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The Expressive Unary Truth Functions
of n-valued Logic

Stephen Pollard

Abstract The expressive truth functions of two-valued logic have all been

identified. This paper begins the task of identifying the expressive truth func-

tions of n-valued logic by characterizing the unary ones. These functions have

distinctive algebraic, semantic, and closure-theoretic properties.

1 Introduction

Every consequence relation carries with it a notion of closure, a set being closed if

and only if each consequence of its members is itself a member. If the consequence

relation is not too odd, every intersection of closed sets will be closed and the closed

sets will form a complete lattice. If, furthermore, the consequence relation is finitary,

this lattice will have a minimal closed basis consisting of the irreducibles: the closed

sets you can never reach by taking intersections of other closed sets. (Cf. Wójcicki

[10], pp. 26–27.) If all these irreducibles are maximally consistent, the lattice is said

to be expressive or is said to have a Henkin basis, the two properties being equivalent

for finitary logics. (See Martin and Pollard [3], pp. 161–62, and Pollard and Martin

[6], pp. 122–23. Cf. also Pollard and Martin [5], p. 113.) Now some truth functions

force irreducibles to be maximally consistent: if a finitary logic expresses one of

these functions, the corresponding lattice of closed sets will be expressive. Truth

functions with this property earn the same epithet as the lattices: they too are said to

be expressive. Pollard [4] shows that classical logic is blessed with a simple test for

this sort of expressiveness. A classical truth function is expressive if and only if (1)

it gives back T when you feed it nothing but Fs and (2) there is at least one input that

causes it to give back F. If we admit more than two truth-values, this neat scheme

goes kerplooey. Not to worry: many-valued logics offer treats of their own. In the

case of unary n-valued truth functions, the problem of identifying the expressive ones

has an attractive solution applicable to logics with any finite number of truth-values.
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2 Preliminaries

A sentential logic with only one sentential variable might as well have no senten-

tial variables. If there is only one thing we can place in the blanks of a matrix like

((__ ∧ ¬__) → __) (if there is to be no cross-referencing of blanks), then we can

leave out the blanks: ((∧¬) →). Indeed, we can omit the language altogether and

concentrate on compositions of the truth functions themselves. Our logic can be an

algebra of truth functions. (Hardly a new idea: see Rasiowa [7] for a classic exposi-

tion.) It turns out that such algebras provide a mechanical test for the expressiveness

of unary truth functions. Pick any n-membered set V (n > 1). The members of

V are our truth-values. Some, but not all, of these values are singled out as “desig-

nated.” The designated values are ways of being true. The undesignated values are

ways of being untrue. A unary n-valued truth function is just a function α : V → V .

The “mth power” of a function is the result of composing the function with itself

m − 1 times. That is, αm+1 = α ◦ αm where α0 is the identity function. Since taking

the 0th power of a function is a form of composition, the identity function appears in

every nonempty set that is closed under composition. Say that such a set is a system.

That is, each system will satisfy the following conditions:

the identity function is a member;

if α and β are members, then so is α ◦ β.

Suppose A is a system. The theories of A or A-theories are the sets

Dk(A) = {α ∈ A : α(k) is designated}.

Dk(A) consists of the “sentences” that are true when our nonexistent sentential vari-

able has value k. Somewhat less poetically, Dk(A) consists of the functions in A

that respond to input k by returning a designated value. A subset of A is satisfiable

if and only if some A-theory contains it. An A-theory is consistent if and only if

it is a proper subset of A. An A-theory is maximally consistent if and only if it is

consistent and no consistent A-theory properly contains it. An A-theory is reducible

if and only if it is the intersection of A-theories distinct from itself. Given a universe

of discourse A, we let ∩∅ = A. So an inconsistent A-theory would be reducible,

since such a theory would just be A itself.

We have moved from talking about closed sets generally (in §1) to speaking only

of theories. Why? We obtain the closed sets of a system by taking intersections of

its theories. (In the language of closure spaces, the theories form a closed basis.) So

a closed set will be irreducible only if it is a theory. Since we are interested in the

behavior of irreducibles, it is safe to confine our attention to theories.

3 Expressive Systems

A system is expressive if and only if all its irreducible theories are maximally con-

sistent. If B is a set of functions, let S(B) be the set of all systems that contain

B . Given any functions α1, . . . , αk , let [α1, . . . , αk ] = ∩S({α1, . . . , αk}). Pick

any function α : V → V . Then the system [α] consists of all the powers of α.

D1([α]), . . . , Dn([α]) are the theories contained in ∩S({α}).

Lemma 3.1 If every member of S({α}) is expressive, then D1([α]), . . . , Dn([α])

are all consistent.



Expressive Unary Truth Functions 95

Proof If j is undesignated, then D j ([α]) is consistent since α0 /∈ D j ([α]). Pick

a designated k and suppose Dk([α]) is inconsistent. Pick any undesignated j and

let β be the j -constant function. Note that any functions in [α, β] but not in [α]

will be constant functions. The functions that do not belong to Dk([α, β]) are all

constant functions that yield an undesignated value. So Dk([α, β]) is the only max-

imally consistent [α, β]-theory and every [α, β]-theory sitting immediately below it

is an irreducible that is not maximally consistent. We know there are such [α, β]-

theories since we know that Dk([α, β]) properly contains D j ([α, β]) whenever j is

undesignated. So [α, β] is not expressive. �

A truth-value j is α-cyclic if and only if j = αm( j) for some m > 0. If α( j) = k,

α(k) = h, and α(h) = j , then j , k, and h belong to the cycle ( jkh). This is the

same cycle as (kh j) and (h jk). In the following theorem and hereafter, we use ‘⊂’

to represent proper containment.

Lemma 3.2 If j is α-cyclic, then D j ([α]) ⊂ Dh([α]) only if h /∈ ( j. . .).

Proof Suppose D j ([α]) ⊂ Dh([α]). Then αm(h) is designated whenever αm ( j) is,

but not vice versa. If h ∈ ( j. . .), then ( j. . .) = (h. . .). But this would be absurd,

since (h. . .) would feature more designated values than ( j. . .). �

Lemma 3.3 If every member of S({α}) is expressive, then D j ([α])∪ {α0} is unsat-

isfiable whenever j is both undesignated and α-cyclic.

Proof Suppose D j ([α]) ⊂ Dk([α]) where k is designated but j is not. Let

β(h) =

{

k if D j ([α]) ⊂ Dh([α])

j otherwise.

Suppose j is α-cyclic. Lemma 3.2 implies that β(h) = j whenever h ∈ ( j. . .). So

applications of α and β to members of ( j. . .) always take us to members of ( j. . .).

This means that δ( j) ∈ ( j. . .) whenever δ ∈ [α, β]. Note that D j ([α]) ⊂ Dh([α])

whenever D j ([α, β]) ⊂ Dh([α, β]). Furthermore, β ∈ Dh([α, β]) whenever

D j ([α]) ⊂ Dh([α]). So β ∈ Dh([α, β]) whenever D j ([α, β]) ⊂ Dh([α, β]). Yet

β /∈ D j ([α, β]). So the intersection of the theories that properly contain D j ([α, β])

will itself properly contain D j ([α, β]). So D j ([α, β]) is irreducible. Now suppose

γ ∈ D j ([α, β]). We want to show that γ ∈ Dk([α, β]). Suppose γ is of the form

β ◦ δ with δ ∈ [α, β]. Then γ ( j) = β(δ( j)) = j , since δ( j) ∈ ( j. . .). But this is

impossible because j is undesignated and we just assumed that γ ( j) is designated.

If γ = αm , then γ ∈ D j ([α]) ⊂ Dk([α]) ⊆ Dk([α, β]). Suppose γ = αm ◦ β ◦ δ

with δ ∈ [α, β]. Then γ ( j) = αm(β(δ( j))) = αm( j). So αm ∈ D j ([α]) ⊂ Dk([α]).

γ (k) is either αm(k) or αm( j), both of which are designated. So γ ∈ Dk([α, β]).

We conclude that D j ([α, β]) ⊂ Dk([α, β]). If Dk([α, β]) is consistent, then [α, β]

is not expressive since D j ([α, β]) is irreducible. If Dk([α, β]) is inconsistent, then

so is Dk([α]) and we can apply Lemma 3.1. �

Lemma 3.4 If j is α-cyclic, then so is α p( j).

Proof If j = αm( j), then α p( j) = α p(αm( j)) = αm(α p( j)). �

Lemma 3.5 If j and k are both α-cyclic, then α( j) = α(k) only if j = k.
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Proof Suppose j = αm( j), k = α p(k), and α( j) = α(k). Then j =αm( j)= αm(k)

= αm(α p(k)) = α p(αm(k)) = α p( j) = α p(k) = k. �

Lemma 3.6 Given any truth-value j , there is exactly one α-cyclic truth-value k

such that αm( j) = αm(k) for some m.

Proof Since there are only finitely many truth-values, applications of α to j

must eventually yield an α-cyclic value. So suppose αm( j) = h = α p(h). Let

m = t p + r where r < p. Then, by Lemma 3.4, α p−r (h) is α-cyclic. Furthermore,

αm(α p−r (h)) = αt p+r (α p−r (h)) = αt p(α p(h)) = h. So, letting α p−r (h) = k,

k is an α-cyclic truth-value such that αm( j) = αm(k). Suppose i is α-cyclic

and αs( j) = αs(i). If s ≤ m, then αm(k) = αm( j) = αm(i). If m ≤ s, then

αs(i) = αs( j) = αs(k). In either case, Lemmas 3.4 and 3.5 imply that i = k. �

Given any j , we let π( j) be the unique k guaranteed by Lemma 3.6.

Lemma 3.7 α(π( j)) = π(α( j)).

Proof α(π( j)) is α-cyclic, since π( j) is. Furthermore, if αm( j) = αm(π( j)), then

αm(α( j)) = α(αm ( j)) = α(αm (π( j)) = αm (α(π( j))). �

Lemma 3.8 If every member of S({α}) is expressive, then D j ([α]) = Dπ( j )([α]).

Proof As an inductive hypothesis, suppose, for each truth-value k, that αm(k) =

αm(π(k)) only if Dk([α]) = Dπ(k)([α]). Assume αm+1( j) = αm+1(π( j)). Then

αm(α( j)) = αm(α(π( j))) = αm(π(α( j))). So Dα( j )([α]) = Dπ(α( j ))([α]) =

Dα(π( j ))([α]). If j and π( j) are both designated or both undesignated, then

D j ([α]) = Dπ( j )([α]). If j is designated but π( j) is not, then Dπ( j )([α]) ⊂ D j ([α])

and Lemma 3.3 implies that some member of S({α}) is not expressive. Suppose j is

undesignated while π( j) is designated. Let

β(h) =

{

π( j) if h = j or h =π( j)

j otherwise.

Can [α, β] feature a function γ such that γ ( j) is designated but γ (π( j)) is not? Such

a γ is not of the form δ ◦ β, since β( j) = β(π( j)). Neither is it of the form α p ,

since Dα( j )([α]) = Dα(π( j ))([α]). Consider β ◦ α p with 0 < p ≤ m. If α p( j) = j ,

then j is α-cyclic and Lemma 3.5 implies that j = π( j). So, in fact, α p( j) 6= j ,

since we have assumed that j and π( j) are distinct. Suppose α p( j) = π( j). Then

αm( j) is α-cyclic, since α p( j) is. So, by Lemma 3.5, αm ( j) = αm(π( j)) and,

hence, D j ([α]) = Dπ( j )([α]), contrary to our earlier assumption. So α p( j) 6= π( j).

This means that β(α p( j)) = j . If β(α p(π( j))) = j , then γ is not of the form

δ ◦ β ◦ α p , since then γ ( j) = γ (π( j)). On the other hand, if β(α p(π( j))) = π( j),

then β ◦ α p has taken us from j back to j and from π( j) back to π( j). Subsequent

applications of α and β will only reproduce a case we have already reviewed. So

there is no γ of the sort we contemplated. That is, D j ([α, β]) ⊂ Dπ( j )([α, β]). β

prevents D j ([α, β]) from being a proper subset of any other theory. So D j ([α, β]) is

irreducible. If Dπ( j )([α, β]) is consistent, [α, β] is not expressive. If Dπ( j )([α, β])

is inconsistent, then so is Dπ( j )([α]) and we can apply Lemma 3.1. �

Theorem 3.9 If every member of S({α}) is expressive, then D j ([α]) ∪ {α0} is

unsatisfiable whenever j is undesignated.

Proof Apply Lemmas 3.3 and 3.8. �
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4 Expressive Functions

An n-valued logic is a quintuple 〈V , D, L,CON ,◦ 〉 where V is an n-membered set

of truth-values, D (the set of designated values) is a nonempty proper subset of V ,

L is a nonempty set of variables, CON is a nonempty set of connectives, and ◦ is

a function that assigns an n-valued truth function to each member of CON. The

formulas of such a logic are the members of L and any expressions g(ϕ1, . . . , ϕm)

where ϕ1, . . . , ϕm are formulas and g is an m-ary member of CON. An interpre-

tation is any homomorphism that assigns members of V to formulas. That is, if M

is an interpretation, then M(g(ϕ1, . . . , ϕm)) = g◦(M(ϕ1), . . . ,M(ϕm)). If α is a

unary truth function and ψ(P) is a formula, then ψ(P) expresses α if and only if

M(ψ(P)) = α(M(P)) for every interpretation M. A logic expresses a truth function

if and only if one of its formulas does. Given any interpretation M, we let the theory

DM be the set of formulas assigned a designated value by M. DM is consistent if

and only if there are formulas that do not belong to DM. A set of formulas is sat-

isfiable if and only if some theory contains it. A theory is maximally consistent if

and only if it is consistent and no consistent theory properly contains it. A theory is

reducible if and only if it is the intersection of theories distinct from itself. A logic is

expressive if and only if all its irreducible theories are maximally consistent. A truth

function α : V → V is expressive with respect to a set of designated values D if

and only if every logic 〈V , D, L,CON,◦ 〉 that expresses α is expressive. A function

α identifies values j and k if and only if D j ([α]) = Dk([α]). When we say that α

identifies no values we mean, of course, that it identifies no distinct values: that is,

D j ([α]) = Dk([α]) only if j = k. A derangement is a permutation with no fixed

points. That is, if α is a derangement, then for no k do we have α(k) = k.

Theorem 4.1 Every expressive function that identifies no values is a derangement.

Proof Suppose α is expressive. The systems of §3 behave like n-valued logics with

just one variable. Each of these logics that expresses α is expressive. So every mem-

ber of S({α}) is expressive. Suppose α identifies no values. Then Lemma 3.8 implies

that every truth-value is α-cyclic. So Lemma 3.5 implies that α is a permutation. If

α(h) = h, then Dh([α]) is either inconsistent or empty (depending on whether h is

designated or not). Lemma 3.1 rules out the former. Theorem 3.9 rules out the latter,

since {α0} is always satisfiable. �

Theorem 4.2 If D j ([α])∪{α0} is unsatisfiable whenever j is undesignated and M

is any interpretation in a logic that expresses α, then DM is maximally consistent.

Proof Let M be any interpretation in a logic where ¬ expresses α. Given any

formula ψ , let ¬0ψ = ψ and ¬m+1ψ = ¬¬mψ . Suppose ϕ /∈ DM. Let M(ϕ) = j

where j is undesignated. Then M(¬mϕ) = αm( j). So {¬mϕ : αm ∈ D j ([α])}⊆ DM.

Suppose DM ∪ {ϕ} ⊆ DN. Let N(ϕ) = k where k is designated. Note that

N(¬mϕ) = αm(k). So αm(k) is designated whenever αm ∈ D j ([α]). But then

D j ([α])⊆ Dk([α]). α0∈ Dk([α]) since k is designated. So D j ([α])∪{α0}⊆ Dk([α]).

We conclude that DM ∪ {ϕ} is satisfiable only if D j ([α]) ∪ {α0} is. Suppose the

latter set is unsatisfiable whenever j is undesignated. Then DM ∪{ϕ} is unsatisfiable

whenever ϕ /∈ DM. So DM is maximally consistent if it is consistent. Suppose

DM is inconsistent. Let M(ϕ) = k. Then αm(k) is always designated, since
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αm(k) = M(¬mϕ). So Dk([α]) is inconsistent and every subset of [α] is satisfiable,

contrary to our earlier assumption. �

If D j ([α])∪{α0} is unsatisfiable whenever j is undesignated, then logics that express

α are expressive because all their theories are maximally consistent. Even better: if

D j ([α]) ∪ {α0} is unsatisfiable whenever j is undesignated, then we can apply an

algorithm to write down sequents that guarantee the maximal consistency of every

theory in every logic that expresses α. Let ‘A ⇒ B’ mean that some member of B

is designated whenever every member of A is. That is, B intersects every theory that

contains A. The sequents we associate with α are

D j ([α]) ∪ {α0} ⇒ ∅

for each undesignated j and

∅ ⇒ B ∪ {α0}

for each B that features one element from each theory D j ([α]) with j undesignated.

Here is an example. Let β be the function whose truth table is given below. [β] has

only three members.

j β0( j) β1( j) β2( j)

1∗ 1∗ 3 2

2 2 1∗ 3

3 3 2 1∗

Letting 1∗ be our only designated value, our theories are

D1∗([β]) = {β0},

D2([β]) = {β1},

D3([β]) = {β2}.

The characteristic sequents are

{β0, β1} ⇒ ∅,

{β0, β2} ⇒ ∅,

∅ ⇒ {β0, β1, β2}.

Pick any three-valued logic where ¬ expresses β. No interpretation will assign a

designated value to both ϕ and ¬ϕ; no interpretation will assign a designated value

to both ϕ and ¬¬ϕ; but every interpretation will assign a designated value to ϕ, ¬ϕ,

or ¬¬ϕ. In the sequent notation,

{ϕ,¬ϕ} ⇒ ∅,

{ϕ,¬¬ϕ} ⇒ ∅,

∅ ⇒ {ϕ,¬ϕ,¬¬ϕ}.

Now suppose ϕ /∈ DM. Then the third of our sequents guarantees that either ¬ϕ or

¬¬ϕ belongs to DM. In either case, one of the two other sequents guarantees that

DM ∪ {ϕ} is unsatisfiable. So DM is maximally consistent.

Theorem 4.3 The following are equivalent:

1. α is expressive;

2. D j ([α]) ∪ {α0} is unsatisfiable whenever j is undesignated;

3. D1([α]), . . . , Dn([α]) are all maximally consistent.

Proof Apply Theorems 3.9 and 4.2. �
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Theorem 4.3 provides us with a mechanical test for expressiveness. For example,

let α be the six-valued derangement with cycles (12∗) and (34∗5∗6∗). [α] has four

members.

j α0( j) α1( j) α2( j) α3( j)

1 1 2∗ 1 2∗

2∗ 2∗ 1 2∗ 1

3 3 4∗ 5∗ 6∗

4∗ 4∗ 5∗ 6∗ 3

5∗ 5∗ 6∗ 3 4∗

6∗ 6∗ 3 4∗ 5∗

Letting 2∗, 4∗, 5∗, and 6∗ be our designated values, our theories are

D1([α]) = {α1, α3},

D2∗([α]) = {α0, α2},

D3([α]) = {α1, α2, α3},

D4∗([α]) = {α0, α1, α2},

D5∗([α]) = {α0, α1, α3},

D6∗([α]) = {α0, α2, α3}.

Two theories are reducible: D1([α]) and D2∗([α]). Since the remaining theories

are all maximally consistent, this system is expressive. But we know that α itself

is not expressive, since D1([α]) and D2∗([α]) are not maximally consistent. We

can, in fact, use the technique of Lemma 3.3 to create new theories D1([α, β]),

D3([α, β]), and D5∗([α, β]) such that D1([α, β]) ⊂ D3([α, β]) ∩ D5∗([α, β]), thus

replacing the reducible D1([α]) with the irreducible, but still not maximally consis-

tent, D1([α, β]).

5 Logics with a Single Designated (or Undesignated) Value

Every permutation is a product of disjoint cycles. A permutation consisting of a

single cycle of length n is a cyclic negation.

Theorem 5.1 If there is exactly one designated value or exactly one undesignated

value, then a function that identifies no values is expressive if and only if it is a cyclic

negation.

Proof Suppose α is expressive and identifies no values. By Theorem 4.1, α is a de-

rangement. If α consists of more cycles than there are designated values, then some

of the theories D1([α]), . . . , Dn([α]) are empty. If α consists of more cycles than

there are undesignated values, then some of the theories D1([α]), . . . , Dn([α]) are

inconsistent. But Theorem 4.3 guarantees that none of these theories are either empty

or inconsistent. On the other hand, if α is a cyclic negation, then, by Lemma 3.2,

D1([α]), . . . , Dn([α]) are all maximally consistent. So Theorem 4.3 guarantees that

α is expressive. �

6 Two-valued Logics

The next four sections survey some examples of expressive functions. We begin

with classical logic. There is one derangement of two truth-values. It is the cyclic
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negation characterized by the following sequents.

{P,¬P} ⇒ ∅

∅ ⇒ {P,¬P}

These are the principle ex falso quodlibet and the law of excluded middle. Classical

negation is the only expressive unary truth function of two-valued logic.

7 Three-valued Logics

There are two derangements of three truth-values. Each is a cyclic negation. If there

is just one designated value, then the cyclic negations satisfy the following sequents.

{P,¬P} ⇒ ∅

{P,¬¬P} ⇒ ∅

∅ ⇒ {P,¬P,¬¬P}

We have already seen that these sequents force theories to be maximally consistent.

If there is just one undesignated value, the cyclic negations satisfy the duals of the

above sequents.

∅ ⇒ {P,¬P}

∅ ⇒ {P,¬¬P}

{P,¬P,¬¬P} ⇒ ∅

These sequents also guarantee that every theory will be maximally consistent. For

suppose ϕ /∈ DM. Then our first two sequents guarantee that both ¬ϕ and ¬¬ϕ

belong to DM. So the third sequent guarantees that DM ∪ {ϕ} is unsatisfiable. The

cyclic negations are the three-valued expressive functions that do not identify values.

Whether we have one or two designated values, there will be two three-valued func-

tions that identify truth-values and, because they behave like classical negation, are

expressive.

8 Four-valued Logics

There are 256 unary truth functions in a four-valued logic. Among those that iden-

tify values, some will behave like expressive three-valued functions, while others

will behave like classical negation. Which ones behave one way or the other will

depend on our choice of designated values. If we consider only the functions that do

not identify values, our search for expressive functions can be confined to the nine

derangements. Six are cyclic negations. All six of these will be expressive no matter

what values are designated. If there is just one designated value, the cyclic negations

satisfy the following sequents.

{P,¬P} ⇒ ∅

{P,¬¬P} ⇒ ∅

{P,¬¬¬P} ⇒ ∅

∅({P,¬P,¬¬P,¬¬¬P}

⇒

The dual sequents characterize the cyclic negations when there is just one undesig-

nated value. Each set of sequents guarantees that every theory will be maximally

consistent. If there are exactly two designated values, two of the six cyclic negations
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will identify values and will, in fact, behave like classical negation. The remaining

four will satisfy the following sequents.

{P,¬¬P} ⇒ ∅

∅ ⇒ {P,¬¬P}

The three derangements that are not cyclic negations are products of two disjoint

cycles with two values in each cycle. All of these functions identify values. If there

is just one designated or just one undesignated value, these functions will not be

expressive. If there are exactly two designated values, two of the three derangements

will behave like classical negation, while the third will yield an inconsistent and an

empty theory. (So the first two will be expressive, while the third is not).

9 Five-valued Logics

There are 3,125 unary truth functions in a five-valued logic; 44 are derangements; 24

of the derangements are cyclic negations and are expressive no matter what values

are designated. When there is just one designated or just one undesignated value, the

cyclic negations satisfy generalizations of excluded middle and ex falso quodlibet

such as those we have already reviewed. If there are exactly two designated val-

ues, there are two possibilities. Half the cyclic negations will satisfy the following

sequents.

{P,¬¬P} ⇒ ∅

{P,¬¬¬P} ⇒ ∅

∅ ⇒ {P,¬¬P,¬¬¬P}

The other half will satisfy these:

{P,¬P} ⇒ ∅

{P,¬¬¬¬P} ⇒ ∅

∅ ⇒ {P,¬P,¬¬¬¬P}.

If there are exactly two undesignated values, half the cyclic negations will satisfy the

duals of the sequents in the first set, while the other half will satisfy the duals of the

sequents in the second set. The 20 derangements that are not cyclic negations are

products of two cycles with two values in one cycle and three in the other. If such

a derangement is to be expressive, there must be a designated and an undesignated

value in each cycle. If there are exactly two designated values and each cycle features

one of them, the derangement will satisfy the following sequents.

{P,¬P} ⇒ ∅

{P,¬¬¬¬¬P} ⇒ ∅

∅ ⇒ {P,¬P,¬¬¬¬¬P}

If there are exactly two undesignated values and each cycle features one of them, the

derangement will satisfy the duals of these sequents.

10 Closure Operators

We now begin to explore the closure-theoretic properties of expressive functions.

Suppose α : V → V is expressive with respect to D and identifies no values. Let

〈V , D, L,CON ,◦ 〉 be an n-valued logic in which ¬ expresses α. Let S be the set of
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formulas of this logic. Suppose p is the first natural number such that α p = αm for

some m < p. If ϕ ∈ S and h ∈ V , let

1h(ϕ) = {¬mϕ : m < p and αm ∈ Dh([α])}.

Think of the members of 1h(ϕ) as those “negations” of ϕ that are designated when

ϕ has value h. Together they announce that ϕ has value h.

Lemma 10.1 1h(ϕ) ⊆ DM if and only if M(ϕ) = h.

Proof Since α is expressive and identifies no values, the following are equivalent.

1h(ϕ) ⊆ DM.

M(¬mϕ) is designated whenever αm ∈ Dh([α]).

αm(M(ϕ)) is designated whenever αm ∈ Dh([α]).

Dh([α]) ⊆ DM(ϕ)([α]).

Dh([α]) = DM(ϕ)([α]) (since each theory is maximally consistent).

M(ϕ) = h. �

A closure operator on S is any function K that assigns subsets of S to subsets of S

and satisfies the following condition whenever A and B are subsets of S:

A ⊆ K (B) if and only if K (A) ⊆ K (B).

K (A) is the closure of A. A finitary closure operator K satisfies the following condi-

tion: ϕ ∈ K (A) only if ϕ belongs to the closure of some finite subset of A. If K1 and

K2 are closure operators on S, we say that K1 ≤ K2 just in case K1(A) ⊆ K2(A)

whenever A ⊆ S. If K1 ≤ K2 whenever K2 is a closure operator on S, then we say

that K1 is the smallest closure operator on S. Given any subset A of S, let Cl(A) be

the intersection of the theories that contain A.

Theorem 10.2 Cl is the smallest finitary closure operator on S that satisfies the

following four conditions.

Cl(1) :
⋂

h∈V Cl(A ∪1h(ϕ)) ⊆ Cl(A) whenever ϕ ∈ S and A ⊆ S.

Cl(2) : Cl(1 j (ϕ) ∪1k(ϕ)) = S whenever ϕ ∈ S and j 6= k.

Cl(3) : Cl(1 j (ϕ) ∪ {ϕ}) = S whenever ϕ ∈ S and j is undesignated.

Cl(4) : 1h(g(ϕ1, . . . , ϕm)) ⊆ Cl(1 j (ϕ1) ∪ · · · ∪1k(ϕm)) whenever

ϕ1, . . . , ϕm ∈ S, g ∈ CON, and g◦( j, . . . , k) = h.

Sketch of Proof Since the proof uses well-publicized techniques, a sketch should

suffice. (Cf. Beall and van Fraassen [1], pp. 182–85.) It is easy to confirm that Cl is

a closure operator. Furthermore, Cl is known to be finitary. (See van Fraassen [8],

pp. 142– 44; Weaver [9]; and Woodruff [11].) Does Cl really satisfy Cl(1) – Cl(4)?

Cl(1) If A ⊆ DM and M(ϕ) = h, then Cl(A ∪1h(ϕ)) ⊆ DM. So if a formula

belongs to
⋂

h∈V Cl(A ∪1h(ϕ)), it belongs to every theory that contains A.

Cl(2) Suppose j 6= k. Then 1 j (ϕ) ∪1k(ϕ) is unsatisfiable, since no interpre-

tation assigns both j and k to ϕ. So Cl(1 j (ϕ) ∪1k(ϕ)) = ∩∅ = S.

Cl(3) 1 j (ϕ) ∪ {ϕ} is satisfiable only if j is designated.
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Cl(4) Suppose (1 j (ϕ1)∪· · ·∪1k(ϕm)) ⊆ DM. Then M(ϕ1) = j, . . . ,M(ϕm) =

k. So M(g(ϕ1, . . . , ϕm)) = g◦( j, . . . , k). But then 1h(g(ϕ1, . . . , ϕm)) ⊆ DM if

g◦( j, . . . , k) = h.

Now suppose K is a finitary closure operator on S that satisfies Cl(1) – Cl(4).

We want to show that Cl ≤ K . If A ⊆ S, say that A is a K -maxiset if and only

if K (A) 6= S but K (A ∪ {ϕ}) = S whenever ϕ /∈ A. The following fact about

K -maxisets will be useful.

Lemma 10.3 If A is a K -maxiset and ϕ ∈ S, then 1h(ϕ) ⊆ A for exactly one

value h.

Proof Since K satisfies Cl(2),1h(ϕ) ⊆ A for at most one value h. Suppose, on the

other hand, there is no such h. Then K (A ∪1h(ϕ)) = S for each h. But Cl(1) then

implies that K (A) = S. �

Now pick any K -maxiset A. Lemma 10.3 justifies the following definition of the

function M:

M(ϕ) = h if and only if 1h(ϕ) ⊆ A.

We want to show that M is an interpretation. Suppose M(ϕ1) = j, . . . ,M(ϕm) = k.

Then (1 j (ϕ1) ∪ · · · ∪ 1k(ϕm)) ⊆ A. Suppose g◦( j, . . . , k) = h. Then, by Cl(4),

1h(g(ϕ1, . . . , ϕm)) ⊆ A. So M(g(ϕ1, . . . , ϕm)) = h = g◦(M(ϕ1), . . . ,M(ϕm)), as

desired. Since M is an interpretation, it makes sense to talk about the theory DM.

Cl(3) allows us to show that DM = A. More generally, every K -maxiset is a theory

of 〈V , D, L,CON ,◦ 〉. Let B be any subset of S and suppose ϕ ∈ Cl(B). Then

ϕ belongs to every theory that contains B . So ϕ belongs to every K -maxiset that

contains B . Since K is finitary, Cl(1) and Cl(3) allow us to show that K (B) is the

intersection of the K -maxisets that contain B . So ϕ ∈ K (B). We conclude that

Cl ≤ K . �

Suppose we have a deductive system in the language of 〈V , D, L,CON ,◦ 〉. If A is a

set of sentences in this language, let K (A) be the smallest deductively closed set that

contains A. If K satisfies Cl(1) – Cl(4), then our deductive system is complete with

respect to 〈V , D, L,CON,◦ 〉: if ϕ belongs to every theory that contains A, then ϕ is

derivable from members of A.

11 What is Denial?

The question “What is negation?” has inspired a substantial literature. (See Gabbay

and Wansing [2], for example.) A natural response to this question is to identify

conditions under which one sentence can reasonably be regarded as the negation of

another. It may not be clear whether the results of this paper contribute to this en-

terprise. It is clear, however, that those results help us answer a slightly different

question. Say that one denies a sentence when one attributes to it some form of un-

truth. One might wonder how many forms of denial are supplied by a given language.

That is, how many ways of attributing untruth are available? Suppose ¬ expresses an

expressive function that identifies no values. Then ¬ provides at least as many ways

of denying a sentence as there are undesignated values, for we can attribute the value

h to a sentence ϕ by affirming every member of 1h(ϕ). If there is only one desig-

nated value, then ¬ expresses a cyclic negation and each set 1h(ϕ) is a singleton of

the form {¬mϕ} (with m = 0 if h is designated). If m is greater than 0 but less than
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n (the number of truth-values), then an affirmation of ¬mϕ denies ϕ by attributing to

it an undesignated value. (Does this help us to decide whether the “cyclic negation”

¬ really is a negation? Perhaps a connective in a logic really is a negation if it does

a good job of representing the behavior of “not” in some form of English-language

discourse. Since determining this would require an empirical linguistic inquiry, we

put the question on hold and move on.) Now suppose ¬ expresses the five-valued

function with cycles (1∗2) and (3∗45). Then

11∗(ϕ) = {¬0ϕ,¬2ϕ,¬4ϕ},

12(ϕ) = {¬1ϕ,¬3ϕ,¬5ϕ},

13∗(ϕ) = {¬0ϕ,¬3ϕ},

14(ϕ) = {¬2ϕ,¬5ϕ},

15(ϕ) = {¬1ϕ,¬4ϕ}.

In this setting, the most informative way to deny ϕ is to attribute to it one of our

three undesignated values. For example, we could attribute 4 to ϕ by affirming ¬2ϕ

and ¬5ϕ. The next most informative way to deny ϕ is to assert that it has one of

two undesignated values. For example, we could assert that ϕ has either value 2 or

value 5 by affirming ¬1ϕ, since {¬1ϕ} = 12(ϕ) ∩ 15(ϕ). We cannot issue a less

informative denial using just ¬, since 12(ϕ) ∩ 14(ϕ) ∩ 15(ϕ) = ∅. (Here is a

difference between affirmation and denial: ϕ always belongs to
⋂

h∈D 1h(ϕ). Does

this represent some necessary truth about language? Could there be a language in

which one denies a sentence by enunciating that very sentence?)

12 Overview

To determine whether the unary n-valued truth function α is expressive (with respect

to some choice of designated values) we need only inspect a very simple logic: an

n-valued logic with just one sentential variable, whose only connective expresses α.

α is expressive if and only if the theories of this logic are all maximally consistent.

Let us consider the two directions of this biconditional one at a time.

Left-right: The definition of expressiveness guarantees that if α is expressive, then

the irreducible theories of any logic expressing α will be maximally consistent. What

about the reducible theories? If there were any, they would certainly not be maxi-

mally consistent. It turns out, though, that no logic expressing a unary expressive

truth function will have any reducible theories. This is a special feature of unary

expressive truth functions. By way of contrast, consider material implication. This

binary truth function is expressive. But, in a sentential logic whose only connective

expresses material implication, every sentence will be true when all the sentential

variables are true. So, in such a logic, the set of all sentences is a theory and is

reducible since we identify it with ∩∅.

Right-left: Consider again the logic with just one sentential variable and just one

connective, the latter expressing α. Suppose all the theories of this logic are maxi-

mally consistent. Then this logic itself is expressive. What happens, though, when

we add variables and connectives? Might we acquire an irreducible that is not max-

imally consistent? As we have seen, the answer is “No.” Add as many variables as

you wish. Add any connectives that take your fancy. The result can only be another

expressive logic.
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