
Michigan Math. J. 49 (2001)

On the Zeros of Polynomials with
Littlewood-Type Coefficient Constraints
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1. Introduction

There is a huge literature on the zeros of polynomials with restricted coefficients.
See, for example,Amoroso [A], Bloch and Pólya [BP], Beaucoup, Borwein, Boyd,
and Pinner [BBBP], Bombieri and Vaaler [BV], Hua [H], Erd˝os and Turán [ET],
Borwein and Erdélyi [BE1; BE2], Borwein, Erdélyi, and Kós [BEK], Littlewood
[L], Odlyzko and Poonen [OP], Schur [S], and Szeg˝o [Sz].

In [BE2] we proved the following three essentially sharp theorems.

Theorem 1.1. Every polynomialp of the form

p(x) =
n∑

j=0

aj x
j , |a0| = 1, |aj | ≤ 1, aj ∈C,

has at mostc
√
n zeros inside any polygon with vertices on the unit circle, where

the constantc > 0 depends only on the polygon.

Theorem 1.2. There is an absolute constantc > 0 such that every polynomial
p of the form

p(x) =
n∑

j=0

aj x
j , |a0| = |an| = 1, |aj | ≤ 1, aj ∈C,

has at mostc(nα +√n ) zeros in the strip

{z∈C : |Im(z)| ≤ α}
and in the sector

{z∈C : |arg(z)| ≤ α}.
Theorem 1.3. Let α ∈ (0,1). Every polynomialp of the form

p(x) =
n∑

j=0

aj x
j , |a0| = 1, |aj | ≤ 1, aj ∈C,

has at mostc/α zeros inside any polygon with vertices on the circle
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{z∈C : |z| = 1− α},
where the constantc > 0 depends only on the number of the vertices of the
polygon.

For z0 ∈C andr > 0, let

D(z0, r) := {z∈C : |z− z0| < r}.
In this paper we show that a polynomialp of the form

p(x) =
n∑

j=0

aj x
j , |a0| = 1, |aj | ≤ 1, aj ∈C, (1.1)

has at most(c1/α) log(1/α) zeros in the diskD(0,1− α) for everyα ∈ (0,1),
wherec1 > 0 is an absolute constant. This is a simple consequence of Jensen’s
formula. However it is not so simple to show that this estimate for the number of
zeros inD(0,1−α) is sharp. We will present two examples to show the existence
of polynomialspα (α ∈ (0,1)) of the form(1.1) (with a suitablen ∈N depending
on α) with at leastb(c2/α) log(1/α)c zeros inD(0,1− α) (c2 > 0 is an abso-
lute constant). In fact, we will show the existence of such polynomials from much
smaller classes with more restrictions on the coefficients. Our first example has
probabilistic background and shows the existence of polynomialspα (α ∈ (0,1))
with complexcoefficients of modulusexactly1and with at leastb(c2/α) log(1/α)c
zeros inD(0,1−α) (c2 > 0 is an absolute constant). Our second example is con-
structive and defines polynomialspα (α ∈ (0,1)) with real coefficients of modu-
lus at most1, with constant term 1, and with at leastb(c2/α) log(1/α)c zeros in
D(0,1−α) (c2 > 0 is an absolute constant). So, in particular, the constant in The-
orem 1.3 cannot be made independent of the number of vertices of the polygon.

Some other observations on polynomials with restricted coefficients are also
formulated.

2. New Results

Theorem 2.1. Let α ∈ (0,1). Every polynomial of the form

p(x) =
n∑

j=0

aj x
j , |a0| = 1, |aj | ≤ 1, aj ∈C, (2.1)

has at most(2/α) log(1/α) zeros in the diskD(0,1− α).
Theorem 2.2. For everyα ∈ (0,1) there is a polynomialQ := Qα of the form

Qα(x) =
n∑

j=0

aj,αx
j , |aj,α| = 1, aj,α ∈C, (2.2)

such thatQα has at leastb(c2/α) log(1/α)c zeros in the diskD(0,1− α), where
c2 > 0 is an absolute constant.
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Theorem 2.2 is a consequence of the following.

Theorem 2.3. For everyn∈N there is a polynomialpn of the form

pn(x) =
n∑

j=0

aj,nx
j , |aj,n| = 1, aj,n ∈C, (2.3)

such thatpn has no zeros in the annulus{
z∈C : 1− c3 logn

n
< |z| < 1+ c3 logn

n

}
,

wherec3 > 0 is an absolute constant.

In order to formulate some interesting corollaries of Theorems 2.1 and 2.3, we in-
troduce some notation. LetKn be the collection of polynomials of the form

p(x) =
n∑

j=0

aj x
j , |a0| = |an| = 1, aj ∈ [−1,1].

LetKcn be the collection of polynomials of the form

p(x) =
n∑

j=0

aj x
j , |a0| = |an| = 1, aj ∈C, |aj | ≤ 1.

LetLn be the collection of polynomials of the form

p(x) =
n∑

j=0

aj x
j , aj ∈ {−1,1}.

Finally, letLcn be the collection of polynomials of the form

p(x) =
n∑

j=0

aj x
j , aj ∈C, |aj | = 1.

For a polynomialp, let

d(p) := min{|1− |z|| : z∈C, p(z) = 0}.
For a class of polynomialsA, we define

γ (A) := sup{d(p) : p ∈A}.
Theorem 2.4. There are absolute constantsc4 > 0 andc5 > 0 such that

c4 logn

n
≤ γ (Lcn) ≤ γ (Kcn) ≤

c5 logn

n
.

Theorem 2.5. There is an absolute constantc6 > 0 such that

γ (Ln) ≤ γ (Kn) ≤ c6 logn

n
.
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There is an absolute constantc7 > 0such that, for infinitely many values ofn∈N,
we have

c7

n
≤ γ (Ln) ≤ γ (Kn).

Theorem 2.6. For everyα ∈ (0,1) there is a polynomialP := Pα of the form

P(x) =
n∑

j=0

aj,αx
j , a0,α = 1, aj,α ∈ [−1,1], (2.4)

that has at leastb(c8/α) log(1/α)c zeros in the diskD(0,1− α), wherec8 > 0 is
an absolute constant.

Conjecture 2.7. Every polynomialp ∈Ln has at least one zero in the annulus{
z∈C : 1− c9

n
< |z| < 1+ c9

n

}
,

wherec9 > 0 is an absolute constant.

If a polynomialp ∈Ln is self-reciprocal then we can prove more than the conclu-
sion of Conjecture 2.7, as follows.

Theorem 2.8. Every self-reciprocal polynomialp ∈Ln has at least one zero on
the unit circle{z∈C : |z| = 1}.
We will also show that Conjecture 2.7 implies our next conjecture.

Conjecture 2.9. There is no sequence(pnm)
∞
m=1 of “ultra-flat” polynomials

pnm ∈Lnm satisfying

(1− εm)(nm + 1)1/2 ≤ |pnm(z)| ≤ (1+ εm)(nm + 1)1/2

for all z∈C with |z| = 1 and for allm∈N, where(εm)∞m=1 is a sequence of posi-
tive numbers converging to0.

Theorem 2.10. Conjecture 2.7 implies Conjecture 2.9.

3. Auxiliary Results

The proof of Theorem 2.1 is based on the following result. For a proof, see for
example [BE1, Sec. 4.2, E.10c].

Theorem 3.1 (Jensen’s Formula).Suppose thath is a nonnegative integer and
that

f(z) =
∞∑
k=h

ckz
k, ch 6= 0,

is analytic on a disk of radius greater thanR. Suppose further that the zeros off
in D(0, R) \ {0} = {z ∈ C : 0 < |z| < R} are a1, a2, . . . , am, where each zero is
listed as many times as its multiplicity. Then
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log|ch| + h logR +
m∑
k=1

log
R

|ak| =
1

2π

∫ 2π

0
log|f(Reiθ )| dθ.

To prove Theorem 2.2, we will need the following deep result of Kahane [K].

Theorem 3.2. There is a sequence(pn)∞n=1 of polynomialspn ∈Lcn of the form

pn(x) =
n∑

j=0

aj,nx
j , |aj,n| = 1, aj,n ∈C, (3.1)

that satisfy
n1/2 − n0.31< |pn(z)| < n1/2 + n0.31

for everyz∈C with |z| = 1 and for every sufficiently largen.

In the proof of Theorem 2.2 we will also need the following simple polynomial
inequality (see e.g. [BE1, Sec. 5.1, E17] for its proof ). LetD(0,1) andD̄(0,1)
denote the open and closed complex unit disks, respectively.

Theorem 3.3. We have

|p(z)| ≤ |z|n max
u∈D̄(0,1)

|p(u)|

for every polynomialp of degree at mostnwith complex coefficients and for every
z∈C with |z| > 1.

The key step in proving Theorem 2.6 is the following lemma. We denote byTn
the class of all real trigonometric polynomials of degree at mostn.

Lemma 3.4. For everyr ∈ (0,1) there is a real trigonometric polynomialPn ∈
Tn of the form

Pn(x) =
n∑

k=−n
ak e

ikx, a0 = 1, ak ∈ [−r, r], k = ±1,±2, . . . ,±n,

with n ≤ c1r
−13 (c1 > 0 is an absolute constant) for which

m({x ∈ [−π, π] : |Pn(x)| > r} ≤ r.
We denote byPn the collection of all polynomials of degree at mostn with real
coefficients. From Lemma 3.4 we will easily obtain Lemma 3.5.

Lemma 3.5. For everyr ∈ (0,1) we can find an integern ∈ N, a polynomial
Q2n ∈P2n of the form

z−nQ2n(z) =
n∑

k=−n
akz

k, a0 = 1, ak ∈ [−r, r], k = ±1,±2, . . . ,±n,

with n ≤ c1r
−13 (c1 > 0 is an absolute constant), and a setUE ⊂ C such that

|Q2n(z)| ≤ 2r, z∈UE,



102 Tamás Erdélyi

whereUE is of the form

UE := {z = αeiθ : α ∈ [1− c2r
26,1], θ ∈E},

E ⊂ [0,2π] is the union of at most2n + 1 intervals, and the Lebesgue measure
m(E) of E is at least2π − r (c2 > 0 is an absolute constant).

The following simple observation is due to Van der Corput; we will need it in the
proof of Lemma 3.4 (see [Z, p. 197]).

Lemma 3.6 (Van der Corput Lemma).LetA 6= 0 andB ∈R. Let I ⊂ R be an
interval. Then ∣∣∣∣∫

I

exp(i(Ax 2 + Bx)) dx
∣∣∣∣ ≤ C|A|−1/2,

whereC is a constant independent ofA, B, andI.

The Nikolskii-type inequality in Lemma 3.7 (see [DL, Thm. 2.6]) deals with the
classTn of all real trigonometric polynomials of degree at mostn. This inequality
will be needed in the proof of Theorem 2.8. In order to formulate this lemma, we
need the following notation. LetK := R (mod 2π). Forf ∈C(K), let

‖f ‖∞ := max
θ∈K |f(θ)|

and

‖f ‖p :=
(∫ 2π

0
|f(θ)|p dθ

)1/p

, 0< p <∞.

Lemma 3.7 (Nikolskii-Type Inequality forTn). We have

‖Tn‖p ≤
(

2rn+ 1

2π

)1/q−1/p

‖Tn‖q
for all Tn ∈ Tn and 0 < q ≤ p ≤ ∞, wherer := r(q) is the smallest integer not
less thanq/2.

Another two basic polynomial inequalities that we will need in the proof of Lemmas
3.4 and 3.5 are described in Lemmas 3.8 and 3.9. We denote byT c

n the set of all
trigonometric polynomials of degree at mostn with complex coefficients; the set
of all algebraic polynomials of degree at mostn with complex coefficients will be
denoted byP cn .
Lemma 3.8 (Bernstein’s Inequality for Trigonometric Polynomials).We have

max
t∈[0,2π]

|T ′n(t)| ≤ n max
t∈[0,2π]

|Tn(t)|
for everyTn ∈ T c

n .

Lemma 3.9 (Bernstein’s Inequality for Algebraic Polynomials on the Unit Disk).
We have

max
z∈D̄(0,1)

|P ′n(z)| ≤ n max
z∈D̄(0,1)

|Pn(z)|
for everyPn ∈P cn .
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In the proof of Lemma 3.4 we will also need the following classical direct theorem
of approximation (see e.g. [DL, Thm. 2.2, p. 204]).

Lemma 3.10 (A Version of Jackson’s Theorem).Suppose thatf is a continu-
ously differentiable periodic function onR. Then there is aTn ∈ Tn such that

max
t∈[0,2π]

|f(t)− Tn(t)| ≤ Cn−1 max
t∈[0,2π]

|f ′(t)|,
whereC > 0 is an absolute constant.

4. Proofs

Proof of Theorem 2.1.Let α ∈ (0,1), and letp be a polynomial of the form (2.1).
It is easy to see that ifα > 1/2 thenp does not have any zeros inD(0,1− α),
hence the conclusion of the theorem is true. So assume that 0< α ≤ 1/2. Then

|p(z)| ≤ 1

1− |z| , z∈D(0,1).
Applying Jensen’s formula withR := 1− α/2, we obtain

0+
m∑
k=1

log
1− α/2

|ak| ≤
1

2π
2π log

2

α
,

where the zeros ofp in D(0,1− α/2) \ {0} = {z ∈ C : 0 < |z| < 1− α/2}
area1, a2, . . . , am and where each zero is listed as many times as its multiplicity.
Therefore,

m∑
k=1|ak |<1−α

log
1− α/2

|ak| ≤ log
2

α

and hence
Mα

2
≤ M log

1− α/2

1− α ≤ log
2

α
,

whereM is the number of zeros ofp in D(0,1− α).
Proof of Theorem 2.3.Associated with a polynomial

p(z) =
n∑

j=0

ajz
j , aj ∈C,

we define

p∗(z) = znp(1/z̄) =
n∑

j=0

ān−j zj . (4.1)

Let

pn(x) =
n∑

j=0

aj,nx
j , |aj,n| = 1, aj,n ∈C,

be the Kahane polynomials of Theorem 3.2 that satisfy

n1/2 − n0.31< |pn(z)| < n1/2 + n0.31
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for everyz∈C with |z| = 1 and for every sufficiently largen. Then

(n1/2 − n0.31)2 < z−npn(z)p∗n(z) = |pn(z)|2 < (n1/2 + n0.31)2

for everyz∈C with |z| = 1 and for every sufficiently largen. We define

qn(z) = pn(z)p∗n(z)− nzn. (4.2)

Thenqn is a polynomial of degree 2n and

−3n0.81< z−nqn(z) = |pn(z)|2 − n < 3n0.81

for everyz ∈C with |z| = 1 and for every sufficiently largen. From this we con-
clude that

|qn(z)| < 3n0.81 (4.3)

for everyz∈C with |z| = 1 and for every sufficiently largen. Using Theorem 3.3
and (4.3), we obtain that

|qn(z)| ≤ |z|n3n0.81< n (4.4)

for every {
z∈C : 1≤ |z| < 1+ c logn

n

}
,

if 0 < c < 0.19 andn is sufficiently large. Suppose thatpn has a zero in the
annulus {

z∈C : 1− c logn

2n
< |z| < 1+ c logn

2n

}
,

where 0< c < 1. Thenpnp∗n has a zeroz0 in the annulus{
z∈C : 1≤ |z| < 1+ c logn

n

}
.

Hence by (4.2) we have

|qn(z0)| = |pn(z0)p
∗
n(z0)− nzn0| = n|z0|n ≥ n,

which is impossible by (4.4) if 0< c < 0.19 andn is sufficiently large.

Proof of Theorem 2.2.By Theorem 2.3 there is a polynomialpn of the form (2.3)
such thatpn has no zeros in the annulus{

z∈C : 1− c logn

n
< |z| <

(
1− c logn

n

)−1}
,

wherec > 0 is an absolute constant. Sincepn is of the form (2.3), it follows that
p∗n (defined by (4.1)) is also of the form (2.3). Becausepn has exactlyn complex
zeros, eitherpn or p∗n has at leastn/2 zeros in the closed unit disk{z ∈C : |z| ≤
1}. Let qn := pn if pn has at leastn/2 zeros in the closed unit disk, and letqn :=
p∗n otherwise. Thenqn has at leastn/2 zeros in the disk{

z∈C : |z| < 1− c logn

n

}
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with an absolute constantc > 0. In proving the theorem, we may assume thatα ∈
(0,1/2]. Forα ∈ (0,1/2], let n be the smallest integer such that

c logn

n
≥ α.

LetQ = Qα := qn. ThenQ is of the form (2.2) and has at least

b(c2/α) log(1/α)c
zeros in the diskD(0,1− α), wherec2 > 0 is an absolute constant.

Proof of Theorem 2.4.First we show the upper bound. Letpn ∈Kcn. Observe that
eitherpn ∈ Kcn or p∗n ∈ Kcn (defined by (4.1)) has at leastn/2 zeros in the closed
unit disk {z ∈ C : |z| ≤ 1}. By Theorem 2.1, bothpn ∈ Kcn andp∗n ∈ Kcn have at
mostn/4 zeros in the diskD(0,1− (c logn)/n) with a sufficiently large absolute
constantc > 0. Hence eitherpn or p∗n has at leastn/4 zeros in the annulus{

z∈C : 1− c logn

n
≤ |z| ≤ 1

}
with a sufficiently large absolute constantc > 0. If pn has at leastn/4 zeros in the
above annulus, thend(pn) ≤ (c logn)/n. If p∗n has at leastn/4 zeros in the above
annulus, thenpn has at leastn/4 zeros in the annulus{

z∈C : 1≤ |z| ≤
(

1− c logn

n

)−1}
,

and this yieldsd(pn) ≤ (c5 logn)/n with a suitable absolute constantc5 again.
So the upper bound of the theorem is proved.

The lower bound of the theorem follows immediately from Theorem 2.3.

Proof of Theorem 2.5.The upper bound is a special case of Theorem 2.4. To see
the lower bound, we define

P1(z) := z2 − z−1, Pk(z) = Pk−1(z
3)P1(z), k = 2,3, . . . .

Then it is easy to see thatPk ∈L3k−1 andd(Pk) ≥ c3−k with an absolute constant
c > 0. This proves the lower bound of the theorem.

Proof of Lemma 3.4.In this proofc1, c2, . . . will denote suitable positive abso-
lute constants. Leth∈ (0,1). (The relation betweenr in the lemma andh will be
specified later.) Take a nonnegative-valued functiong ∈C1(R) satisfying

g(x) = 0, x ∈R \ (−1,1),

0 ≤ g(x) ≤ 1, x ∈ [−1,1],

and ∫ π

−π
g(x) dx = 1.

Let gh(x) := g((x − π)/h). Then
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gh(x) = 0, x ∈R \ (π − h, π + h), (4.5)∫ 2π

0
gh(x) dx = h, (4.6)

and
max

x∈[0,2π]
|g ′h(x)| = h−1 max

x∈[0,2π]
|g ′(x)| =: c1h

−1 (4.7)

(the functiong is fixed in the proof so the constantc1 is absolute). By Lemma 3.10
(Jackson’s theorem), there is aQm ∈ Tm such that

max
x∈[0,2π]

|(Qm − gh)(x)| ≤ c2c1h
−1m−1 ≤ h2

4π
,

assuming that
m = b4πc1c2h

−3c +1. (4.8)

Hence, the 2π -periodicQm ∈ Tm satisfies

|Qm(x)| ≤ h2

4π
, x ∈ [0, π − h] ∪ [π + h,2π], (4.9)

and ∫ 2π

0
Qm(x) dx =

∫ 2π

0
gh(x) dx +

∫ 2π

0
(Qm(x)− gh(x)) dx

≥ h− 2πh2

4π
≥ h

2
. (4.10)

Denote the coefficients ofQm by bj, that is,

Qm(x) =
m∑

j=−m
bje

ijx, bj ∈R.

Note that (4.9) implies

|bj | =
∣∣∣∣ 1

2π

∫ 2π

0
Qm(x)e

−ijx dx
∣∣∣∣ ≤ 1

2π

∫ 2π

0
|Qm(x)| dx

≤ 1

2π

(
2h max

x∈[π−h,π+h]
|Qm(x)| + 2π

h2

4π

)
≤ 1

2π

(
2h

(
max

x∈[π−h,π+h]
|gh(x)| + h2

4π

)
+ h

2

2

)
≤ 1

2π

(
2h
(

max
x∈[0,2π]

|g(x)|
)
+ h2

)
≤ c3h (4.11)

(the functiong is fixed in the proof so the constantc3 > 0 is absolute). Also, by
(4.10) we have

|b0| =
∣∣∣∣ 1

2π

∫ 2π

0
Qm(x) dx

∣∣∣∣ ≥ h

4π
. (4.12)

Now letSn ∈ Tn be the best uniform approximation fromTn tof(x) := Qm(Ax
2)

on [−π, π]. Sincef is even, so isSn. Denote the coefficients ofSn by dk, that is,
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Sn(x) =
n∑

k=−n
dk e

ikx, dk ∈R, d−k = dk, k = ±1,±2, . . . ,±n.

Combining Lemma 3.10 (Jackson’s theorem) with Lemma 3.8 (Bernstein’s in-
equality), we obtain

max
t∈[−π,π]

|f(t)− Sn(t)| ≤ c2

(
max

t∈[−π,π]
|f ′(t)|

)
n−1

≤ c22Aπ
(

max
t∈[−π,π]

|Q′m(t)|
)
n−1

≤ c22Aπm
(

max
t∈[−π,π]

|Qm(t)|
)
n−1

≤ 2Aπ(b4πc1c2h
−3c +1)2n−1 ≤ h2 (4.13)

for n := bc4Ah
−5c+1 with an absolute constantc4 > 0. We write the coefficients

dk of Sn as follows:

dk := 1

2π

∫ π

−π
Sn(x)e

−ikx dx

= 1

2π

∫ π

−π
f(x)e−ikx dx + 1

2π

∫ π

−π
(Sn(x)− f(x))e−ikx dx

= 1

2π

∫ π

−π
Qm(Ax

2)e−ikx dx + 1

2π

∫ π

−π
(Sn(x)− f(x))e−ikx dx

= 1

2π

∫ π

−π

( m∑
j=−m

bj exp(i(Ajx 2 − kx))
)
dx

+ 1

2π

∫ π

−π
(Sn(x)− f(x))e−ikx dx. (4.14)

Now we chooseA := c2
5h
−8, where the absolute constantc5 > 0 will be chosen

later. Applying Lemma 3.6 (Van der Corput’s lemma) in (4.14) and using (4.13),
(4.11), and (4.8), we obtain

|dk| ≤ c6A
−1/2

( m∑
j=−m
|bj |

)
+ h2 ≤ c6A

−1/2c3h(2m+1)+ h2

2π

≤ c7A
−1/2h−2 + h2 ≤ c8h

2, k = ±1,±2, . . . ,±n, (4.15)

wherec6 > 0, c7 > 0, andc8 > 0 are suitable absolute constants. Also, applying
Lemma 3.6 in (4.14) and using (4.8), (4.13), and (4.12), we obtain

|d0| ≥ |b0| − c6A
−1/2

( −1∑
j=−m
|bj | +

m∑
j=1

|bj |
)
− h2

≥ |b0| − c6A
−1/2c3h(2m+1)− h2 ≥ |b0| − c9A

−1/2h−2 − h2

≥ h

4π
− c9h

2

c5
− h2 ≥ h

8π
(4.16)
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with some absolute constantc9 > 0, wherec5 > 0 is chosen so that the last in-
equality in (4.16) is satisfied. Observe that (4.9) andf(x) = Qm(Ax

2) for x ∈
[−π, π] imply that{

x ∈ [−π, π] : |f(x)| > h2

4π

}
⊂

N⋃
k=0

([ak, bk] ∪ [−bk,−ak]), (4.17)

where

[ak, bk] :=
[(
(2k +1)π − h

A

)1/2

,

(
(2k +1)π + h

A

)1/2]
and

N := bA/2c +1.

A straightforward calculation gives that, forh∈ (−1,1),

2
N∑
k=0

(bk − ak) = 2
N∑
k=0

(
(2k +1)π + h

A

)1/2

−
(
(2k +1)π − h

A

)1/2

≤ 2
N∑
k=0

2h

2
(
A
(
2k + 1

2

)
π
)1/2 ≤ 2c10hA

−1/2N1/2 ≤ c11h (4.18)

with some absolute constantsc10 > 0 andc11> 0. Combining (4.17), (4.18), and
(4.13) gives forh∈ (0,1) that

m
({
x ∈ [−π, π] : |Sn(x)| > 2h2

}) ≤ c11h. (4.19)

Now letRn := d−1
0 Sn ∈ Tn, where (as before)

n := bc4Ah
−5c +1≤ bc12h

−13c (4.20)

with an absolute constantc12 > 0. SinceSn is even, so isRn. Hence, by (4.15)
and (4.16) we have

Rn(x) =
n∑

k=−n
ak e

ikx,

a0 = 1, −8πc8h ≤ ak ≤ 8πc8h, k = ±1,±2, . . . ,±n.
(4.21)

Finally we conclude from (4.19) that

m
({
x ∈ [0,2π] : |Rn(x)| > 16πh

}) ≤ c11h. (4.22)

Now (4.20), (4.21), and (4.22) give the lemma.

Proof of Lemma 3.5.Forr ∈ (0,1), letPn ∈ Tn be the same as in Lemma 3.4(n ≤
c1r
−13). Let

Q2n(e
it ) := eintPn(t).

ThenQ2n ∈P2n is of the required form. Also, there exists a setE ⊂ [0,2π] with
m(E) ≥ 2π − r such that

|Q2n(z)| ≤ r, z = eiθ , θ ∈E. (4.23)
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Since the set
{z∈C : |z| = 1, |Q2n(z)| < r}

is the union of at most 2n subarcs, we may assume thatE ⊂ [0,2π] is the union
of at most 2n + 1 intervals. Now letzα := αeiθ with α ∈ [1− c2r

26,1]. Using
Lemma 3.9 (Bernstein’s inequality) and (4.23), we obtain

|Q2n(zα)| ≤ |Q2n(z1)| + |Q2n(zα)−Q2n(z1)|
≤ r + |zα − z1|max|w|≤1

|Q′2n(w)|
≤ r + 2nc2r

26 max|w|≤1
|Q2n(w)| ≤ r + 2nc2r

26(1+ 2nr)

≤ r + 2c1r
−13c2r

26(1+ 2c1r
−12) ≤ 2r

for a sufficiently small absolute constantc2 > 0.

Proof of Theorem 2.6.Without loss of generality we may assume thatα−1 is an
integer. LetM be defined by

M := bc3 log(1/α)c (4.24)

with a sufficiently small absolute constantc3 > 0 that will be specified later. We
define

R(z) := 2MzM/α −1. (4.25)

ThenR hasM/α zeros on a circle centered at the origin with radius 2−α. These
are given explicitly by the formulas

zk := 2−α exp

(
2πki

M/α

)
, k = 0,1, . . . ,M/α −1.

Let Bk, k = 0,1, . . . , (M/α) − 1, be the regions described as the union of the
pointsz = βeiθ for which

β ∈ [2−2α,2−α/2] and θ ∈
[
(2k −1)π

M/α
,
(2k +1)π

M/α

]
.

Thenzk ∈Bk and an easy calculation shows that

|R(z)| ≥ c4, z∈ ∂Bk, (4.26)

where∂Bk denotes the boundary ofBk andc4 > 0 is an absolute constant. Associ-
ated withr := α1/52, letn,Q2n, E,UE be as in Lemma 3.5. Then the radial width
of UE is c2α

1/2. Also,m(E) ≥ 2π −α1/52, E is the union of at most 2c1α
−1/4+1

intervals, and|Q2n(z)| ≤ 2α1/52 onUE. From these we conclude that

|2MQ2n(z)| < 2M2α1/52 < e(log 2)c3 log(1/α) < c4, z∈UE, (4.27)

assuming that the absolute constantc3 > 0 in (4.24) is sufficiently small. Note
that by Lemma 3.5 we haven ≤ c1r

−13, so if α < c6 with a sufficiently small
absolute constantc6 > 0 then
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M

α
− n ≥ M

α
− c1r

−13 = M

α
− c1α

−1/4

≥ bc3 log(1/α)c
α

− c1α
−1/4 > 0. (4.28)

Also, if c3 > 0 in (4.24) is sufficiently small, then

2Mr = e(log 2)bc3 log(1/α)cα1/52 ≤ 1. (4.29)
Now let

P(z) := R(z)− 2MzM/α−nQ2n(z).

By (4.28) and (4.29), ifα < c6 with a sufficiently small absolute constantc6 > 0
and if the absolute constantc3 > 0 in (4.24) is sufficiently small, then the polyno-
mial P is of the form

P(z) =
N∑
k=0

akz
k, a0 = −1, ak ∈ [−1,1], k = 1,2, . . . , N.

It is also routine to observe that, forα < c7 (with a sufficiently small absolute con-
stantc7 > 0), the number of the indicesk = 0,1, . . . , (M/α)−1 for whichBk ⊂
UE is at leastM/(2α). Using (4.26), (4.27), and Rouche’s theorem, we conclude
that if α < c7 and the absolute constantc3 > 0 in (4.24) is sufficiently small then
P has at least

M/(2α) = bc3 log(1/α)c/(2α)
zeros in the disk centered at 0 with radius 2−α/2 ≤ 1− α/4. The proof is now
finished.

Proof of Theorem 2.8.Supposep ∈Ln is self-reciprocal and supposep does not
have a zero on the unit circle. Ifn is odd, thenp(−1) = 0 and the theorem is
proved. Ifn is even, thenTn(t) := e−nt/2p(eit ) is a real trigonometric polynomial
of degree at mostn/2; that is,Tn ∈ Tn/2, andTn does not have any real zeros.
Without loss of generality we may assume thatTn is positive on the real line (this
implies that the constant term inTn is 1). We fix anε ∈ (0,1) so thatTn − ε does
not have a real zero. Then we have

‖Tn − ε‖1=
∫ 2π

0
|Tn(θ)− ε| dθ =

∫ 2π

0
(Tn(θ)− ε) dθ = 2π(1− ε).

Using the Parseval formula, we also have

‖Tn − ε‖2 = (2π(n+1− 2ε + ε2))1/2.

But then, by Lemma 3.7 (the Nikolskii-type inequality forTn), we have

(2π(n+1− 2ε + ε2))1/2 = ‖Tn − ε‖2 ≤
(
n+1

2π

)1/2

‖Tn − ε‖1

=
(
n+1

2π

)1/2

2π(1− ε).
Hence, forε ∈ (0,1) we have

n(2ε − ε2) ≤ 0,
a contradiction.
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Proof of Theorem 2.10.The proof is similar to that of Theorem 2.2. We omit the
details.

Acknowledgment. I thank Fedor Nazarov for suggesting the proof of Theorem
2.6. This proof is based on the ideas Nazarov e-mailed to me and I needed only
to polish the presentation.
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