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A SET OF AXIOMS FOR THE PROPOSITIONAL
CALCULUS WITH IMPLICATION AND
NON-EQUIVALENCE

ANJAN SHUKLA

It is well-known that implication and non-equivalence constitute a
complete system of independent primitive connectives for the propositional
calculus. In this article it is the intention of the author to give an inde-
pendent set of axioms by means of the two connectives mentioned above,
the rules of inference being substitution and modus ponens. ‘

In §1 we state the axioms and prove some preliminary theorems. In §2
we solve the decision problem. Finally, we establish the independence of
the axioms and rules in §3. In the matter of notation we shall follow Alonzo
Church’,

§1. Axioms and Preliminary Theovems. The axioms of our logistic
system, say P, are the seven following:

Axiom 1. pD-qDp

Axiom 2. s D[pDg]lD° s>Op>D-sD¢q
Axiom 3. p DqgDp Dp

Axiom 4. po[p#qlo- g2 p#4q
Axiom 5. p£qg>-p>Og>Ogq
Axiom 6. p£qg>D-pD-gDs
Axiom 1. pLEg>-q#p

In fact, as is evident from the above set, any formulation of the
implicational propositional calculus and Axioms 4-T7 will suffice. We note
that from the present formulation the deduction theorem —to be henceforth
referred to as D.T.—follows immediately.

We now go on to prove some theorems.
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Theorem 1. p£qg>-qg>D-p>Os
Proof:

By Axiom 6, p # g, g, p—s
Hence by D.T.,—p#q>-qgD-p DS

Theorem 2. ¥ D.p#rD.pDq
Proof:

By Theorem 1, 7,p # ri—p D¢
Hence by D.T., —» D p #7 D+ p Dgq

Theovem 3. ¥ D-pD-q#rD-pDq#7r
Proof:

We have, 7,p,9 7, p Dqi—q

Again by Theorem 2, 7,p,q #7, p Dq—q D-p D q#7r
Hence, 7,p,q #7, p Dq+—pDq#7r

Hence by D.T., 7,p,q v —pDgD-pDq#r
Hence by Axiom 4, 7, p,qZ7r—7rD-pDq#r
Again we have, 7, p, g # 7 —7

Hence, »,p,q Z7v—p Dq#r

Hence by D.T., =7 D-p D qZrD-pDqg#7r

Theorem 4. ¥y D-p>D-q>O-pEq#r
Proof:

By Theorem 2, p,q,pZq—p£q#v
Hence by D.T., p,q,—p£q>-p£q#Zr
Hence by Axiom 4, p,q—7>-p£q#7r

Hence, 7, p,q—p £ q# 7
Hence by D.T.,—¥ D-pD.qD-p£q#7r

Theorem 5. ¢ > [p#£qlo-pD-p#q
Pyoof:

We have, ¢ > [p#ql, a+—p #4q

Hence by Axiom 7, ¢ >[p#q), g—q #£p
Hence by D.T., ¢ > [p#ql—a>-q#p
Hence by Axiom 4, ¢ D[p# ql—pD-q#p
Hence, ¢ > [p#4q), p—q #p
Hence by Axiom 7, ¢ > [p#ql,p—p#q
Hence by D.T.,—¢ D[p#q]D>-p>D-p#q

Theorem 6. ¥ D-p>D-q£r>-p#q
Proof:

By Theorem 1, »,q #7ri—qg>-p#q
Hence by Theorem 5, »,g £ r+—p>D-p#q

Hence, 7,p,q # 7 —p #4q
Hence by D.T., 7 D-pD-q#7rD-p#q
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Theovem 1. ¥y D+ qD-p#rD-p#q
Proof:

By Theorem 1, »,p£r—pD-ptq
Hence by Axiom 4, 7,p#v—qD>-p#q
Hence, 7, q,p #7v —p # ¢q

Hence by D.T., 7D gD p#r>D-p#q

Theovem 8. ¥y D-p#rD-q#rD-p#q#r
Proof:

By Theorem 2, ,p #7, g7, p #q—pDq
Again by Axiom 5, 7, p €7, q#r, p#q—pDgD4q
Hence, 7,0 #7, a#7 b #q1+4q

Again by Theorem 2, 7, p #7, q £ v, P #q—qD-p#q#7r
Hence, v, p # 7, a7, P #q—p #q £ 7

Hence by D.T., 7,p # 7, qZ7v—pZqD-p#q#r
Hence by Axiom 4, »,p£ 7, q#r—r>D-p#q#7r

Again we have, »,p £ 7, g £ 7v 7

Hence, 7,p £ 7, q v —p £ a £ 7

Hence by D.T., 7 D-p# 7 D-q#vrD-pZq#7r

Theorem 9. p#£#qgDSD-pDSD-qDS
Proof:

We have, p Os, sD[p#ql, p—p#q

Hence by D.T., pO s, sD[p#ql—pD-p#q
Hence by Axiom 4, p s, s D[p#ql—g>D.p#q
Hence, p Ds, ¢, s D[p#ql—p #q
Hence, p # ¢ DS, p DS, q, sO[p#qli—s

Hence by D.T., p#q Ds, p DS, q—sD[p#q]l>s
Hence by Axiom 3, p#£g>s,pDs, g s

Hence by D.T.,p£g>Ds>D:-pDsD-gDs

§2. The Decision Problem
Metatheorvem 1. Every Theorem of P is a tautology.
This Metatheorem can be easily established. We omit the proof.

Metatheorem 2. Let B be a wif of P, let a,,a, . . . , a4, be distinct variables
among which are all the variables occurring in B, and let ajay .. ., a. be
truth-values. Let C be any theorem of P i.e., —C. Further, let A; be a; or
a; # C according as a; is t or f; and let B' be B or B # C according as the
value of B for the values ay,az ..., an of @,,0;, ..., d, istor f. Then
ALA;, ..., A, —B".

Proof: In order to prove that
(1) ALAy ..., A, — B

we proceed by mathematical induction with respect to the number of
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occurrences of D and # in B. If there are no occurrences of O and # in B,
then B is one of the variables aj. Hence B' is the same wif as A;, and (1)
follows trivially. Suppose that there are occurrences of D or # or both in
B. Then B is either B, D B, or B, # B,. By the hypothesis of induction

(2) ALA,, ..., A, —B]
(3) ALA,, ..., A, —B;

where B} is B, or B, # C according as the value of B, for the values
ayuGz ..., an of G405, ..., d, is t or f, and B} is B, or B, #C according
as the value of B, for the values @@z ...,a, of d;,0,, . ..,d, istor f.

Case 1. IfBisB;>B,

(In the treatment of this and the next case it shall be tacit that —C.)

In case B} is B, we have that B' is B, D B;, and (1) follows from (3) by
Axiom 1. In case B is B, # C, we have again that B' is B, D B, and(1)
follows from (2) by Theorem 2. There remains only the case that B; is B,
and B; is B, #C, and in this case B' is B, D B, #C, and (1) follows from
(2) and (3) by Theorem 3.

Case 2. If B is B, #B,

In case B is B; and B;j is B,, we have that B' is B, # B, # C, and (1)
follows from (2) and (3) by Theorem 4. In case B is B; # C and B} is
B, # C, we have again that B' is B; # B, # C, and (1) follows from (2) and (3)
by Theorem 8. In Case Bj is B, and Bj is B, #C, we have that B! is
B, # B,, and (1) follows from (2) and (3) by Theorem 6. There remains only
the case that Bj is B, # C and B} is B,, and in this case again B' is B, # B,,
and (1) follows from (2) and (3) by Theorem 7. Therefore Metatheorem 2 is
proved by mathematical induction.

Metatheorem 3. 1If B is a tautology, —B.

Proof: Let a,,0z, ..., d, be the variables of B, and for any system of
values a,as ..., a, Of di,0, ... ,0d, let Aj Ay ..., A, be as in Meta-
theorem 2. The B' of Metatheorem 2 is B, because B is a tautology.
Therefore, by Metatheorem 2,

ALAs, ..., A, —B

This holds for either choice of a., i.e., whether a, is f or t, and so we
have both

ALA;, ..., A,,, o, CHB
and

ALA,, ..., A, ,,0,—B
By the deduction theorem,

ALA,, ..., A, +—a,#CDB
Al,Az, “e ey An-l —d; D B
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Hence, by Theorem 9,

ALA,, ..., A,,+HCDB

)
Hence, since —C,
AI,AZ, “eoey An-l'__B

This shows the elimination of the hypothesis A,. The same process
may be repeated to eliminate the hypothesis A,_;, and so on, until all the
hypotheses are eliminated. Finally we obtain —B.

In Metatheorem 1 and Metatheorem 3, together with the algorithm for
determining whether a wiff is a tautology, we have a solution of the decision
problem of P. The consistency and completeness of P, now follows as
corollaries of this solution of the decision problem.

§3. Independence. The independence of each of the axioms and rules
of inference, with the exception of the rule of substitution, is established by
the standard device of generalized systems of truth-values (see tables
below).

For the proof of independence of modus ponens, it is necessary to
supply also an example of a theorem of P which is not a tautology according
to the truth-table used. One such example is p D p. The independence of
the rule of substitution can be established by a well-known argument.
Finally, since the calculations required to establish the independence of
Axiom 2 are extremely long, the author wishes to point out for the
convenience of the reader that when s, p, q take the values 4, 5, 3 respec-
tively, the axiom yields an undesignated value according to the truth-table
used.

MODUS PONENS

olol1l2 £lo|1]|2
*0lojo|o *lz2|2]2
110|2]|0 1|2|2|2
2|(0(0|0 2|2l 2|2
AXIOM 1
o|0|1|2|3|4 Zlol1|2]|3|4
*0|0[1|2|3|4 *0|4|4|4]|0]0
*110(1|3]3|4 *114|4|4|0]|0
*2 (01103 |4 *2 14 |4|4]2]2
3lol1]olo]1 3lojo|2]|4|4
4 |ol1|0]0|1 4(010|2]|4|4
AXIOM 2
olol1(2]3(4]5 £l0|1]2]|3|4]|5
*0|0(1|2]|3|515 *0|5(5|5|5[3]0
*110(1]2(3]5]5 *115]|5|5|5]|3]|0
*2|2(1]10(3|5]|5 *2|5|5|5|5[3]|0
30(1]|0|2]4|4 315|5|5(5]0|3
4100lo|3|o|o0 4|3|3|3|0|5|5
5(1|1]|1(1|1}1 5(0lolo0]|3]|5|5




286

*0

QIQIT|C
Qlo|N|~

[SYLNTR\CIR S

S
~

*0

S
~

S

(&)

S

S

o]

0

1

*0

0

1

1

0

0

Remark. Ax. 1, Ax. 2, Ax. 5, Ax. 6, Ax. 7, Th. 9 also constitute a complete
set. For, (1) Ax. 4 follows immediately from Th. 9 by substitution and
modus ponens (p O p is deducible from Ax. 1 and Ax. 2), and (2) in order to
prove the completeness of P, we need Ax. 3 only in one place: to prove

Th. 9.
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