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On the Zeros of Polynomials with
Littlewood-Type Coefficient Constraints

TaMAs ERDELYI

1. Introduction

There is a huge literature on the zeros of polynomials with restricted coefficients.
See, for example, Amoroso [A], Bloch and Pdlya [BP], Beaucoup, Borwein, Boyd,
and Pinner [BBBP], Bombieri and Vaaler [BV], Hua [H], Exsland Turan [ET],
Borwein and Erdélyi [BE1; BE2], Borwein, Erdélyi, and Kés [BEK], Littlewood
[L], Odlyzko and Poonen [OP], Schur [S], and Sad§Z].

In [BE2] we proved the following three essentially sharp theorems.

THEOREM 1.1. Every polynomiap of the form
n
px) = Zajxj, laol =1, laj| <1, a; €C,
j=0

has at most./n zeros inside any polygon with vertices on the unit circle, where
the constant > 0 depends only on the polygon.

THEOREM 1.2. There is an absolute constant> 0 such that every polynomial
p of the form

n
p(x) =Y ajx’, laol =la,| =1 lagjl <1 a; €C,
Jj=0

has at most(na + /n) zeros in the strip

{zeC:|IMm(2)| < a}

and in the sector
{zeC:|argz)| < a}.

THEOREM 1.3. Letw € (0, 1). Every polynomialp of the form
p(x) =) ajx’, laol=1 laj| <1, a; €C,
j=0

has at most/« zeros inside any polygon with vertices on the circle
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{zeC:|z| =1— a},

where the constant > 0 depends only on the number of the vertices of the
polygon.

Forzge Candr > 0, let
D(zo,7) '={z€C |z —zo| <r}.

In this paper we show that a polynomjalbf the form
p(x) =) aix!, laol =1 laj| <1, ¢ €C, (11)
j=0

has at mostc;/«) log(l/«) zeros in the diskD(0, 1 — «) for everya € (0, 1),

wherec; > 0 is an absolute constant. This is a simple consequence of Jensen’s

formula. However it is not so simple to show that this estimate for the number of

zeros inD(0, 1— «) is sharp. We will present two examples to show the existence

of polynomialsp, (« € (0, 1)) of the form(1.1) (with a suitable: € N depending

on «) with at least| (c2/«) log(l/a)| zeros inD(0,1 — «) (c2 > 0 is an abso-

lute constant). In fact, we will show the existence of such polynomials from much

smaller classes with more restrictions on the coefficients. Our first example has

probabilistic background and shows the existence of polynorpiale: € (0, 1))

with complexcoefficients of modulusxactlyl and with at least(c, /«) log(1/«) |

zeros inD(0,1— «) (¢ > O is an absolute constant). Our second example is con-

structive and defines polynomiglg (« € (0, 1)) with real coefficients of modu-

lus at mostl, with constant term 1, and with at legst, /«) log(1/«)| zeros in

D(0,1—wu) (c2 > Ois anabsolute constant). So, in particular, the constant in The-

orem 1.3 cannot be made independent of the number of vertices of the polygon.
Some other observations on polynomials with restricted coefficients are also

formulated.

2. New Results

THEOREM 2.1. Letw € (0, 1). Every polynomial of the form
p(x) =) ajx!, lagl=1 laj| <1 a;€C, (2.1)
j=0

has at most2/a) log(1/«) zeros in the disiD (0, 1 — «).

THEOREM 2.2. For everya € (0, 1) there is a polynomiapD := Q, of the form
0,(x) = Zaj,axj, laj«l =1, aj€C, (2.2)
j=0

such thatQ,, has at least (c2/«) log(1/«)] zeros in the dislD(0, 1 — «), where
¢o > 0is an absolute constant.
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Theorem 2.2 is a consequence of the following.

THEOREM 2.3. For everyn € N there is a polynomiap,, of the form

pa(x) = ajux’, lajul =1 a;,€C, (2.3)
j=0
such thatp, has no zeros in the annulus
lo lo
{ze(C:l— cslogn < |zl <1+ & gn},
n

wherecsz > 0is an absolute constant.

In order to formulate some interesting corollaries of Theorems 2.1 and 2.3, we in-
troduce some notation. L&t, be the collection of polynomials of the form

p(x) =) ajx/, laol =la,| =1 a;€[-11].
j=0
Let C¢ be the collection of polynomials of the form
p(x) =Y ajx!, laol =la,| =1, ¢ €C, |gj| <1
j=0
Let £, be the collection of polynomials of the form
p(x) = Za_,-xj, aje{-11}.
j=0
Finally, let£¢ be the collection of polynomials of the form
n
p(x) = Zajx’, aj€C, laj| =1
j=0

For a polynomialp, let
d(p) :==min{|1—|z|| : z€C, p(z) =0}.
For a class of polynomiald, we define
y(A) :==sup{d(p) : pe A}.

THEOREM 2.4. There are absolute constants > 0 andcs > 0 such that

€alogn _ . pey < ey < 81091
n

THEOREM 2.5. There is an absolute constarg > 0 such that

V(L) <y () < 1097
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There is an absolute constatit > 0 such that, for infinitely many valuesmo& N,
we have

% <y(Ly) < y(K,).

THEOREM 2.6. For everya € (0, 1) there is a polynomiaP := P, of the form
P(x) =Y ajox!, aoe=1 aae[-11], (2.4)
j=0

that has at least (cg/«) log(1/«)] zeros in the disliD(0, 1 — «), wherecg > Ois
an absolute constant.

CoNJECTURE 2.7. Every polynomiap € £,, has at least one zero in the annulus
C C
{Ze(C:l——9 < |z| <1+—9},
n n
wherecg > 0is an absolute constant.

If a polynomialp € L, is self-reciprocal then we can prove more than the conclu-
sion of Conjecture 2.7, as follows.

THEOREM 2.8. Every self-reciprocal polynomial € £,, has at least one zero on
the unit circle{z e C : |z| = 1}.

We will also show that Conjecture 2.7 implies our next conjecture.

CoNJECTURE 2.9. There is no sequendg,,,)s._, of “ultra-flat” polynomials
Dn,, € L,,, Satisfying

A=) +DY2 < o, @] < A+ &) (n + DY?

for all z € C with |z| = 1and for allm € N, where(e,,)%_, is a sequence of posi-
tive numbers converging @

THEOREM 2.10. Conjecture 2.7 implies Conjecture 2.9.

3. Auxiliary Results

The proof of Theorem 2.1 is based on the following result. For a proof, see for
example [BEL, Sec. 4.2, E.10c].

THeorEM 3.1 (Jensen’s Formula).Suppose thak is a nonnegative integer and
that

o0
f@ =) azt, a#0,
k=h
is analytic on a disk of radius greater thah Suppose further that the zeros of
in DO, R)\{0} ={zeC:0< |z| < R}areay, ay, ..., a,, Where each zero is
listed as many times as its multiplicity. Then
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loglcy| + hlog R + Z log

k=1

R 1 2 )
= 5[ log| f(Re™)| dob.
0

To prove Theorem 2.2, we will need the following deep result of Kahane [K].

THEOREM 3.2. There is a sequenag,)S2, of polynomialsp, € £ of the form

n
pn(x) = Zaj,nxj’ |aj,n| = 1’ Aaj n E(Cv (31)
j=0
that satisfy
nY2 — 193 < | p.(2)| < nY? 4+ 03t

for everyz € C with |z| = 1 and for every sufficiently large.

In the proof of Theorem 2.2 we will also need the following simple polynomial
inequality (see e.g. [BE1, Sec. 5.1, E17] for its proof). D0, 1) and D(0, 1)
denote the open and closed complex unit disks, respectively.

THEOREM 3.3. We have
Ip(@)] < IzI" max [p(u)]
ueD(0,1)

for every polynomiap of degree at most with complex coefficients and for every
ze€Cwith|z] > 1L

The key step in proving Theorem 2.6 is the following lemma. We denotg, by
the class of all real trigopnometric polynomials of degree at most

Lemma 3.4, For everyr € (0, 1) there is a real trigonometric polynomidt,
7T, of the form

P,(x) = Z are™, ao=1 are[-rr], k==+1 42, ..., +n,
k=—n

with n < c1r 72 (¢1 > Ois an absolute constapfor which
m({xe[—m, ] |P.(x)| >r} <r.

We denote byP, the collection of all polynomials of degree at maswith real
coefficients. From Lemma 3.4 we will easily obtain Lemma 3.5.

LemMma 3.5. For everyr € (0, 1) we can find an integet € N, a polynomial
Q> € Po, of the form

7 "Qo(z) = Z apz*, ao=1, ape[-rr], k=41 £2, ..., %n,

k=—n
withn < ¢17 73 (c; > Ois an absolute constajjtand a set/; c C such that
[02,(2)| <2r, z€Ug,
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whereUy, is of the form
Upi={z=ae” iae[l—cr?5,1], 6 € E},

E C [0, 27] is the union of at mos2» + 1intervals, and the Lebesgue measure
m(E) of E is atleast2zr — r (¢, > 0is an absolute constant

The following simple observation is due to Van der Corput; we will need it in the
proof of Lemma 3.4 (see [Z, p. 197]).

LeEMMA 3.6 (Van der Corput Lemma).LetA #OandB €R. Let! C R be an
interval. Then

/exp(i(sz + Bx))dx| < C|A|™Y?,
1
whereC is a constant independent Af B, and /.

The Nikolskii-type inequality in Lemma 3.7 (see [DL, Thm. 2.6]) deals with the
class7, of all real trigonometric polynomials of degree at mesT his inequality

will be needed in the proof of Theorem 2.8. In order to formulate this lemma, we
need the following notation. Let := R (mod 27). For f € C(K), let

I lleo := max f ()]

27 1/p
£l = (fo |f(9)|Pd6) 0= p<oo.

Lemma 3.7 (Nikolskii-Type Inequality fof7,). We have
2rn + 1\Y47 P
1Tl < ( - ) 1714

forall 7, € 7, and0 < ¢ < p < oo, wherer := r(q) is the smallest integer not
less thary /2.

and

Anothertwo basic polynomialinequalities that we will need in the proof of Lemmas
3.4 and 3.5 are described in Lemmas 3.8 and 3.9. We dendfg llye set of all
trigonometric polynomials of degree at mastvith complex coefficients; the set

of all algebraic polynomials of degree at maswith complex coefficients will be
denoted byP¢.

LemmMa 3.8 (Bernstein’s Inequality for Trigonometric Polynomials)Ve have
max |T/(t)] <n max |T,
tE[O%n]I 2Ol = ntelogi(ﬂl (0]
for everyT, € 7,°.

LemMa 3.9 (Bernstein’s Inequality for Algebraic Polynomials on the Unit Disk).
We have

max [P)(z)] <n max |P,(z)|
zeD(0,1) zeD(0,1)

for everyP, e Ps.
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In the proof of Lemma 3.4 we will also need the following classical direct theorem
of approximation (see e.g. [DL, Thm. 2.2, p. 204]).

LemMma 3.10 (A Version of Jackson’s Theorem)Suppose thay is a continu-
ously differentiable periodic function dR. Then there is &, € 7,, such that

max |£(6) = Tu(0)] = Cn*1 max If )l

whereC > 0is an absolute constant.

4. Proofs

Proof of Theorem 2.1Letwx € (0, 1), and letp be a polynomial of the form (2.1).
It is easy to see that # > 1/2 thenp does not have any zeros 0, 1 — «),
hence the conclusion of the theorem is true. So assume that & 1/2. Then

lp2)| < —— | i ze€ D(0,1).

Applying Jensen’s formula witlR :=1— «/2, we obtain

" 1og2 1 2
0 | < —2nrlog—
+ 2 log = = = g 2nlog ]

where the zeros op in D(0,1 —a/2)\{0} = {z€C:0< |z] <1—a/2}
areay, a, ..., a, and where each zero is listed as many times as its multiplicity.

Therefore,
1-—a/2 2
> log <log=
lag| a

k=1
lag|<l—a
and hence
Ma 1—«a/2 2
—— < Mlog <log—,
2 11—« o
whereM is the number of zeros gf in D(0, 1 — ). O

Proof of Theorem 2.3Associated with a polynomial

pQ@) = Zaij, a; €C,
we define .
PR =2"p@/7) =Y anjz’. (4.1)
j=0
Let
Pa(x) =Y ajax’, lajal =1 ajn€C,

be the Kahane polynomials of Theorem 3.2 that satisfy

12 _ .0 Y2 4,031

n2 — % < |p.(2)l <n



104 TAMAS ERDELYI

for everyz € C with |z] = 1 and for every sufficiently large. Then
(n¥2 = n®3H?2 < 2Py p() = [pa@)I? < (02 4 %7
for everyz € C with |z] = 1 and for every sufficiently large. We define
qn(2) = pa(2)py(2) — nz". (4.2)
Theng, is a polynomial of degreer2and
0.81

—3n%8 < 27¢,(2) = |pa(2)|? —n < 3n

for everyz € C with |z| = 1 and for every sufficiently large. From this we con-
clude that
|9,(2)| < 3n%% (4.3)

for everyz € C with |z| = 1 and for every sufficiently large. Using Theorem 3.3
and (4.3), we obtain that

1g.(2)| < |z|"3n%8 < n (4.4)
for every
lo
{zeC:lg |z] <1+C gn},
n

if 0 < ¢ < 0.19 andn is sufficiently large. Suppose thaf, has a zero in the
annulus

lo lo
{zEC:l—C gn<|z|<1+c gn}’
2n 2
where O< ¢ < 1. Thenp, p} has a zerqg in the annulus

lo
{ze(c:1§|z| <1+C gn}.
n

Hence by (4.2) we have

lgn(z0)| = |Pu(z0) P, (z0) — nzgl = nlzol" = n,

which is impossible by (4.4) if & ¢ < 0.19 andr is sufficiently large. O

Proof of Theorem 2.2By Theorem 2.3 there is a polynomig) of the form (2.3)
such thatp, has no zeros in the annulus

-1
{zec . clogn (1— C'Og”) }
n n

wherec > 0 is an absolute constant. Singgis of the form (2.3), it follows that
p (defined by (4.1)) is also of the form (2.3). Becaygehas exactly: complex
zeros, eithep, or p¥ has at least/2 zeros in the closed unit digk e C : |z] <
1}. Letg, = p, if p, has at least/2 zeros in the closed unit disk, and égt:=
p otherwise. Them, has at least/2 zeros in the disk

clogn}

{ZG(C:Iz| <1-
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with an absolute constaat> 0. In proving the theorem, we may assume that
(0,1/2]. Fora € (0,1/2], letn be the smallest integer such that

clogn
9 > .

n
Let 0 = Q, :=¢g,. ThenQ is of the form (2.2) and has at least

L(c2/a) log(1/a) ]

zeros in the diskD (0, 1 — o), wherec, > 0 is an absolute constant. O

Proof of Theorem 2.4First we show the upper bound. Lgt € K¢. Observe that
eitherp, € KC¢ or pi € K¢, (defined by (4.1)) has at least 2 zeros in the closed
unit disk{z € C : |z| < 1}. By Theorem 2.1, bottp, € K¢ and p} € K¢ have at

mostn /4 zeros in the diskD (0, 1 — (c logn)/n) with a sufficiently large absolute
constant > 0. Hence eithep, or p} has at least/4 zeros in the annulus

clogn

{ze(C:l— Slzlil}
with a sufficiently large absolute constant 0. If p, has at least/4 zeros in the
above annulus, thef(p,) < (clogn)/n. If p} has atleast/4 zeros in the above
annulus, themp, has at least/4 zeros in the annulus

-1
{zeC:ls 12l < (1— C'Og") }
n

and this yieldsi(p,) < (cslogn)/n with a suitable absolute constant again.
So the upper bound of the theorem is proved.
The lower bound of the theorem follows immediately from Theorem 2.3

Proof of Theorem 2.5The upper bound is a special case of Theorem 2.4. To see
the lower bound, we define
Pi(z) =2 —z—1 Pi(x) = P a@®)Paz), k=23 ...
Then it is easy to see th&, € L4_, andd (P;) > ¢37* with an absolute constant
¢ > 0. This proves the lower bound of the theorem. O

Proof of Lemma 3.4In this proofcy, ¢z, ... will denote suitable positive abso-
lute constants. Léit € (0, 1). (The relation betweenin the lemma and will be
specified later.) Take a nonnegative-valued functienC(R) satisfying

g(x)=0, xeR\ (=11,
0<gx) <1l xel[-11],
and .
/ g(x)dx =1

T

Letg,(x) := g((x — m)/h). Then
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gn(x) =0, xeR\(r —h,7+h), (4.5)
2
/ gn(x)dx =h, (4.6)
0
and
4 _ 51 ’ . -1
Xg[g)%lgh(x)l =h xerp)gﬁllg (X)| =i c1h (4.7)

(the functiong is fixed in the proof so the constatitis absolute). By Lemma 3.10
(Jackson'’s theorem), there ighB, € 7,, such that

h2
J— l E—
xef}gazx 1(Qm — g)(X)| < cocth™m ™ < .
assuming that
m = |4mcicoh ™3] + 1 (4.8)
Hence, the 2 -periodicQ,, € 7, satisfies
h2
|Qm(-x)| S 4_1 XG[O,T[ —l’l]U[T[-f—h, 27[]7 (49)
T
and
2

2 2
Qm(X)dX=/O gn(x)dx + . (Om(x) — gn(x)) dx

h
> > . 4.10
- 4z — 2 ( )

Denote the coefficients a@,, by b;, that is,

Om(x)= Y bje’™, b;eR.
j=—m

Note that (4.9) implies

1 2 3 1 2
b= | = [ omoedx| < = / |0 ()] dx
2]'[ 0 27‘[ 0

1

h2
< 271( hxe[” ax IQm(X)|+ Ly )

<l 2h max | ()|—i-h2 +h2
- 2 x€[m—h,m+h] EhlX 4 2

< i(zh( max |g(x)|) ) < csh (4.12)

2 x€[0, 27
(the functiong is fixed in the proof so the constary > 0 is absolute). Also, by
(4.10) we have

> (4.12)

Qm(x)dx| = 7

‘ 2

|bo|l = 5

Now letS, € 7, be the best uniform approximation fraf to f(x) := Q,.(Ax?)
on [-m, 7]. Sincef is even, so isS,. Denote the coefficients &, by dy, that s,
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Su(x)= > die™, dieR, dy=di, k=%L£2 ... +n.
k=—n
Combining Lemma 3.10 (Jackson’s theorem) with Lemma 3.8 (Bernstein’s in-
equality), we obtain

max | £(1) = $,(0)] < co max | £'0)])n”?
te[—m, ] te[—m, 7]
§c22A7r< max |Q;n(t)|)n—1
te[—m,m]

§c22A7tm( max IQm(l)|)”_1
te[—m,m]

< 2An(l4mcicoh 3| +D2n P <h?  (4.13)

forn := [caAh~°] +1with an absolute constar > 0. We write the coefficients
d; of S, as follows:
1 g —ikx
dp = — S, (x)e dx
21 J_,

_t / ! f(x)e ™ dx + 1 / n(sn(x) — f(x))e " dx
2n J_, 2 J_,

-1 / ’ On(Ax?e ™ dx + = / H(Sn(x> — f(x)e " dx
2 —r 27 -

1 T m
= n( Z b exp(i(Ajx? — kx))) dx
j=—m

1 [~ :
+ == | (Su(x) — f(x))e * dx. (4.14)
27 J_,
Now we choosed = c§h‘8, where the absolute constant> 0 will be chosen
later. Applying Lemma 3.6 (Van der Corput’s lemma) in (4.14) and using (4.13),
(4.11), and (4.8), we obtain
- - — h?
ldi| < ceA ”2< > |bj|> +h? < coA" eah(@m +1) + ——

j=—m
<c7ATY2h 2 4 h? < cgh?, k=+142, ..., +n, (4.15)

wherecg > 0, ¢c7 > 0, andcg > 0 are suitable absolute constants. Also, applying
Lemma 3.6 in (4.14) and using (4.8), (4.13), and (4.12), we obtain

-1 m
|dol = |bol —CGA_1/2< > 1bl +Z|b,-|> — h?

j=—m j=1
> |bo| — ceA™Y?c3h(@m + 1) — h? > |bg| — cgA™Y2h™2 — h?

2
>i_%_h2> h

_ 4.16
~ Adn Cs — 8w ( )
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with some absolute constaty > 0, wherecs > 0 is chosen so that the last in-

equality in (4.16) is satisfied. Observe that (4.9) difd) = Q,,(Ax?) for x €
[—m, 7] imply that

2 N
{x €[—m al: [f(0)] > h—} c (Jdax, b U [—=be, —ai), (4.17)
k=0

47
where
k + D — h\Y? [ 2k +Dr + h\Y?
o [ (2
and
N:=|A/2| +1

A straightforward calculation gives that, fore (-1, 1),

N N 2k + D+ h\Y? 2k + D — h\Y?
22— =2y (FFT) T (FR)
k=0

k=0
al 2h
22 5 < 2c10hAV2NY2 < cyyh (4.18)
= 2(A(2k + 7)Y
with some absolute constantg > 0 andcy; > 0. Combining (4.17), (4.18), and
(4.13) gives fork € (0, 1) that

m({x e[—m 7] 1 [Su(x)] > 2h?}) < cuh. (4.19)

Now letR, := d,'S, € T,, where (as before)
n=lcaAh™®] +1< [c12h ™ (4.20)

with an absolute constani, > 0. SincesS, is even, so iR,. Hence, by (4.15)
and (4.16) we have

n

Ry(x) = axe™,
k;n (4.21)

ap=1 —8mcgh < ay <8mcgh, k==x1+2,...,+£n.
Finally we conclude from (4.19) that
m({x €[0, 2n] : |R,(x)| > 16nh}) < cnh. (4.22)
Now (4.20), (4.21), and (4.22) give the lemma. O

Proof of Lemma 3.5Forr € (0, 1), let P, € 7,, be the same asin Lemma 34 <
-13
c1r ). Let ' .
QZn(elt) = eman(t)~
ThenQ,, € P,, is of the required form. Also, there exists a gt [0, 27] with
m(E) > 27 — r such that

Q2 <7, z=¢", O€E. (4.23)
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Since the set
{zeC:lz]l =1 |Q2.(1)] <1}

is the union of at most/2subarcs, we may assume thaic [0, 2] is the union
of at most 2 + 1 intervals. Now let, = ae’ with « € [1 — c,r?%,1]. Using
Lemma 3.9 (Bernstein’s inequality) and (4.23), we obtain

[02,(za)| < Q2,2 (z0)| + [Q24(z0) — Q24(21)]

=7 e — 21l M| 05, (w)l
<r+2ncr®® \m|a)1(|Q2”(w)| <1+ 2ncr®®L+ 2nr)

<r+2c1r Ber?®A+ 2cir ™) < 2r
for a sufficiently small absolute constant> 0. O

Proof of Theorem 2.6Without loss of generality we may assume that is an
integer. LetM be defined by

M = |c3log(l/w)] (4.24)

with a sufficiently small absolute constant> 0 that will be specified later. We
define

R(z) ;= 2M M/ _ 1 (4.25)
ThenR hasM/« zeros on a circle centered at the origin with radio8.2These
are given explicitly by the formulas
2mki
M/a

Let By, k = 0,1,...,(M/a) — 1, be the regions described as the union of the
pointsz = Be'® for which

Zk ;:2‘°‘exp< > k=01....M/a—1

pel272,27%/% and e [(Zk — B Gkt 1)”}.

M/a =~ M«
Thenz, € B, and an easy calculation shows that
|R(z)| = ca, z€0By, (4.26)

wheredB, denotes the boundary 8f, andc, > 0 is an absolute constant. Associ-
ated withr := o¥%2, letn, Q,,, E, Ug be asin Lemma 3.5. Then the radial width
of Ug is coa/2. Also,m(E) > 27 —a¥/®2, E is the union of at most@e Y4 +1
intervals, and 02,(z)| < 2«2 on Ug. From these we conclude that

12M05,(2)| < 2M20%2 < 109231080/ < ¢ z e U, (4.27)

assuming that the absolute constanit- 0 in (4.24) is sufficiently small. Note
that by Lemma 3.5 we have < c1r 3, so ifa < cg with a sufficiently small
absolute constant > 0 then
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M M M
——n>——cpr B="——ca¥
o o o
log(l
> Leslooe] e g, (4.28)
o
Also, if c3 > 0in (4.24) is sufficiently small, then
ZMV — e(|092)|_c3 |Og(l/ot)ja1/52 < 1 (429)

Now let
P(2) i= R(2) = 2"2"/%7" 03,(2).

By (4.28) and (4.29), i&x < cg with a sufficiently small absolute constant> 0
and if the absolute constary > 0 in (4.24) is sufficiently small, then the polyno-
mial P is of the form

N

P(z) = Zakzk, ap=-1 are[-11], k=1,2,...,N.

k=0
Itis also routine to observe that, fer< c7 (with a sufficiently small absolute con-
stantc7 > 0), the number of the indicds= 0,1, ..., (M/«) — 1 for which B, C
Ug is at leastM /(2a). Using (4.26), (4.27), and Rouche’s theorem, we conclude
that if« < ¢7 and the absolute constant> 0 in (4.24) is sufficiently small then
P has at least

M/(2a) = |c3log(1l/e)|/(2a)

zeros in the disk centered at 0 with radiusZ < 1 — «/4. The proof is now
finished. O

Proof of Theorem 2.8Supposep € L, is self-reciprocal and suppogedoes not
have a zero on the unit circle. #f is odd, thenp(—1) = 0 and the theorem is
proved. Ifn is even, ther, (1) := e "/?p(e') is a real trigonometric polynomial
of degree at most/2; that is, T, € 7,2, and7, does not have any real zeros.
Without loss of generality we may assume tifigis positive on the real line (this
implies that the constant term iy is 1). We fix ane € (0, 1) so thatT,, — ¢ does

not have areal zero. Then we have
2

27
||Tn—8||1=/ |T,(0) — | df = (T,(0) — &) dO = 2m (1 — ¢).
0 0

Using the Parseval formula, we also have
1T, — ell2 = @ (n +1— 26 + £*) Y2
But then, by Lemma 3.7 (the Nikolskii-type inequality @), we have

1/2
n—+
Rrn+1-2e+e2))"2 =T, —¢|2 < (7) 1T, — el

1/2
_ (”; 1) 2r(l—¢).

T
Hence, fore € (0, 1) we have

n(2e — 82) <0,
a contradiction. O
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Proof of Theorem 2.10The proof is similar to that of Theorem 2.2. We omit the
details. O

AckNOWLEDGMENT. | thank Fedor Nazarov for suggesting the proof of Theorem
2.6. This proof is based on the ideas Nazarov e-mailed to me and | needed only

to polish the presentation.
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