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AN EXTENSION OF VENN DIAGRAMS

GERALD J. MASSEY

Part One: World-state Diagrams

In Methods of Logic Quine mentions two limitations of Venn-Diagram -
matic techniques. The first is the well-known difficulty of constructing a
diagram for a large number of terms. But Venn himself suggested a way to
get around this difficulty, viz. to renounce all hope of generating a 2-term
diagram by superimposing % simple closed curves and instead to subdivide
a rectangle into the requisite number of sub-compartments or bins, i.e. 2k
of them.' Marquand’s rectangular graphs seem simply to incorporate this
suggestion. Despite the fact that Marquand-graphs (hereafter M-graphs)
are readily available for any finite number of terms, they seem to be no
more capable than Venn-diagrams of representing arguments which involve,
in Quine’s phraseology, ‘‘an admixture of truth functions’”® and which
present ‘‘another place where the unaided method of diagrams bogs down’’.?
Quine cites the following as an example of an argument form involving an
admixture of truth functions:

(All FG arve H) > (Some F are not G)
(ALl F are G) v (All F ave H)
Thus, (All FH are G) S (Some F which are not H are G).*

Referring to this example Quine rhetorically asks ‘‘just how may we splice
the two techniques in order to handle a combined inference of the above
kind?’’% (The two techniques mentioned are Venn-diagrams and truth-value
analysis.) This paper is an answer to Quine’s rhetorical question. It shows
how to splice Venn-diagrammatic and truth-tabular techniques so as to get
a diagrammatic decision procedure applicable to all arguments of the above
kind, i.e. to uniform quantification theory.® If, furthermore, one appends to
it “some simple but non-truth-functional transformations, the decision
procedure becomes applicable to the whole of monadic quantification
theory.” In addition these diagrams, which will be called world-state
diagrams (hereafter WSDs), provide an intuitive basis on which to define
the notions of validity and semantical completeness of both uniform and
monadic quantification theory.

Before introducing WSDs, I wish to point out a little-noticed fact, viz.
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that Venn-diagrams are commonly used to depict the content of some
truth functions of Venn-diagrammable formulas. In validating syllogisms,
for example, one usually constructs a Venn-diagram for the conjunction of
the two syllogistic premisses and then inspects it to determine whether the
content of the Venn-diagram for the conclusion is contained in it. The
Venn-diagram for the conjunction of Venn-diagrammable formulas is
obtained merely by stacking or superimposing the Venn-diagrams for all
the conjuncts. Consider the argument form Datisi:

All G are H.
Some G are F.
Some F ave H.

A Venn-diagram for the conjunction of the premisses of this syllogism is
G

which results upon superimposing the Venn-diagrams

F H

and . (Notice, in particular, how superimposition

changes the bar into ‘+’.) When one appreciates just what is involved in
getting a Venn-diagram for the conjunction of Venn-diagrammable formulas,
a method of diagramming disjunctions of Venn-diagrammable formulas
suggests itself almost immediately. Why not, as a start at least, string out
the Venn-diagrams of the disjunctions to signify that at least one of them
depicts the world? Thus the disjunction of the two categorical premisses

above might be diagrammed somewhat like this v
Supplanting Venn-diagrams by M-graphs, one gets the following string of

M-graphs

FGH FGH FGH FGH

FGH FGH FGH FGH
where a circled-numeral in an M-graph signifies the nonemptiness of at
least one of the bins in which it appears. Such strings of one or more M-
graphs will be called world-state pictures (hereafter WSPs). Look again at
Quine’s sample argument exhibited above. Using truth-tabular methods to
eliminate ‘>’ in favor of ‘~’and ‘v’, one reduces it to the following form:
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~(All FG are H) v (Some F are not G)
(All F are G) v (AlL F ave H)
Thus, ~ (All FH ave G) v (Some F which are not H are G).

Since the expression /

‘All FG are H’ has the M-graph

it evidently follows that its negation ‘~(All FG are H)’ has the M-graph

@

which embodies the necessary and sufficient

condition for the falsity of the unnegated formula. Proceeding in this man-
ner, one can quickly construct the following WSD for the argument, a WSD
being simply a finite sequence of WSPs:
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It is now, as shall soon be shown, an easy task to inspect this WSD to
determine whether or not the argument is valid. An argument form is
usually said to be valid if every model of the premisses is also a model of
the conclusion. Referring to a WSD for an argument, one could say simply
that the argument is valid if every world-state depicted by the premiss
WSPs is also depicted by the conclusion WSP. Before explaining this
definition, I must say a few words about world-states. Suppose that &
distinct monadic predicates occur in an argument. If one says of each of
these predicates whether it is true or false of a certain individual, one has
completely specified that individual in terms of those predicates. It is
easily shown that there are 2% ways to so specify an individual. A complex
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predicate which completely specifies an individual in this fashion will be
called a specific-predicate. Thus k distinct predicates determine exactly
2k specific-predicates. Note, too, that the 2% bins of an M-graph cor-
respond to the 2* specific-predicates. A specific-predicate will be said to
be empty if there are no individuals of which it is true; otherwise it is said
to be nonempty. One can show that, given % distinct predicates, there are
2 ways to ascribe emptiness or nonemptiness to the 2k specific-
predicates which those % predicates determine. Each of these ways of
ascribing emptiness or nonemptiness to the specific-predicates amounts to
a complete description of a state of the world. I.e. each ascription purports
to describe the world completely in regard to the emptiness or non-
emptiness of the specific-predicates. Since there are 2 such ascriptions,
there are 2 o corresponding possible states of the world. Thus, cor-
responding to 4 distinct predicates there are 65,536 possible world-states,
i.e, 65,5636 ways in which the world might be with respect to the emptiness
or nonemptiness of the 16 specific-predicates determined by those 4
predicates. To illustrate, two predicates ‘F’ and ‘G’ determine 16 possible
world-states, viz. those depicted by the following completely determinate
M -graphs:
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I have, of course, yet to say under what conditions an M-graph depicts a
world-state. An M-graph will be said fo depict a world-state if the
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specific-predicates which the M-graph shows to be empty are empty in that
world-state and those which it shows to be nonempty are nonempty in that

/ ©
depicts 6 world-

®

world-state. For example, the M-graph

states, viz. 1,5,6,9,12, and 14. A WSP will be said fo depict a world-state
if at least one of its M-graphs depict that world-state. Thus the WSP

//@

@

= depicts 7 world-states, viz. 1,5,6,9,12,

A\

14, and 15. A sequence of WSPs will be said fo depict those world-
states which each of its members depicts. Thus the two WSPs

_° .
/

@

depict exactly 7 world-states, viz. the

® Z

same 7 that the first WSP depicts, for the second WSP depicts all 16
world-states.

It should now be obvious how, once in possession of a WSD for an
argument, one could set about quite mechanically, albeit laboriously, to
discover whether the argument were valid. He could simply consider all
the possible world-states, find out which ones the premiss WSPs depict,
then check to see if the conclusion WSP also depicts them. Happily the
same end can be achieved in a much less onerous way. One can show that
the premiss WSPs depict a world-state if and only if some M-graph which
results upon superimposing exactly one M-graph from each premiss WSP
depicts it. An M-graph which results from the superimposition of exactly
one M-graph from each premiss WSP will be called a superimposition M-
graph (hereafter S-M-graph). One can prove that a world-state which a
S-M-graph depicts is also depicted by the conclusion WSP if and only if at
least one of the conclusion M-graphs depicts it. Two rules suffice to
decide this matter. In expositions of diagrammatic procedures such rules
are usually left unstated. For example, when explaining how to use Venn-
diagrams to validate syllogisms, Quine remarks that, once having inscribed
the content of the premisses in the Venn-diagram, ‘‘we inspect the
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diagram to see whether the content of the conclusion has automatically
appeared in the diagram as a result’’.®

Before the rules of content can be given, a few definitions are needed.
A Dbin of an M-graph will be said to be marked if it is shaded or if it
contains an occurrence of a circled-numeral. An M-graph will be said to
be wvacuous if none of its bins are marked and it is not crossed through as
inconsistent (see below). The shading of an M-graph G: will be said to be
a subsystem of the shading of an M-graph G: if, for every bin of G, that is
shaded, the corresponding bin of G, is also shaded. A system of plus-
marks in bins of an M-graph G will be said to satisfy G’s existential com-
mitments if, for each distinct circled-numeral of G some occurrence of it
appears in some bin containing a plus-sign. A system of plus-marks
and/or shading in bins of an M-graph will be said to be consistent if no bin
exhibits both shading and a plus-mark. (In a system of plus-marks in bins,
a bin receives at most one plus-mark.) And, finally, an M-graph G will be
said to contain the content of a WSP W if:

(1) G is an inconsistent M-graph; or

(2) W contains a vacuous M-graph; or

(3) for each consistent way of putting plus-marks and/or shading
in the content-bins of G in such a way that G’s existential commitments are
satisfied, there is some consistent M-graph of W whose shading is a sub-
system of G’s resulting shading and whose existential commitments are
also satisfied by that way of putting plus-marks in its bins (where a bin of
G is understood to be a content-bin of G if it is marked in G or if the
corresponding bin of one of the consistent M-graphs of W is marked).

Z

7= contains the content of the WSP
€))

For example, the M-graph

A\

ORI
/ . As an additional example, the M-graph / contains
Z 7=

A

@
v , as the reader

@

the content of the WSP

A

_

may readily verify.

The three clauses of the foregoing definition may be considered the
rules of content of the method of WSDs. Actually, since the third rule
makes the second redundant, the reader may prefer to regard as primitive
just the first and third rules and to establish the second as a derived rule
of content.’
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One can readily prove that a WSP W depicts all the world-states
depicted by an M-graph G if and only if G contains the content of W. It
follows, accordingly, that the conclusion WSP of a WSD depicts all the
world-states depicted by the premiss WSPs if and only if every S-M-graph
contains the content of the conclusion WSP. (Implicit in this last assertion
is the assumption that a WSD for an argument always contains premiss
WSPs, even when the argument is one from no premisses. This matter will
be disposed of shortly.) If all its S-M-graphs contain the content of the
conclusion WSP, a WSD will be said to be diagrammatically valid. One can
decide diagrammatic validity effectively by applying the rules of content a
finite number of times, once for each S-M-graph. The connection between
diagrammatic validity and validity should now be apparent and is simply
this: an argument is valid (in all domains whether empty or not) if and
only if its WSD is diagrammatically valid, (Actually there are many WSDs
for the same argument. They have in common, however, the all-important
feature that whenever one of them is valid they are all valid and, conse-
quently, that whenever one of them is not valid none of them are valid.
Hence, so far as validity is concerned, one may talk as if there were only
one WSD for a given argument.)

In connection with inspecting a WSD for validity, there are 4 subtle
points which must yet be made. First, it is assumed throughout this paper
that all the M-graphs which appear in a WSD are alike both in the number-
ing and in the labelling of their bins, a requirement easily enough satisfied.
Second, in constructing a WSD, whenever a circled-numeral is needed to
indicate nonemptiness of some system of bins of an M-graph, one must use
a circled-numeral not yet appearing anywhere in the diagram. Third, a
word or two must be said about the process of superimposing M-graphs to
get a S-M-graph. In the process of superimposing M-graphs, shading in a
bin erases or deletes an occurrence of a circled-numeral in that bin unless
that circled-numeral appears only in bins that are shaded. In the latter
case the diagram is inconsistent and is so marked by drawing a large cross
through it, As remarked above, an inconsistent M-graph contains the
content of any WSP. Fourth and finally, solely in the interest of tidiness,
superimposition may be taken to erase or delete all occurrences of a
circled-numeral which appears in every bin in which some one other
circled-numeral appears. One must, of course, regard this last statement
to apply to the circled-numerals one at a time,

Part Two: Proof that WSDs Constitute a Decision Procedure For Uniform
Quantification Theory

Before disposing of the problem of diagramming arguments from no
premisses, I will show that every argument of uniform (closed) quantifica-
tion theory is world-state-diagrammable. Closely following Quine, by a
uniform open (quantificational) schema I shall understand a quantifier-free
wif that contains only monadic predicates, grouping indicators, truth-
functional connectives, and a single individual variable which, of course,
may have many occurrences in that wff, For example, ‘Fz > (Gz = Hz)’ and
‘Gy v Hy’ are uniform open schemata. Given a uniform open schema which
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appears in some argument of uniform quantification theory, truth-tabular
techniques suffice to get an equivalent uniform open schema in full disjunc-
tive normal form and which contains every predicate which occurs in the
argument. Thus, given the uniform open schema ‘Fz > (Gz= Hz)’ appearing
in an argument which contains only the predicates ‘F’, ‘G’, and ‘H’, a truth-
table yields the following equivalent full disjunctive normal schema
‘FzGzHz v Fz2GzHz v Fz2GzHz v Fz2GzHz v F2GzHz v FzGzHz’. From this
normal schema one can readily get an M-graph which incorporates
the content of the existential closure of the given open schema, viz.

@ @
QIO |0

This M-graph is constructed by putting an

occurrence of the same circled-numeral in every bin which corresponds to
a disjunct of the full disjunctive normal schema to signify the nonemptiness
of one or more of the specific-predicates represented by those bins. To get
an M-graph for the universal closure of that same open schema, simply
shade all those bins, if any, which do not correspond to any of
the disjuncts of the equivalent full disjunctive normal schema. Thus

7=
A/ is an M-graph for the universal closure of the

given uniform open schema. To get an M-graph for the closure of a
consistent uniform open schema, it should be emphasized that the detour
through full disjunctive normal schemata is often unnecessary. Logical
acumen alone usually enables one to see immediately which bins require
shading or which need circled-numeraling as the case may be. But it is
comforting to know that the detour, which hinges on nothing more difficult
than truth-tables, is always available should acumen happen to fail.

To get the M-graph for the negation of the universal or existential
closure of a uniform open schema, one simply replaces shading with a
circled-numeral, or vice versa as the case may be, in the M-graph for the
universal or existential closure. The result is an M-graph which
embodies the necessary and sufficient condition for the falsity of the
unnegated closure. Thus the M-graph for ‘~(3z).Fz >(Gz = Hz) is

whereas the M-graph for ‘~(z). Fz 5 (Gz = Hz)’

NN

NN

__




AN EXTENSION OF VENN DIAGRAMS 247

®|O

is . Suppose, however, that a uniform open schema

is inconsistent, e.g. ‘FxGxHx = ~ (FxGxHx)’. Clearly the M-graph for its
existential closure must be an inconsistent M-graph which is obtained by

drawing a cross through an M-graph thus \ . But

the universal closure of an inconsistent uniform open schema, although
always false in all nonempty domains of individuals, is always true in the
empty domain of individuals. Its M-graph, then, is a completely shaded-out
M-graph. For example, the M-graph for ‘(). FxGxHx= ~ (FxGxHx) is

. To get the M-graph for the negation of the

NN
NN

/ /
universal closure of an inconsistent uniform open schema, one proceeds
exactly as above, i.e. by supplanting shading with a circled-numeral. But
how does one graph the negation of the existential closure of such a
schema, i.e. how does one graph the negation of a wiff which has an
inconsistent M-graph? Since the negated wff will be valid, one needs an
M-graph which depicts every world-state. Quite fortunately the vacuous

M-graph, i.e. an M-graph with no shading and no circled-numerals, has
this very property. Thus the M-graph for ‘~(3x). FxGxHx= ~ (FxGxHx)’

is

So far, then, I have shown how one could mechanically graph the
existential and the universal closures of uniform open schemata, and the
negations of such closures. And, when discussing Venn-procedures in
syllogistics, I suggested how to graph a conjunction of graphable formulas.
To obtain such an M-graph, merely superimpose the M-graphs for all the
conjuncts. I also indicated how to draw a WSP for a disjunction of
graphable formulas, viz. by stringing out the M-graphs for each disjunct
and separating them by ‘v’s.

Again closely following Quine, by a uniform closed (quantificational)
schema, 1 shall understand a truth function of closures of uniform open
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schemata.? I shall call the closures of uniform open schemata guantifica-
tional units. Truth-tabular methods suffice to show that any uniform closed
schema is equivalent to some ‘‘normal’’ uniform closed schema, i.e. to a
schema which is a disjunction of conjunctions each conjunct of which is
either a quantificational unit or the negation of a quantificational unit.
Moreover, truth-tables effectively yield these equivalent normal schemata.
And, from the preceding paragraph it should be obvious how to get mechan-
ically a WSP for any normal schema. It follows, then, that all uniform
closed schemata are world-state-picturable. And from this last statement
it follows immediately that all arguments of uniform closed quantification
theory are world-state-diagrammable. WSDs, then, constitute a decision
procedure for validity for uniform closed quantification theory.

In addition, uniform quantification theory may be said to be complete
in this very intuitive sense: given any WSP, there is a uniform closed
schema whose content is represented by that WSP. To prove this last
assertion, one simply shows how, given an arbitrary M-graph, to get a
uniform closed schema whose content is represented by that M-graph.
Then, to get a uniform closed schema whose content is that represented by
an arbitrary WSP, first find a uniform closed schema for each M-graph of
the WSP and then merely write a disjunction of those schemata. Now a
WSP depicts none, some, or all of the possible world-states determined by
the specific-predicates. Further, given any set of the possible world-
states, there is a WSP that depicts all and only those world-states. Thus
one can look upon the semantical import of a uniform closed schema as
expressing that the world is in one of certain world-states, viz. those
depicted by its WSP. (Again, although there are many WSPs for a schema,
they all depict the same world-states. Thus one may speak as if there were
only one such WSP.) The semantical completeness of uniform closed
quantification theory, then, comes to this: given % distinct predicates, they
determine 2% possible world-states; given any set of those world-states,
there is a uniform closed schema which says that the world is in one of
those states.

If effective procedures for reducing monadic schemata to equivalent
uniform schemata are incorporated, the foregoing decision procedure may
be applied to any argument of monadic quantification theory. One such
elegant procedure is that of Quine which turns on interchange of equivalents
of only four simple types.'

There remains only the problem of dealing with arguments from no
premisses. Such an argument is valid if and only if its conclusion is valid.
Now a WSP for a valid schema depicts all possible world-states. But a
vacuous M-graph contains the content of a WSP if and only if the latter
depicts all possible world-states. Hence, to get a WSD for an argument
from no premisses, one could construct a conclusion WSP as usual and then
add a vacuous M-graph as a premiss WSP. There are, however, shortcuts
for accomplishing the same thing. If the conclusion of an argument from no
premisses has the form B> C7, that argument is valid if and only if the
argument, more easily handled by WSDs, from B to C is valid. And, should
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its conclusion have the form "B=C7, such an argument is valid if and only if
the two arguments from B to C and from C to B are both valid.

Those who find diagrammatic methods more perspicuous than alge-

braic ones will perhaps find the methods outlined in this paper to be a
useful pedagogical device as well as a practical decision procedure for
relatively simple arguments. And those who do not may at least find it
interesting to learn that Venn-diagrammatic techniques are not so re-
stricted in scope as is commonly believed.
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NOTES

Gardner, Logic Machines and Diagvams, p. 43.
Quine, Methods of Logic, p. 81.

Ibid., p. 81.

Ibid., p. 81 f.

. Ibid., p. 82.

In this paper uniform quantification theory is understood in a sense slightly different
from Quine’s. It is here considered to be the study of the class of wffs that can be
obtained from Quine’s uniform closed quantificational schemata by alphabetic change
of bound individual variables. Cf. Quine, op. cit., p. 91.

There are, of course, many well-known decision procedures for monadic quantifica-
tion theory (Cf. Church, Introduction to Mathematical Logic, sec. 46) and, a fortiori,
for uniform quantification theory. A particularly elegant decision procedure for the
latter is that of Quine, op. cit., pp. 107-113. The justification for putting forth the
decision procedure of this paper is that, unlike other known decision procedures for
uniform quantification theory, it is diagrammatic and related in obvious ways to
Venn procedures.

. Quine, op. cit., p. 74.

Actually, once a WSD had been constructed, one could use truth-tables to determine
the validity of the diagrammed argument. By associating distinct sentence letters
with distinct marked bins, one could read off directly from the WSD a truth function
which is a tautology if and only if the argument is valid. (Reduction of the validity of
a monadic schema to the tautologousness of a certain truth function of existential
closures of specific predicates is essentially Herbrand’s decision procedure for
monadic schemata. Cf. Herbrand, Recherches sur la Théorie de la Demonstyation,
pp. 52-54.) Thus, in a sense, the methods of WSDs are merely a diagrammatic test
of tautologousness, and the same can be said of Venn procedures in general.

Quine, op. cit., pp. 193-194.
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