. Therefore,
the module(V*)3+(Y) remains irreducible as a-module and the type of its ir-
reducibility (G or Q) is the same as that of themodule. This proves (b).

Letn be even and.,, > 0. Setf = > "_,(1/1;)e;. Then we can verify that
by(f, f) # 0andf is perpendicular tésh);. This proves that the restriction of the
form b, to (sh)z is invariant; but dingsh); = n —1is odd and so, as tls-module,
(VM=) isirreducible of typeQ. If n is odd, thenV*)3+(") is of type Q as the
h-module.

Since the restriction d#, to (sh)z is nondegenerate and of an even rank, it fol-
lows that(V*)9+(") is the direct suni @ = I, wherel is an irreduciblesh-module
of type G. In other words, for, > 0 the module 2°(*Py* g V** contains an
additionalsq(V )-invariant. This proves (c). O

9.4. LEmMmaA. Letsq(V) = sq(V) ® Span(F). If ¢ is atypicalq(V )-invariant,
then there exists a unique typicaj(V )-invariant ¢ such thaty = F1.

Proof. By Lemma 9.3, forA, > O there are two invariants in the module
2731 yr @ v**: one is aq(V)-invariante and the other is aq(V )-invariant
¥. Hence,Fy # 0 is clearly aq(V)-invariant and s#y = cy (c € C). Setting
¥ = v¥/c, we obtain the statement of the lemma. O
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9.5. LEmMma. Any sq(V)-invariant that is not aq(V)-invariant is of the form
¢ qetY, whereg is aq(V )-invariant andY is given by(1.5.0).

Proof. Let us take a Grassmann algelravith a sufficiently large number of gen-
erators and consider the elements of the alg@tjras functions on the space of
collections

L£=W1 ..., 0, 0], ..., 0, v, e(V®Ag vie(Homy(V ® A, A))g.

Let f be ansq(V )-invariant that is not &(V )-invariant and let be the set of
collectionsg such thafvy, ..., v,} isabasis iV ® A)z. Denote by SQV ® A)
the subgroup of transformations from GQ® A) whose queer determinant is
equaltol. Takg € GQ(V ® A) such thatge; = v; and

he; = e; + €;§, he; = e; + ¢;&,
where¢ = 1 getg. Thenhg™te SQ(V ® A) and

f(L) = f(hg™'L) = f(he, ..., he,, hg ™%, ..., hg v}

n

is a polynomial ing with coordinates ofigv¥. But¢ = 1 getg = 1 gety and

(hg_lv;k, ej) = (v, gh_lej) = (v}, gej — ge;€) = (v}, v;) — (v}, v))§.
The lemma is proved. ]

9.6. LEmMmaA. Let ¢ be aq(V)-invariant. Theng getY is a polynomial if and
only if ¢ is a typical invariant.

Proof. First, let us prove (in the notation of Lemma 9.4) that if Hte= 1 then
F(getY) = 1 Indeed, let: be selected as in Lemma 9.5. Then

getY + F& getY = qet(exp(F§)Y)
= get(exp(F&)) + getY = & + getY;

hence,F(getY) = 1 Let ¢ be a typicalq(V)-invariant. Then, by Lemma 9.4,
there exists a uniquey(V )-invarianty: such thatp = Fy. On the other hand, by
Lemma 9.5 we have¢ = ¢, getY, whereg; is aq(V)-invariant. Hence

¢ = Fy = F(p1qetY) = xp1F(qetY) = £¢

and therefore getY = £, is a polynomial. Since it isq(V )-invariant, it fol-
lows by Lemma 9.2 that it is a typical invariant and thus= F(¢ getY) is also
typical. The lemma is proved. O

The preceding arguments show that in order to const(@t )-invariants it suf-
fices to construct typicaj(V )-invariants. One of the ways to do so is described
in the following lemma.

9.7. Lemma (Notation from Theorem 1.5.2 and Appendix O}or any partition
A such thath; > --- > A, > 0, the following polynomial is a typicaq(V)-
invariant:

py = qtrz* .. qtr Z*.
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Sketch of ProofObserve that”)1V) = $*(2-XU ® W)) is a(q(U) & q(W))-
module such that dity = dimW = (n,n). Take a superspack such that
dimL = (n,n), and fix isomorphismd. ~ U andL* ~ 7 (W) that determine
isomorphisms of algebra$'(q(L)*) ~ (7)), For an irreducible represen-
tation rr, the functionals str (and qtrr if the representation is of typ@) are
q(V)-invariant elements of the algebf&(q(L))*; moreover, ifr, corresponds to
the irreducible modulé/*, then qtrr; (or strr,) restricted toS* (q(L)*) is of
type A. The invariant elements are uniquely determined by their restrictions to a
Cartan subalgebra if(L).

It is easy to verify that stt; (or qtrr;) and p, have identical restrictions.

9.8. ProoF oF THEOREM 1.5.2. Lemma 9.7 provides us with a construction of a
typicalq(V )-invariant and Lemma 9.6 with the construction okgqV )-invariant
of type A, which completes the proof of the theorem. O

Appendix 0. Background

Linear Algebra in Superspaces. Generalities

A superspacés aZ/2-graded space. For a superspdce= Vy & Vi, denote
by I1(V) another copy of the same superspace but with shifted parity, that is,
(I1(V)); = Vi,1. Thesuperdimensionf V is dimV = p 4+ gs, whereg? = 1,
p = dim Vg, andg = dim Vj. (Usually dimV is shorthanded as a pdip, g) or
plq; with the help ofe, the fact that din¥ @ W = dim V - dim W becomes lucid.)
A superalgebrais a superspacet with an even multiplication mapn:
AR A— A.

A superspace structure i induces the superspace structure in the space
End(V). A basis of a superspacaways consists ofiomogeneousectors; let
Par= (p4, ..., pgimv) be anordered collection of their parities. We call Paftine
matof the basis o¥. A squaresupermatrixof format (size) Paris adiii x dimV
matrix whoseith row andith column are of the same parip¢. The matrix unit
E;; is supposed to be of parity; + p;, and the bracket of supermatrices (of the
same format) is defined via the “sign rule”:

if something of parityp moves past something of parifythen the sign
(=177 accrues the formulas defined on homogeneous elements are
extended to arbitrary ones via linearity.

An example application of the sign rule is setting
[X,Y] = XY — (=)rPrMyyx

to yield the notion of the supercommutator and the ensuing notions of the super-
commutative superalgebra and the Lie superalgebra (which, in addition to super-
skew commutativity, satisfies the super Jacobi identity—i.e., the Jacobi identity
amended with the sign rule). Tlsaiperderivatiorof a superalgebra is a linear
mapD: A — A that satisfies the Leibniz rule (and sign rule)

D(ab) = D(a)b + (=1)PPP@aD(b).
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Usually, Paris of the forn0, ..., 0, 1, ..., 1); such aformat s callestandard.

In this paper we can do without nonstandard formats, but they are vital in various
guestions related to the study of distinct systems of simple roots.

Thegeneral linearLie superalgebra of all supermatrices of size Par is denoted by
gl(Pay; usually,gl(0, ...,0,1,..., 1) is abbreviated t@l(dim V|dim V;). Any
matrix fromgl(Pap can be expressed as the sum of its even and odd parts. In the
standard format, this is the block expression

(¢ 5)=(5 5)*(c o) (5 n))=0((c o))=1

The supertraceis the mapgl(Pay — C, (4;;) — > (—DPA;. Since
strx, y] = 0, the space of supertraceless matrices constitutespheial lin-
ear Lie subsuperalgebra (Pay.

However, there exist not one but rather two super versiongg(af). The sec-
ond version is called thgueerLie superalgebra and is defined as preserving the
complex structure given by avdd operatorJ/; that is, it is the centralize€(J)
of J:

q(n) = C(J) = {X e gl(n|n) : [X, J] =0}, where J2 = —id.

Itis clear that, by a change of basis, we can redlte the form

J2n:<_ol ]8)

In the standard format we have

-l %)

Onq(n), thequeer tracds defined as

gtr: <2 ﬁ) — tr B.

Denote bysq(n) the Lie superalgebra afueertracelesmatrices.

Observe that the identity representationg ehdsq in V, though irreducible in
supersense, are notirreducible in the nongraded sense: take homogeneous linearly
independent vectors, ..., v, from V; then Spatwi+ J(v1), ..., v, + J(v,)) IS
an invariant subspace of that is not a subsuperspace.

We will stick to the following terminology [cf. [BL; L3]). The representation of
a superalgebra in the superspack is irreducible ofgeneral typgor simply of
G-type if it does not contain homogeneous (with respect to parity) subrepresen-
tations distinct from 0 and’ itself; otherwise, it is calledreducible of O-type.

Thus, an irreducible representation@ftype has no invariant sshpesspace but
does have a nontrivial invariant subspace.

Hence, there are two types of irreducible representations: those that do not con-
tain any nontrivial subrepresentations (called of general type or of G)pand
those that contaimhomogeneous invariant subspaces (called of @pelf V is
of finite dimension, then in the first case its centralizer (as ofanodule) is iso-
morphic togl(1) and in the second casedqol).
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Let V1 andV, be finite-dimensional irreducible modules over and A,, re-
spectively. TherV; ® Vs is an irreduciblg A; ® Az)-module except for the case
when bothV; and V, are of typeQ. In the latter case, the centralizer of the
(A1 ® Az)-moduleV; ® V, is isomorphic to G, the Clifford superalgebra with 2
generators.

If e € Cly is a minimal idempotent, then(V, ® V) is an irreduciblg A; ® A»)-
module of typeG that we will denote by 2X(V; ® V).

More generally, we can consider matrices with the elements from a supercom-
mutative superalgebra. Then the parity of the matrix with only one nonzero
(i, ))th elementX; ; € A is equal top; + p; + p(X; ;).

The Berezinian and the Module of Volume Forms

On GL(p|gq; A), the group of even invertible matrices with elements from a su-
percommutative superalgebsfa we define a multiplicative function (an analog of
determinant). In honor of F. Berezin, Leites [L1] baptized this fundierezinian.

Its explicit expression in the standard format is

A B\ _ -1 1
ber(( c D )) = det(A — BD™"C)detD

C D

The Berezinian is a rational function, and this is one reason why the structure of
the algebra of invariant polynomials @fi( p|¢g) is much more complicated than
that for the Lie algebrgl(n) (see [S5]).

ber‘1<< A B )) = det(D — CA™'B)detA™.

REMARK. For the description of other invariant polynomials see [LS], to which
| should like to add that we have meanwhile proved the triviality of the center
for vect(O|n) (n > 2) conjectured there; this was similarly but better (with other
byproducts) proved in [Sho]. We also conjecture (we could not yet do thisin[LS])
that the center is trivial fosvect(0]m) ands/r;?&(mm) form > 3; for the descrip-
tion of the center ofe andspe, see [S1] and [Sch4].

The derivative of the Berezinian clearly is supertrace, and the relation between
them is as expected: b&r= exp strlogX.

The 1-dimensional representation ¥gl) of GL(V; A) corresponding both to
ber and to the representation strgdfV ) is called the space afolume formslt
can be realized in the space of tensors only as a quotient module: recall that for
gl(V) there is no complete reducibility (cf. [S2]).

An Odd Analog of Berezinian

On the group G@z; A) of invertible even matrices fror@(n; A), the Berezinian
is identically equal to 1. So on G@; A) there is instead defined its ovgueer

determinant 4 B 1
e = tr(A71B)%+1L,
qt((B A)) ;Zi—i-l (47B)
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This strange function is GQ@; A)-invariant and additive; that is, &tV =
getX + getY (cf. [BL]).

Superalgebras That Preserve Bilinear Forms: Two Types

To the linear mapF': V. — W of superspaces there corresponds the dual map
F*: W* — V* of the dual superspaces;Afis the supermatrix corresponding to
F in a basis of the format PathenAstis thesupertransposethatrix correspond-

ing to F* in the left dual basis:

(ASt)ij — (_1)(Pi+Pj)(Pi+P(A))Aﬂ_
The supermatriceX e gl(Pap such that
XS'B + (—=1)P®rBpBx — 0 for a homogeneous matri& € gl(Pan

constitute the Lie superalgebsat(B) that preserves the bilinear form éhwith
matrix B. Most popular is the nondegenerate supersymmetric form whose matrix
in the standard format is the canonical foBwg, or B/,

Bey(m|2n) = (10’" JC: > where J,, = (_01 %")

BL,(m|2n) = (antldla%L ) J(Z)n )

The usual notation fostut(Bey(m|2n)) is osp(m|2n) or ospsY(m|2n).

Recall that the “upsetting” map: Bil (V, W) — Bil (W, V) becomes folV =
W an involutionz: B — B, which on matrices acts as follows:

po (PP (R
B1 Ba (-7 BBy, B,

The formsB = B* are calledsupersymmetrignd formsB = — B aresuperskew-
symmetric.The passage frorif to I1(V) identifies the space of supersymmetric
forms onV with those superskew-symmetric ones gV ); these superskew-
symmetric forms are preserved by the “symplectico-orthogonal” Lie superalgebra
0spK(m|2n), which is isomorphic tesp(m|2n) but has a different matrix reali-
zation. (We never use notatiep’o(2n|m), in order not to confuse with the special
Poisson superalgebra.)

In the standard format, the matrix realizations of these algebras are

or

E Yy Xx!
osp(m|2n) = X A B ,
-Y' C -—-A'
and
A B X
ospS(m|2n) = c —-A" Y! ,
Y -X' E
where

C
and’ is the usual transposition.

A B
< —Af> esp(2n), E €o(m),
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A nondegenerate supersymmetric odd bilinear f@sgu(n|n) can be reduced
to the canonical form whose matrix in the standard formak,js A canonical
form of the superskew odd nondegenerate form in the standard format is

0
m=(0 %)

The usual notation fout(Bogg(Pan) is pe(Pan. The passage froriy to IT(V)

sends the supersymmetric forms to superskew-symmetric ones and establishes an
isomorphisnpeSY(Pap = pesk(Pap. This Lie superalgebra is called, as suggested

to Leites by A. Weil,periplectic. In the standard format these superalgebras are
shorthanded as in the following formula, where their matrix realizations is also
given:

A B
peY(n) = {(C —A’)’ whereB = —B',C = C’};

A B
pesk(n) = {(C —A’)’ whereB = B',C = —Ct}.

Thespecial periplecticsuperalgebra ispe(n) = {X € pe(n) : strX = 0}.

Observe that even though the Lie superalgebsa® (m|2n) andpes<(2n|m),
as well age™(n) andpe®“(n), are isomorphic, there are sometimes crucial differ-
ences among them (cf. [Sh]).

Projectivization

If 5 is a Lie algebra of scalar matrices and it gl(n|n) is a Lie subsuperalgebra
containings, then theprojectiveLie superalgebra of typgis pg = g/s.
Projectivization sometimes leads to new Lie superalgebras—for example:

pgl(n|n), psl(n|n), pq(n), psq(n); whereapgl(plg) = sl(plq) if p #q.

Appendix 1. Certain Constructions with the Point Functor

The point functor is well known in algebraic geometry since at least 1953 [Wi].
The publicity surrounding ringed spaces with nilpotents in the structure sheaf
that followed the discovery of supersymmetries caused many mathematicians and
physicists to realize the usefulness of the language of points. Most interesting are
numerous ideas due to Witten (for some of them see [W1; W2]); for their clarifi-
cation and further developments and references, see [D; Ma]. Berezin [Bel] was
the first who applied the point functor to study Lie superalgebras. Here we present
some of his results and their generalizations.

All superalgebras and modules are supposed to be finite-dimensional.over

A.0. WHAT A LIE SUPERALGEBRA Is. Lie superalgebras appeared in topology

in the 1930s and earlier. So when somebody offers a “better than usual” defini-
tion of a notion that seems to have been established about 70 year ago, this might
look strange, to say the least. Nevertheless, the answer to “What is a Lie super-
algebra?” is still not common knowledge. Indeed, the naive definition (“apply the
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sign rule to the definition of the Lie algebra”) is manifestly inadequate for con-
sidering the (singular) supervarieties of deformations and applying representation
theory to mathematical physics—for example, in the study of the coadjoint rep-
resentation of the Lie supergroup that can act on a supermanifold but never on a
superspace (an object from another category). Hence, in order to deform Lie su-
peralgebras and apply group-theoretical methods in a “super” setting, we must be
able to recover a supermanifold from a superspace and vice versa.

A proper definition of Lie superalgebras is as follows (see [L3]). Dieesuper-
algebrain the category of supermanifolds corresponding to the “naive” Lie super-
algebral = Ly & Lj is a linear supermanifold = (L, O), where the sheaf
of functionsO consists of functions oh with values in the Grassmann superal-
gebra onL}; this supermanifold should be such that, for “any” (say, finitely gen-
erated, or from some other appropriate category) supercommutative superalgebra
C, the spaceC(C) = Hom(SpecC, L), calledthe space ofC-points of £, is a
Lie algebra and the corresponder€e— L(C) is a functor inC. (Weil intro-
duced this approach in algebraic geometry in 1953. In the super setting it is called
the language of pointsr families see [D; L3].) This definition might look ter-
ribly complicated, but fortunately one can show that the correspondérseL
is one-to-one and that the Lie algelféaC), also denoted.(C), admits a very
simple descriptionZ(C) = (L ® C)g.

A Lie superalgebra homomorphispt L; — L, in these terms is a functor
morphism—that is, a collection of Lie algebra homomorphigms L1(C) —

L,(C) that is compatible with morphisms of supercommutative superalgebras
C — C’. In particular, arepresentatiorof a Lie superalgebra in a superspace

V is a homomorphismp: L — gl(V), that is, a collection of Lie algebra homo-
morphismsoc: L(C) — (gl(V) ® C)s.

ExampLE. Consider a representation g — gl(V). The tangent space of the
moduli superspace of deformationsois isomorphic toH(g; V ® V*). For ex-
ample, ifg is the(0|n)-dimensional (i.e., purely odd) Lie superalgebra (with the
only bracket possible: identically equal to zero), then its only irreducible represen-
tations are the trivial onebandI1(1). Clearlyl ® 1* ~ (1) ® I1(1)* ~ 1 and,
because the superalgebra is commutative, the differential in the cochain complex
is trivial. Therefore H(g; 1) = EX(g*) ~ g*, so there are dirp odd parameters

of deformations of the trivial representation. If we consigé€naively” then all

of the odd parameters will be lost.

Which of these infinitesimal deformations can be extended to a global one is a
separate and much tougher question, usually solved ad hoc.

Note that gtr is not a representationqifz) according to the naive definition
(“arepresentation is a Lie superalgebra homomorphism” and hence an even map);
however, it is a representation—in fact, an irreducible one—if we consider odd
parameters.

Thus, letg be a Lie superalgebr#, ag-module, and\ the Grassmann superalge-
bra overC generated by indeterminates. Defing: AQV* — HOMy(AQV, A)
by setting
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PEQ@a)n @) = (—1)P@Wepgv) forany £, ne A, a e V™.

Extend the ground field tax and consideA ® V* and HOmy\(A® V, A) as(A ®
g)-modules.

Al. LEMMA. ¢ is a(A ® g)-module isomorphism.

Proof. SinceV is finite-dimensionaly is a vector space isomorphism ov&r
besides, it is obvious thatis a A-module homomorphism. Now take, &, &3 €
A, x e V* veV, andx € g. Itis an easy exercise to prove that

[(E1®X)pE2 @ )](E3®v) = p[E1®@ x(E2 @ )] (E3 ® V). O
Consider the composition of maps
VEE AQVE S Homa(A® V, A) 225 Su(Homa(A ® V, A)),

wherep1(a) = 1® a andg; is a canonical embedding of a module in its sym-
metric algebra. Th&-module homomorphism, o ¢ o ¢; induces the algebra
homomorphism

S(V*) = Sc(V*) — Sa(Homa(A ® V, A))
and, since the latter algebra is\amodule, we get an algebra homomorphism

A® SV L Sy(Homa(A @V, A)).
Besides, both algebras possess a naturab g)-module structure.

A2. LEmMA. v isa(A ® g)-modules andA ® g)-algebras isomorphism.

Proof. Let us construct the inverse homomorphism. Consider the composition

-1
HOMA(A®V, A) 2> A@V* — A® S(V*).

Since this composition is a-module homomorphism, it induces the homomor-
phism _

¥ S\(HOMy(A® V, A)) — A® S(V*).
It is not difficult to verify that

¥ o ¥lHomyagy,a) = id - forany v o | agsve) = id.

Hence,y is an isomorphism and is its inverse. The following proposition shows

thaty is a(A® g)-module isomorphism and so completes the proof of LemmaA2.
O

A3. ProrosiTION. Let A, B be A-superalgebras and lgf be a Lie superalge-

bra over A acting by differentiations o and B. LetM Cc AandN C B be

A-submodules that are simultaneoughmodules generatingt and B, respec-

tively, and letf: A — B be an algebra homomorphism such thgif) c N

and f|, is ag-module homomorphism. Theghis a g-module homomorphism.

Proof. Leta € A. We may assume that= a; ... a,, where thei; € M. Then for
x € gwe have
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f(x(ai...ay,))
- f(Z:l:al...xa,-...an) =Y %1 ... fxa)... flan)

=) @) ... xf@)... flan) = x[f@y) ... f@)] =xf(a1...a).
This proves Proposition A3, completing the proof of Lemma A2. O
Now, leth be a Lie superalgebra ovarand letU be aA-module and ah-module.

ConsidetUy as aC-module. Then, clearly, the natural embedding— U is ex-
tendable to a\-module homomorphism: A ® Uy — U.

A4. LEmMa. The homomorphism is anhg-module homomorphism.

Proof. Letx € hg, & € A, andu € Uy. Then
P(x(E Qu)) = ¢(§ @ xu) = xu
and
x@(§ ®u) = x&u
= &xu (by definition of a module over a superalgebra). J
Thus, the adjoint map
Homu (U, A) - Homy(A ® U(), A)

is also amyz-module homomorphism and thus it follows, by Proposition A3, that
the algebra homomorphism

Sa(Homy (U, A)) — Sa(Homu(A ® Ug, A))

induced by this map is at the same timigiamodule morphism. Besides, by Lemma

A2 the algebraS,(Homa(A ® Ug, A)) is isomorphic as @A ® h)-module and

as an algebra ta ® S(Uy). In particular, they are isomorphic §g-modules.
Denote by the composition of the homomorphisms

S(V*) > A® S(V*) — SA(HOMA(A ® V, A)) — Sa(Homuy(A @ U, A)),
wherelUs = (A® V)g = Va.

A5. ProposITION. If ¢ > dim V; and& € A with p(&) = 1, then the restriction
of 0 ontoC[¢] ® S(V*) is injective.

Proof. If u € V, then there exists a linear fori, : HOmy(A ® Vo, A) — A
defined by the formulag, (/) = 1 ® u) andL,(&l) = ElA® u) = £L,(1).
Therefore L, is aA-module homomorphism and hence is uniquely extendable to
a homomorphism

Qy.a= SA(HOMp (A ® Vi, A)) — A.

Consider the elements afas functions orV/, setting f(u) = ¢,(f) for f €a
andu e Vy. If fe A® S(V*)then setf(u) = ¢, c0(f). Forae € V* andé € A
we have
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E®a)u)=¢,00EQa)=L,00(¢EQa) =0 @a)1®u).
If {e;}ic; ISabasisinV andu = ) A; ® ¢;, then
E®a)w) =Y ()PP Derale). (@)

On the other hand, the algelitf;] ® S(V*) is identified with the free supercom-
mutative superalgebra generated bydhandé.

Let us assume thgi(ef) = O fori < nandp(ef) = 1fori > n. If f €
C[£] ® S(V*), then

f=to+Ef fj =) fin.uel- €
wherej = 0,1andfj;, ., € S(Vg). By (1) we have
fu) = fo(u) + & fru)
=" fon..ue ) ... e ) + Y fu. el w) ... e w).

Setr; = a; fori < nandx; = §&_, fori > n. Then, sincey > dim V;, we
may assume that the fami{y; };c; freely generates(V;") and

f@) =YDy ilar. . an)Eyn i @

If 6(f) = 0thenf(u) = ¢, o 0(f) for anyu € V,. It follows from (2) that
fiu..i(a) = 0 for anya € C". But sinceC is algebraically closed, it follows (us-
ing [Bu, Prop. 5.3.1]) thay;, ..;, = 0; hence,f = 0. O

A6. LEMMA. Letg > dimVj. Thenf € S(V*) is a g-invariant if and only if
0(f) e A® S(Vy) is ga-invariant.

Proof. Consider the factorization &f.
SV L A® S(V*)
2, SA(HOMA(A ® V, A)) 2> Sx(HOMA(A ® Va, A)) 25> A ® S(V}).
Let f € S(V*)?; then
E®NWMN=ERNLRf)=(®xf =0 for&ecA, xeg.
Conversely, leyi;(f) = 0 for anyy € go. Then
0=¢®01® f)=§®xf

If p(y) =1thenletp(£) = 1. Thereforef ® xf = 0 andyf = 0.
Thus we have

FeS(VH? = il(f) e (A®S(V))].

Sinceiy, i3, i4 areg,-module homomorphisms, the foregoing expression implies
that if f is ag-invariant therd(f) = ig o iz o iz o i1(f) is also agu-invariant.
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Conversely, let (f) be ag-invariant. Letx € gz. Then
01®xf) =0(1®x)A® ) =1’ x)0(f) =0.

By Proposition A5, 19 xf = 0 andxf = 0. Letx e g5, £ € A, andp(§) = 1.
Thend(é ® xf) = (£ ® x)0(1® f) = 0 and again by Proposition A5 we have
& ® xf = 0; hencexf = 0 and thusf € S(V*)%g. O

A7. REMark. The point of the preceding lemmas and propositions is that, when
seeking invariant polynomials dn we may consider them as functions gnthat

are invariant with respect to the Lie algelya This makes it possible to apply
the theory of usual Lie groups and Lie algebras and their representations.

A8. REMARK. Letg be an automorphism of the Lie algelyaf the formgg =
exp(adﬁY,g) exp(—adﬁY,g) for any odd isotropic roog, i € f, and odd pa-
rameters., w. Clearly,¢ can be uniquely extended to an automorphism of the Lie
superalgebrg. Letp(h) = b, whereh is a Cartan subalgebragfif i : S(g*)? —
S(h*) is the restriction homomorphism then cleai{§(g*)?) c S(h*)¥, where

A is the set ofp-invariant elements of.

A9. ProrosiTION. Let A be a commutative finitely generated algebra o@er
without nilpotents, and let = A ® A(p). Letqg > p and f € a be such that
o(f) =0foranyg: a - A(g). Thenf =0.

Proof. Lety: A — C be an arbitrary homomorphism. We exteido a homo-
morphismg: a — A(q), settingy = v ® 1. If &, ..., £, are generators ak(p)
andif f eaandf = > f,. . i.&;-.- &, then the conditionp(f) = 0 yields
Y (fy..i) = 0. Sincey is arbitrary, [Bu, Prop. 5.3.1] shows thgt ;,, = 0;
hence,f = 0. O
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